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Foreword 
 
 

This program was a follow-on effort to a program on Improved High Cycle Fatigue 

(HCF) Life Prediction, USAF Contract F33615-96-C-5269, the results of which are 

documented in the final report on that PRDA program [1].  This program continued work on 

addressing key issues associated with developing, verifying, and implementing a material 

damage tolerant design methodology capable of predicting HCF limits and material 

thresholds for Ti-6Al-4V.  The methodology development was extended to another titanium 

alloy, Ti-17, and to a nickel-base single crystal alloy, PWA 1484.  These developments are 

necessary to prevent failures due to HCF loading in existing aircraft, to allow the 

introduction of more robust design procedures for engines being developed for next-

generation aircraft such as the Joint Strike Fighter (F-35), and to guide updates to the 

damage tolerant specifications for HCF in the ENSIP document.  The focus in this program 

was on the development of both fracture mechanics and total life methods to control HCF in 

a range of materials for fan, compressor, and turbine components in the engine using 

threshold and endurance limit concepts. 

The Air Force Office of Scientific Research (AFOSR) sponsored this program 

entitled “Advanced High Cycle Fatigue (HCF) Life Assurance Methodologies” under 

Contract F49620-99-C-0007; Dr. Craig Hartley (AFOSR/NA) acted as the Air Force’s 

contract monitor.  Dr’s. Jeffrey Calcaterra and Ryan Morrissey of the Air Force Research 

Laboratory Materials and Manufacturing Directorate (AFRL/ML) acted as the technical 

monitors for the program.  The University of Dayton Research Institute (UDRI) managed 

this damage tolerant design technology development and verification contract for the Air 

Force.  Organizations that supported this UDRI contract were Pratt & Whitney Aircraft 

(P&W), General Electric Aircraft Engines (GEAE), Honeywell Engines (previously, Allied 

Signal Engines), Allison Advanced Development Corporation (AADC), Southwest Research 

Institute (SwRI), Purdue University, United Technologies Research Center (UTRC), 

University of Illinois, North Dakota State University (NDSU) and University of Waterloo.    
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The management structure of the program focused on addressing the type of 

damage that could occur in-service within a damage-state team structure.  There were three 

damage-state teams that each addressed the effects of a specific type of in-service damage 

that could reduce the HCF resistance of engine hardware.  In addition to the three damage 

states (HCF/LCF, FOD, and attachments), major efforts on total life and fracture mechanics 

methods, including small cracks, as well as notches and multiaxial behavior were addressed.  

These teams were comprised of both engine company representatives, to ensure that the 

efforts would address engine hardware design needs, as well as other members who brought 

technical expertise to the problems.  It would be hard to find a team of experts more 

qualified to solve the problems addressed in this program anywhere in the country or 

throughout the world from a combined application and technology point of view.  The 

program managers (PM) and other key contributors involved in the program were as 

follows:  

• For UDRI:  Joseph Gallagher/Ted Nicholas (PM), Allan Gunderson, John 
Ruschau, Peggy Miedlar, Alicia Hutson, Gloria Hardy.  

• For P&W:  David Walls (PM), Charles Annis, Robert deLaneuville, Phillip 
Gravett, Edward Hindle, Matt Szolwinski, Rajiv Naik, Brad Cowles, Johnny 
Adamson, Richard Pettit, Keith Kersey, Michael Marotta. 

• For GEAE:  Dennis Corbly (PM), Robert VanStone, Donald Slavik, Michael 
Hartle, Robert McClain, Ken Wright. 

• For Honeywell:  Howard Merrick (PM), Dave Cameron, Youri Lenets, James 
Hartman. 

• For AADC:  Kenneth Cornet/Durell Wildman (PM), Craig Weeks, Phillip 
Bastnagel, Thomas Cook, Amit Chaterjee. 

• For SwRI:  Stephen Hudak (PM), Kwai Chan, Craig McClung, David Davidson, 
Graham Chell, Yi-Der Lee. 

• For Purdue:  Thomas Farris (PM), Alten Grandt, Patrick Golden, Haradanahalli 
Murthy, Bence Bartha, John Matlik, Dan Garcia, Eddie Perez-Ruberté, 
Pakalapati Rajeev. 

• For NDSU:  Alan Kallmeyer. 
• For University of Illinois:  Peter Kurath. 
• For University of Waterloo: Greg Glinka. 

 
This report covers work conducted over the time period from April 1999 to July 2004. 
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Executive Summary 
 
 

High Cycle Fatigue (HCF) is still a subject of great concern within the U.S. Air 

Force.  While progress has been made in understanding and evaluating causes of HCF 

related failures in a prior program (Contract F33615-96-C-5269)[1], additional work has 

been conducted under this follow-on program (Contract Number F49620-99-C-0007). 

While pure HCF is a relatively straightforward problem from a materials point of 

view, HCF in conjunction with other damage mechanisms is not only more complex, but is 

the cause of most HCF related materials problems.  Pure HCF can be addressed by material 

testing to establish fatigue strength limits under typical stress ratios, frequency, and cycle 

counts.  The addition of statistics and factors of safety produce a robust design if material 

processing, surface conditions, and size effects are accounted for properly.  On the other 

hand, HCF in conjunction with other damage mechanisms such as low cycle fatigue (LCF), 

fretting at attachment regions, and foreign object damage (FOD) is extremely difficult to 

model and predict, partly because of the unlimited number of combinations of loading that 

must be addressed.  Further, the mechanisms are complex and do not lend themselves to 

simple analyses such as linear damage summation concepts.  While pure HCF failures only 

occur after millions of repeated load (stress) applications, HCF combined with other damage 

mechanisms may occur at low cycle counts if the fatigue limit strength or crack propagation 

threshold is reduced from that obtained under pure HCF with no damage.  Methods that 

have been successful in controlling LCF failures can be ineffective when dealing with HCF 

failures since the ability to describe the threshold behavior of a crack or the fatigue limit 

strength may not be adequately characterized.  To ensure durability of a component it is 

imperative that the applied vibratory stress levels are kept sufficiently low (below an 

intrinsic material capability, or stress threshold) such that cracks would not be expected to 

initiate for these levels under given damage conditions.  High cycle fatigue capability, 

altered by LCF, attachment distress, foreign object damage (FOD), inherent material 

heterogeneities, and other damage types, has been identified as a significant parameter  
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whose knowledge is essential to HCF damage tolerance.  Further, there are impending 

requirements to incorporate damage tolerant specifications for HCF into the ENSIP 

document.   

 In response to the Air Force’s concerns about loss of operational readiness, 

maintenance costs, and the adequacy of the HCF design systems used by the aircraft engine 

companies, the National Turbine Engine High Cycle Fatigue Science and Technology 

Program was begun.  The Materials Damage Tolerance Action Team of this program placed 

major emphasis on the development of a new damage tolerance life prediction and design 

methodology for turbine engine rotating structures subjected to HCF loadings.  This report 

chronicles the progress of Phase 2 of this methodology development, funded under USAF 

Contract Number F49620-99-C-0007, which is a follow-on to the work described in the final 

report of Phase 1 (AFRL-ML-WP-TR-2001-4159-Ref.1).  While the work in Phase 1 was 

aimed primarily at titanium fan and compressor airfoil components because of the historical 

importance of HCF in these components, the focus of this effort was to extend the 

development of improved HCF methods for titanium Ti-6-Al-4V to another alloy, Ti-17, at 

both room and elevated temperatures.  In addition, the methodologies were evaluated for 

their applicability to a single crystal alloy, PWA 1484, where temperature and orientation 

effects both have to be taken into account.  Both fracture mechanics and fatigue life methods 

were applied in setting design thresholds that accounted for in-service damage.  As in Phase 

1, the emphasis on damage was concentrated on LCF, attachment distress, and FOD.  In 

order to accomplish this, notch geometries and multiaxial stress states had to be considered. 

The work on this contract was performed by a team of engine manufacturers and 

research organizations that had the wherewithal to (a) define the requirements, (b) contribute 

to material understanding necessary to establishing HCF threshold methods, (c) develop 

enhanced methods for accounting for in-service damage, and (d) verify these methods.  The 

UDRI led team included Pratt & Whitney, General Electric Aircraft Engines, Honeywell, 

Allison Advanced Development Corporation, Southwest Research Institute, Purdue 

University, North Dakota State University, University of Waterloo, and the University of 

Illinois.  This phase of the program was performed in parallel with an Air Force-sponsored 

Multidisciplinary University Research Initiative (MURI) program that was conducted and 

managed by the University of California (Berkeley).  The focus of the MURI program 
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(High-Cycle Fatigue and Time-Dependent Failure in Metallic Alloys for Propulsion 

Systems, grant number F49620-96-1-0478) was to establish advanced analytical and 

materials understanding of the crack nucleation and propagation behavior under HCF 

loading conditions.  Joint meetings were periodically held to share findings and define future 

requirements.  Results of this and the prior program are being transitioned into design 

practices by the engine industry and form the basis of many of the updates to the ENSIP 

guide specification to address high cycle fatigue. 
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Chapter 1 
Background of the HCF Program 
 
 
1.1 INTRODUCTION 

Around 1995, a number of high cycle fatigue (HCF) incidents took place within the 

US Air Force fighter fleet which resulted in engine failures and, at times, grounding of the 

fleet.  Since operational readiness was affected by some of these events, a team was put 

together to rapidly determine the root causes and to suggest solutions.  The root causes, which 

were all related to HCF, highlighted HCF as a major cause of concern to the Air Force.  While 

the issue of HCF involves both vibratory response of engine components as well as material 

capability, one major portion of a program was put together to solve these problems dealing 

with material capability under HCF loading conditions.  In particular, the findings of the 

investigating team pointed to the degradation of HCF material response due to initial 

manufacturing deficiencies or in-service operation.  Under the latter category, low cycle 

fatigue (LCF) usage, foreign object damage (FOD), and fretting fatigue were all found to 

contribute to the loss of HCF material capability during operation.  In the mid 1990’s, 

accounting for such degradation was limited to either highly empirical approaches such as a 

universal knockdown factor, or neglecting such material debit in some aspects of the design 

procedure.  Experience to date had not clearly identified HCF as a design problem.  To 

overcome some of these shortcomings, a major program was put together by the Materials 

Directorate of AFRL to address these issues over approximately a six-year period.  A major 

part of that program was a contract with the University of Dayton Research Institute involving 

the participation of the major engine manufacturers as well as universities and research 

institutes.  The participants in this program constituted a unique team having capability 

ranging from the very fundamental aspects of materials and mechanics to the direct 

application of technology to engine design.  Further, many of the participants had extensive 

familiarity with existing and past field problems involving HCF.  The results of the first phase 

of this program were reported in the final report of a PRDA contract program [1].  The 

present report summarizes progress made on the second phase of the program, administered 
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through AFOSR (herein referred to as the BAA program) with technical oversight from 

AFRL/ML. 

 

1.2 OBJECTIVES AND APPROACH 

 The objectives of the program were the development of technologies for assessing 

the HCF capability of typical materials subjected to HCF in the field and to implement them 

into design procedures. One of the first issues addressed in the program was the choice of 

material.  There was a desire to have a model material representative of a wide material class 

that was used extensively in the engine industry and for which there was a broad database.  

After much deliberation, two materials were chosen.  The first, which was studied extensively 

in the first phase of the program [1], was alpha-beta processed Ti-6Al-4V, which is 

commonly used throughout the industry in fan and compressor components.  A group of 200 

forgings were produced from a single lot following carefully prepared specifications and 

quality control.  All participants in the HCF program; the ML in-house researchers, the 

contactors and sub-contractors on the AFOSR MURI program, individual contractors and 

grantees working on related HCF problems, and all the participants in this contractual 

program, made use of this material to minimize material variability.  The material was 

evaluated mostly at room temperature where material behavior is primarily elastic in the HCF 

regime.  

For comparison evaluation of behavior of a titanium alloy having a different 

microstructure, and to assess behavior at elevated temperature, a limited effort was conducted 

on a beta forged titanium alloy, Ti-17.  This alloy is also commonly used in industry, 

particularly at elevated temperature. 

The second part of the program explored a material that showed some degree of 

inelastic or creep behavior including frequency and time dependent effects, as well as a 

degree of anisotropy.  The main considerations in choosing such a material were producibility 

and availability, experience in using the material, the existence of a database, and 

applicability to turbine engine design.  The material chosen was a single-crystal nickel-base 

superalloy, PWA 1484, from Pratt and Whitney.  Castings were obtained and specimens 

machined with primary axis orientations in several crystal directions. 
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The approach taken in both the titanium and single-crystal portions of the program 

focused primarily on the tolerance of a material to damage.  Total life approaches, based on 

damage initiation, and fracture mechanics approaches were used to assess the damage 

tolerance of a material.  In addition to smooth bars, component geometries included notched 

components where steep stress gradients can occur.  Multiaxial loading was addressed 

because of the nature of stresses encountered at stress concentrators, in the contact region, and 

in complex geometries in general.  Foreign object damage (FOD), which includes 

combinations of residual stresses, cracking, stress concentrations, and microstructural 

damage, was also addressed.  In all of these studies, the underlying theme associated with 

HCF loading was the necessity to define go-no go loading conditions, necessitating the use of 

threshold and endurance limit concepts.  This was done because the high frequencies 

encountered under HCF rendered the application of conventional damage tolerance methods 

involving inspecting for cracks impractical for HCF. 

The approaches taken for both parts of the program, dealing with titanium and 

single-crystal nickel, involved both total life methods and fracture mechanics approaches, the 

latter dealing primarily with thresholds for the onset of HCF.  The program addressed damage 

development and its effect on HCF behavior in the form of LCF and LCF/HCF interactions, 

FOD, and contact fatigue.  Multiaxial behavior, where most of the work was done in titanium, 

was studied in order to handle complex geometries and complex stress states, especially those 

encountered in contact regions.  Notch fatigue was studied in order to be able to better handle 

steep stress gradients such as those encountered in FOD and in contact fatigue, but under 

conditions where the stress field is better defined.  An integral part of such analyses required 

tools dealing with small cracks, where long crack fracture mechanics is not applicable, and 

shakedown, where elastic-plastic behavior is encountered in the initial load cycles and 

eventually becomes purely elastic.  A final issue addressed, necessitated by the anisotropic 

nature of single-crystal materials, was the comparison of isotropic analyses with anisotropic 

analyses for stress distributions and fracture mechanics parameters. 

In conducting the studies mentioned above, a considerable amount of data was 

generated dealing with mechanical behavior of the two titanium alloys, Ti-6Al-4V and Ti-17, 

as well as the S/C alloy PWA 1484. All of the data generated under this program, as well as 

the prior PRDA program [1] were delivered to the prime contractor, UDRI, who, in turn, 
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established a data base that was accessible to all of the participants in the program. At the 

conclusion of the program, the data base was to be delivered to the Air Force. This data base 

will be released together with this report as public information and will be accessible through 

AFRL/MLL, Attn: Dr. Jeffrey Calcaterra, Wright-Patterson AFB, OH 45433. 

 

1.3 REPORT ORGANIZATION 

This final report on the BAA program describes the progress made in characterizing 

the HCF behavior of titanium and single-crystal nickel alloys.  The titanium work and the 

nickel work are described in Chapters 3 and 4.  Chapter 3 deals primarily with titanium alloy 

Ti-6Al-4V at room temperature with a limited study of high temperature behavior.  The other 

alloy studied was Ti-17 at both room and elevated temperature. The technology developments 

are broken down into five sections:  

1. Baseline behavior and HCF/LCF interactions 

2. Multiaxial behavior 

3.  Notch effects 

4. Foreign object damage (FOD) 

5. Attachment fatigue 

Chapter 4 deals with the behavior of PWA 1484, a nickel-base single-crystal alloy, 

and the models for use in other high-temperature anisotropic materials. The volume is divided 

into six sections:  

1. Material 

2. Fracture mechanics based modeling 

3. Endurance limit modeling 

4. Notch effects 

5. Attachment fatigue 

6. Implementation into design 

 Most of the sections and subsections were not prepared by a single author or 

company; rather they represent a team effort involving more than one company in general. 

The entire report was put together and edited by UDRI as the prime contractor for this entire 

effort.
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Chapter 2   
Accomplishments and Recommendations 
 
 
2.1 OVERALL PROGRAM ACCOMPLISHMENTS 

The accomplishments of this program are detailed in this voluminous report and its 

Appendices.  A few are highlighted below to give an idea of the type of developments that 

took place under this program. They are presented in no particular order, but those dealing 

primarily with HCF in titanium are presented first before those that are more pertinent to 

anisotropic, high temperature materials. 

(a)  A methodology was developed to characterize the worst-case notch under FOD. 

As notch sharpness increases, the effective stress concentration factor reaches a limit. In the 

presence of the very steep gradients present near sharp notches, cracks can be shown to 

initiate, but not propagate. The worst-case notch methodology enables one to compute an 

effective HCF fatigue limit stress based on the propagation and arrest of cracks in steep stress 

gradients. The model was demonstrated to predict HCF threshold stresses as a function of 

notch geometry within the exit criteria established by the HCF team.  The model is directly 

applicable to FOD and extendable to attachment fatigue. To accomplish this effort, a notched-

fatigue database was developed covering a wide range of notch depths and acuities 

representative of those encountered in service-induced FOD. 

(b)  Two approaches for shakedown for notch geometries and other cases of 

concentrated stresses for proportional and non-proportional loading were developed and 

validated. The methodologies deal with both isotropic and anisotropic materials and are 

validated for some specific test geometries. The shakedown procedures are incorporated into 

computer codes to address this very complex mathematical procedure. 

(c)  An extensive investigation evaluated a number of multiaxial fatigue models, 

both critical plane and equivalent stress types. Several new models, primarily modifications of 

existing approaches, were postulated and evaluated. Depending on the database used, whether 

uniaxial or multiaxial, different models were shown to be the most robust under the particular 



 

 6

conditions. The ability of the various models to consolidate data, and the strengths and 

weaknesses of each model were documented for a very large database going from the HCF 

regime down to lower lives nearer to LCF.  Test results obtained at different stress ratios as 

well as different fatigue lives were used.  Among the models evaluated were the Smith 

Watson Topper, Findley, Equivalent stress, and Modified Manson-McKnight.  

(d)  Methods for determining statistically significant minimum properties for fatigue 

limit stress were evaluated using step and staircase approaches. Use was made of a random 

fatigue limit (RFL) model with its associated statistical behavior for the evaluation. Step 

loading was found to be generally effective, but not to provide significant time savings over 

conventional test methods. The applicability of step testing was found to be somewhat 

questionable for some tests in Ti-17 for unexplained reasons. 

(e)  Efficient methodologies for contact stress analysis were developed and refined 

for both similar and dissimilar materials.  The procedures, based on numerical solutions of 

singular integral equations, were put into computer codes for ease of use.  Procedures for 

applying the methods for complex load histories were demonstrated. 

(f)  Analytical procedures for predicting fatigue life and fatigue limit stresses at 

notches and under stress gradients were developed.  Approaches using effective notch fatigue 

factors, kf, and equivalent stressed areas, Fs, were applied to problems involving FOD. The 

use of a critical depth for stress analysis was found to be necessary in certain cases. 

(g)  A methodology was developed for a simplified test procedure to determine the 

equivalent small crack behavior from a long crack threshold test.  Results confirmed the 

applicability of the Kmax = constant test method as an effective alternative to the direct study 

of naturally initiated small cracks. Actual small crack behavior of Ti-6Al-4V was successfully 

measured at R = 0.1 and R = 0.5, using the replication technique. The crack nucleation 

mechanism was observed to be affected by the choice of stress ratio. However, small crack 

propagation behavior appears to be stress ratio insensitive.  For single crystal materials, the 

following accomplishments are noted: 

(h)  K analyses for various combinations of loading and crystal orientations were 

obtained using anisotropic elasticity.  Comparison of the anisotropic solutions with existing 

isotropic solutions showed that the errors involved using isotropic theory were generally 



 

 7

small. Specific examples were used to demonstrate the accuracy of existing isotropic 

solutions. 

(i)  Mixed mode thresholds for fatigue crack propagation were obtained 

experimentally and predicted analytically for several different crack directions and material 

orientations.  

(j)  Notch fatigue analysis methods were evaluated for anisotropic material 

properties including the incorporation of time-dependent material behavior.  Results at 

1900°F demonstrate that stress ratio or mean stress is an important consideration for modeling 

notch behavior from smooth bar data. For non-zero mean stresses, creep becomes a factor in 

the shakedown of the stress field at the notch.  Common approaches such as use of q or Fs 

required extensive fitting of data at different values of R, thereby minimizing the truly 

predictive capability of such models. 

(k)  Constitutive modeling was refined and applied to critical plane models. 

(l)  Anisotropic shakedown methods were developed through extension of isotropic 

methods and incorporated into computer codes. 

 

In achieving all of these accomplishments and addressing all of the other topics in 

this program, a considerable amount of mechanical testing had to be conducted. The results of 

the testing are summarized, where appropriate, throughout the report and the accompanying 

appendices.  In addition, a comprehensive data base was generated which contains all of the 

raw data that can be sorted by material, testing organization, and objective of the test.  The 

data have been assembled into a Microsoft Access data base. Information on gaining access to 

the data base is contained in Chapter 1, Section 1.2. 

 

2.2 IMPLEMENTATION 

(a)  Both PWA and GE have implemented the use of advanced analytical methods 

for determining stresses in the contact region at a dovetail and are using those results for 

evaluating fatigue life.  In particular, the code CAPRI developed under this program, and 

modifications of this code, are being used for efficient stress analysis. 
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(b)  An approach for predicting notch behavior from smooth bar fatigue data is being 

used for evaluating fatigue life of notched components and has been successfully applied to 

extend the life of an existing piece of hardware.  The approach is based on a statistical 

analysis of smooth bar fatigue data along with a method for evaluating the contribution of 

equivalent surface areas based on the local stress at that area.  This so-called Fs approach is 

very similar to Weibull statistics and has been shown to be able to predict fatigue lives of 

materials having a broad range of stress concentrations and geometric features although many 

of the predictions were non-conservative. 

(c)  Although models for addressing multiaxial stress states have been in existence 

for some time and are used regularly in design, this program provided for the first time, a 

thorough assessment of existing models.  This, in turn, led to modifications being 

implemented and new models being added to the inventory of existing analytical tools in 

industry, particularly for analysis in the HCF regime. 

(d)  Methods for FOD analysis, developed, modified, or evaluated under this 

program, are now part of design for FOD tolerance within the engine industry.  These 

methods are now able to take into account the severity of FOD which includes the effect of 

the damage (notch) geometry including effective values of kt, residual stress fields developed 

under FOD impacts, and microstructural damage including microcracking.  In addition to 

incorporation of effective notch sensitivity, new capabilities for evaluating fatigue limit 

stresses have been adopted. 

Perhaps the biggest breakthrough on this program is the demonstration that 

analytical methods now exist for predicting the response of any leading edge geometry to a 

given hard body impact and the methodology to predict subsequent fatigue resistance using 

models developed here. 

(e)  Methods for computing threshold stress intensities for anisotropic materials have 

been developed and verified and are now being used for design and analysis.  In particular, 

the applicability of existing isotropic K analysis has been demonstrated for specific 

geometries and material orientations. 
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2.3 RECOMMENDATIONS 

While tremendous progress has been made in the development of HCF technologies 

and their implementation into the design processes of the major engine manufacturers, a 

number of weaknesses in the existing technology base have been uncovered during the 

process.  Methods now exist to better predict the HCF behavior of components that are 

subject to prior LCF, to FOD, and to fretting in contact regions.  In getting to this point, 

several aspects of material behavior have been identified where the ability to understand and 

predict the response is still less than complete.  Some of the areas where further research and 

development is recommended are outlined below: 

(a)  Contact fatigue - The ability to determine stresses in the contact region has been 

greatly advanced, but the development of predictive models for both fatigue initiation and the 

threshold for propagation of fatigue cracks is still required.  It is still unknown whether 

fatigue failures in the contact region are due to pure HCF, pure LCF, or a combination of the 

two.  The highly nonlinear nature of the damage accumulation in the contact region, and the 

potential interaction of LCF cycles during startup and shut down of an engine with the in-

flight vibratory loading, still remains mostly unknown.  The modeling concepts developed 

under this program should be extended to address the interaction problem as well as to 

address damage under pure LCF loading.  Included in these studies should be an in-depth look 

at the role of environment in the degradation of the contact region, primarily at elevated 

temperatures for both titanium and nickel-base alloys. 

(b)  FOD - There are two aspects of the FOD problem that still provide a stumbling 

block for the implementation of the technology developed for assessing the severity of 

damage from foreign objects.  The first deals with the variability of material response under 

nominally identical impact conditions.  Both analyses and tests have shown that objects 

impacting on leading edge geometries cause damage in the form of reduction of fatigue limit 

stress that are extremely sensitive to the exact location of the impact with respect to the center 

of the leading edge configuration.  Only a more complete series of tests can provide enough 

information with which to quantify the extent and variability of the damage produced.  The 

second major problem is to identify the specific object that a leading edge may be subjected to 

in service.  Although the nature of the damage that occurs in the field has been quantified, the 
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specific object causing this damage has not been adequately identified.  It is highly 

recommended that a standard impacting object or series of objects, e.g. sand particle, stone, 

workman’s tool, be identified with which to assess the damage that may be imparted to a 

blade or vane.  Parameters such as impact velocity and impact angle can be estimated from 

the operational usage (take-off and landing speed) of an engine as well as the geometry and 

orientation of the component.  From this information, the damage of a given object can be 

determined through analysis and test, once the impacting object is defined.  Rather than 

identify the severity of damage in terms of a given kt or kf, where a robust design shows no 

improvement over a fragile design, it is recommended that the object potentially causing the 

damage be identified in terms of a standard, similar to what is done for evaluation of 

vulnerability of components to bird strike where “standard” birds are used as impacting 

objects.  Another aspect of this program that is unfinished is the application of the FOD 

methodologies including the worst case (sharp) notch approach to the experiments performed 

early in this program and in the proceeding PRDA program [1].  

 (c)  HCF/LCF interactions and cumulative damage modeling - While empirical data 

on both crack growth and total life under combined HCF and LCF have been obtained, the 

modeling that has been developed has been largely empirical and uses linear damage 

summation concepts in most cases. Enough data are available which show that linear damage 

summation is generally inadequate and better modeling needs to consider the actual damage 

mechanisms.  In particular, the question of cycle counting must be addressed as stress levels 

in the HCF regime are encountered.  The general concepts of cycle counting for high stress 

LCF, and a threshold or endurance limit for HCF, appear to be generally accepted. For cycle 

counts in the intermediate region of cyclic life, say 104 to 106 cycles, it is not clear how 

damage should be summed.  Numbers of cycles are high, yet the stresses are above the fatigue 

limit so that a threshold concept cannot be applied readily.  This problem is particularly 

applicable to transient loading which is above the fatigue limit stress while the baseline 

vibratory loading is below that limit.  It appears that both crack or damage initiation as well as 

propagation should have to be considered in such a problem.  The applicability of such 

modeling concepts eventually has to be extended to highly nonlinear problems such as 

stresses in contact regions where the stress analysis, itself, is extremely complex. 
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(d)  Palliatives for FOD - Although not developed directly under this program, the 

use of residual compressive stresses produced by conventional shot peening or laser shock 

processing (LSP) has provided a high level of FOD tolerance in some applications.  The 

application of LSP, and another surface treatment called low plasticity burnishing (LPB), is 

not based much on analysis but rather on empirical data.  Methods do not exist yet to predict 

the complete residual stress profile in a complex geometry such as a blade or vane that is 

subjected to LSP or LPB to a small area, typically along a leading edge.  In addition to being 

able to predict the residual stress profile, models are needed to predict crack initiation and 

crack propagation under combined states of applied and residual stresses, where the latter 

involve stress gradients in the material.  While advances have been made in dealing with 

stress gradients under certain conditions, the available models are not sufficiently robust to 

apply to a general stress field with arbitrary gradients in multiple directions. 

(e)  Palliatives for contact fatigue - In addition to having inadequate methods to 

design surface treatments to produce residual stresses, the science behind the use of coatings 

to mitigate fretting fatigue damage is quite elementary.  Coating technology, and stress 

analysis and modeling of coated materials was not addressed under the present program.  

Much remains to be learned about how coatings work and how to analyze the mechanical 

behavior of a coated material in terms of crack initiation under complex stress fields present at 

contact regions, and crack propagation under those very same stress fields with steep 

gradients.  Other aspects of this problem that warrant further investigation are the role of 

residual stresses from surface treatments in mitigating both crack nucleation as well as crack 

propagation (thresholds) and the role of friction in determining the stress states arising from 

contact fatigue. In the latter case, knowledge of the role of friction in the resulting stress fields 

is critical in the development of coatings for improving the resistance of contact areas to 

fretting or galling. 

(f)  Notch methods –  Notch methods provide input for two classes of problems: the 

treatment of actual notch or stress concentration geometries, and the treatment of gradient 

stress fields such as those encountered under contact stress conditions. In particular, the 

approximation of damage from FOD as being equivalent to a very sharp notch should be 

further investigated to develop a continuous approach to the development of crack growth 

threshold modeling including small crack effects.  This type of information will be of 
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particular use in the development of advanced models for the initiation and propagation of 

cracks under contact fatigue stress states. Additional work in notch methods requires the 

consideration of multiaxial stress fields in the uniaxial models already developed and the 

extension of gradient methods such as the Fs approach to gradients into the depth of the 

material in addition to gradients along the surface. This latter consideration is important in 

considering stress gradients due to residual stresses from surface treatments where the stresses 

are uniform along the surface but decay into the depth. 

(g)  Shakedown methods – Stress redistribution due to local plasticity in the form of 

a stress concentration such as a notch is referred to as shakedown because it occurs 

incrementally with cycles of loading. Shakedown methods still need to be developed for both 

titanium and S/X materials (isotropic and isotropic materials) for more general material 

behavior including time-dependent effects and more general cyclic loading. Extension of 

some of the present methods that are limited to rectangular geometries needs to be 

accomplished for more general geometries. 

(h)  Extension to elevated temperatures and other materials - It is almost obvious, 

but the developments needed to produce more robust design tools for HCF prevention have to 

be extended to all applications and materials.  The extension of total life and crack growth 

models to materials at high temperatures involves the additional considerations of time-

dependent material behavior as well as environmental effects, which degrade material 

properties.  In particular, at the highest temperatures, S/X materials appear to demonstrate 

frequency effects on fatigue life. Both data and an understanding of this behavior are lacking 

at the present time. Of particular interest is the characterization and understanding of the 

three-dimensional threshold for crack growth in S/X materials at elevated temperature. 

Further characterization of S/C materials is needed in the areas of constitutive model 

development, only a small amount of which was developed under this program, and crack 

growth modeling involving considerations of both creep and environmental effects.  An 

additional consideration involving the use of other materials, specifically in the area of 

contact fatigue, is the use of dissimilar materials in the contact region and how existing 

analyses and models can be extended to such situations. 
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(i)  Validations – While many of the models and technical approaches developed 

under this program have been validated in the laboratory under specimen sample tests, little 

has been done to validate approaches on actual component geometries or on subcomponent or 

feature specimens. It is well known that scale-up from lab specimen to component is not 

straightforward, and aspects such as size effects or defect distributions are not readily 

scalable. In addition, scale-up may involve extension of concepts from specimens where 

behavior is primarily elastic to components where local behavior may be non linear. Aspects 

such as stress or strain control in experiments must be considered when extending modeling 

concepts to actual components. Validation under realistic conditions is considered to be an 

important aspect in the future transition of HCF technologies to robust design practices. 

(j)  Correlations with non-destructive inspection - A final area for future work, one 

where little or no effort was devoted to in this program, is the relationship between damage 

which may lead to HCF failure and the use of  nondestructive inspection to detect and 

quantify the extent of such damage.  This issue is particularly important in assessing the 

fatigue capability in regions of contact where extent of damage in terms of geometry 

measurements on the surface does not appear to be directly related to fatigue capability.  The 

relationship between observable damage and fatigue capability is also important in FOD 

where residual stresses and subsurface microstructural damage may contribute to loss of 

structural integrity but may not be readily detectable.  It is important to establish the effects of 

detectable damage on HCF capability as well as to identify damage that may occur which is 

not detectable.  In this case, the prediction of damage evolution and growth is important.   

In this, and most of the other areas needing additional work, the use of statistics 

cannot be understated.  In fact, probabilistic design methodologies may hold the greatest 

possibilities of benefit in future design and analysis approaches for the HCF problem. 
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Chapter 3 
Titanium Alloys 
 
 
 
3.1 HCF/LCF 

3.1.1 Introduction 

Two titanium alloys were used in this investigation:  an alpha-beta alloy, Ti-6Al-4V, 

in a forged plate condition and a beta-processed alloy, Ti-17, in the form of a hollow pancake 

forging. 

3.1.1.1 Ti-6Al-4V 

The Ti-6-4 alloy used in this study was received as plate in the solution-treated and 

over aged (STOA) condition. The forging stock material was a double VAR melted Ti-6-4, 

2.5 inches (6.35 cm) diameter bar stock from Teledyne Titanium, produced in accordance 

with AMS 4928.  It was supplied in random lengths of 12 to 14 feet (305 to 427 cm), in mill 

annealed condition: 1300°F (704°C)/2 Hr/AC.  The billet was then sectioned into forging 

multiples, 16 inches (40.7 cm) in length, which were preheated to 1720°F (938°C) for up to 

one hour prior to being pressed into their final forging dimensions of 16 x 6 x 0.8 inches 

(40.7 x 15.3 x 2.0 cm).  Forging was done on a National 8,000 ton mechanical press with dies 

initially heated to 300°F (149°C).  Glass-lubricant coated bars were preheated to 1720°F ± 

20°F (938°C ± 11°C) for 30 minutes in a continuous furnace and rapidly transferred to the 

press.  After a one stroke forging, the pieces were simply air-cooled.  

 Solution heat treatment was done in a Lindberg air furnace at 1710°F (±25°F) 

[932°C (±14°C)] for one hour.  The rack of forgings, heat-treated on edge, was rolled out of 

the furnace after heating at temperature and fan air-cooled at a cooling rate, from 1700°F to 

1000°F (927° to 538°C), of 360°F/min (200°C/min).  The solution-treated forgings were 

cleaned of glass lubricant, oxide and alpha case using caustic and acid baths as well as grit 

blasting.  The cleaned forgings were vacuum annealed at 1300°F (704°C) for two hours at 

temperature and fan cooled in argon.  This processing resulted in a microstructure consisting 
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of 60-vol% of equiaxed primary alpha with an average 20µm grain-size with the remainder 

transformed beta (Figure 3.1) and is identical to the alloy used in the earlier HCF program [1].  

The room temperature mechanical properties of the Ti-6-4 plate as processed and heat-treated 

are σy = 134.8 ksi (930 MPa) and σUTS = 141.8 ksi (978 MPa). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1.  Mill-annealed microstructure of Ti-6Al-4V plate forging. 

 

3.1.1.2 Ti-17 

Ti-17 was selected for the program as a representative beta forged titanium alloy to 

compare with the results obtained on Ti-6Al-4V in the previous PRDA program and the 

current contract. The Ti-17 material used in this study was taken from two companion 

forgings.  Each measured approximately 27.6” O.D. x 9.3” I.D. x 5.6” thick.  One of the 

forgings was machined into a blisk configuration and was used for bench testing and 

validation of FOD methods and all other specimens were taken from the second forging. 

Titanium Metals Corp. supplied the forging stock as 10” round billet. The Houston Operations 

of Wyman-Gordon, Inc, performed the forging. 
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The chemistry from the top and bottom of the ingot (see Table 3.1) was within the 

acceptable ranges of GEAE Spec C50TF57. The beta transus, as determined by sequential 

metallographic analysis, ranged from 1635° to 1645°F. The billet stock was ultrasonically 

inspected in accordance with P3TF15-S13 and found to be acceptable. 

 

Table 3.1.  Chemistry of the Ti-17 Ingot used in the Program 
 

 Ti Al Sn Zr Mo Cr 
Ingot Top bal. 5.22 2.07 1.94 3.94 4.18 
Ingot Bottom bal. 5.10 2.05 2.01 3.84 4.08 
C50TF57 bal. 4.50-5.50 1.5-2.5 1.50-2.50 3.50-4.50 3.50-4.50
 
 

All other trace and residual elements were within specification. The forgings were 

heat-treated at 1475°F for four hours, followed by a water quench.  Final heat-treatment was 

performed at 1150°F for eight hours followed by air-cooling.  The resulting microstructure is 

compared with Ti-6-4 forgings from the PRDA program in Figure 3.2. The 0.2% yield and 

ultimate tensile strengths at room temperature in these Ti-17 forgings in the tangential 

direction were determined to be 151 ksi and 168 ksi, respectively. 

 

  

 

 

 

 

 

 

 

 

 

  (a) (b) 

Figure 3.2.  Microstructures of the (a) Ti-17 and (b) Ti-6-4 forgings. 
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Specimens were excised from the blisk forgings.  FOD and crack growth specimens 

were low stress ground as the final machining step.  LCF and HCF specimen preparation 

included low stress grinding, a longitudinal polish, and stress relief for eight hours at 1130°F 

in a vacuum. 

3.1.2 Fatigue Crack Growth Behavior and Models 

 The application of linear elastic fracture mechanics (LEFM) and the stress intensity 

factor, K, to characterize crack growth behavior, has been described in the final report for 

Phase 1.  Methods for representing crack growth data, fitting data to different growth laws, 

and test methods for obtaining data are all described there.  In this section, the applicability of 

LEFM to small cracks, the extension of crack growth modeling to a second material, and the 

use of other crack geometries is described. 

3.1.2.1 Ti-6Al-4V at 500°F 

Two surface flaw specimens were used to generate 500°F threshold data at R = -1 as 

shown in Figure 3.3.  Three compact tension specimens (h=.6, w=1.0, b=.375 inches) were 

used to generate 500°F threshold crack growth data in Figure 3.4.  Multiple sets of region 1 

data were generated on a single sample. 

The data were reduced to obtain the 3.94E-9 inches/cycle (1E-10 m/cycle) threshold 

per the ASTM E647 method (fitting a straight line in log-log coordinates through the lowest 5 

or more points with positive da/dN’s, and extrapolating to 1E-10 in cycle), and also by taking 

the minimum delta K at which growth was observed.  As shown in Table 3.2, the two 

methods gave comparable results.  

The threshold data derived by the ASTM method is described by the curve in Figure 

3.5.  The data scatter is fairly tight in the region tested.  As R 1, the curve cannot be correct, 

because finite ∆K results in infinite Kmax as one approaches this limit.  To illustrate this, a 

fracture toughness cutoff is also plotted, based on a KIC value of 57-ksi in1/2, a room 

temperature value given in MIL-HDBK-5 for Ti 6-4.  The actual fracture toughness, and the 

resulting cutoff would be expected to vary with temperature and thickness, and is beyond the 

scope of this investigation. 
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Figure 3.3. Crack growth rate data for Ti 6-4, at 500°F under R= -1  

conditions (∆K = calculated based on R=0). 
 

 
 

Figure 3.4.  Region I crack growth rate data for Ti-6-4, R = .1, .5, .8. 



 

 19

Table 3.2.  Crack Growth Threshold Data for Ti-6-4 at 500°F 
 

   Kthreshold 

Specimen R 

Frequency 

(Hz) 

ASTM E647  

(3.94e-9 in/cycle) 

Minimum value for 

which growth was 

observed 

9461 -1 5 6.55 6.49 

9463 -1 5 6.25 6.15 

     

9464 0.1 10 3.30 3.27 

9464A 0.1 10 3.34 3.32 

9465 0.1 20 3.46 3.41 

9465A 0.1 10 3.51 3.53 

9465B 0.1 20 3.60 3.57 

       

9465C 0.5 20 2.54 2.50 

9465D 0.5 10 2.67 2.63 

9466 0.5 20 2.56 2.49 

9466A 0.5 20 2.60 2.56 

       

9466B 0.8 20 2.21 2.18 

9466C 0.8 20 2.21 2.17 

9466D 0.8 20 2.09 2.04 
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Figure 3.5.  Crack growth threshold model for Ti-6-4 at 500°F. 

 

3.1.2.2 Ti-17 at 75° 

Fatigue crack growth rate (FCGR) testing for Ti-17 was obtained with Kb surface 

flaw geometries.  The specimen-loading axis was oriented along the blisk radial direction.  

The crack depth direction was oriented along the blisk axial direction.  An EDM semicircular 

pre-flaw 0.005-inch deep in the center of the width dimension was used to obtain the Kb 

surface flaw.  Specimens are loaded through button head ends fixed into the load frame grips.  

Crack growth was monitored with potential drop techniques.  Crack growth is reported after 

0.002 inch of pre-crack growth at low K.  Increasing K tests were performed at constant load 

ranges at selected R.  Threshold fatigue tests were performed at decreasing K-gradients of 

 –30 in-1. The K-gradient describes the rate at which load is reduced to determine ∆Kth.  

Though this value is well below the ASTM E649 recommended value, GEAE has found good 

results with these shed rates for surface flaws in aircraft engine materials. 

All crack growth rate data were analyzed with the Raju-Newman surface flaw K-

solution at the crack depth (a) and surface positions (2c).  The final analysis includes minor 

corrections to the crack size and shape with post-test crack size measurements.  Fatigue crack 
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length measurements were converted to growth rates as a function of ∆K as shown in Figures 

3.6 and 3.7.  

These data include results from shed tests as well as constant load (increasing K) 

tests at R ≈ –1, 0.1, and 0.5.  These data are fit with the sigmoidal crack growth Equation (3.1) 

adjusted for mean stresses with the Walker Equation (3.2). 

 
 da/dN  = exp(B) (Keff/Kth)P [ln(Keff/Kth)]Q[ln(Kic/Keff)]d   (3.1) 
 where, Kth, B, P, Q, D, and Kic are material constants and where 
 
 
 Keff = Kmax (1-R)m = ∆K (1-R)m-1 (3.2) 
 m = m+ for positive R and m= m- for negative R. 
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Figure 3.6.  Ti-17 crack growth rates at the crack depth position for 75°F. 
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Figure 3.7.  Ti-17 crack growth rates at the crack surface position for 75°F. 

 

The data and the Keff correlation for the Ka (crack depth position) and Kc (surface 

position) are shown in Figures 3.8 and 3.9. The resulting material constants for Ti-17 at 75°F 

are given in Table 3.3.  The dual Walker exponent and the sigmoidal relationship accurately 

model the influence of R and ∆K on crack growth rates.  No additional constraint loss model 

adjustments were required to obtain the correlation at the surface position.  These material 

constants were subsequently utilized to assess HCF/LCF methods. 

 
Table 3.3.  Ti-17 Sigmoidal Curve Constants at 75oF 

 
Kth 3.277 
B -15.921 
P 1.8774 
Q 0.73692 
D -0.93565 
Kic 60 
m+ 0.647 
m- 0.158 
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Figure 3.8. Ti-17 crack growth rate results at the crack depth position 

for 75°F with the sigmoidal and Walker models. 
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Figure 3.9. Ti-17 crack growth rate results at the crack surface position  
for 75°F with the sigmoidal and Walker models. 
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3.1.2.3 Ti-6-Al-4V Small Crack Behavior  

A recent study [2] has shown that the predictions based on long fatigue crack 

propagation data greatly overestimated the actual crack propagation life in a forged Ti-6-Al-

4V titanium alloy representative of a turbine engine fan blade material. Recognizing the 

importance of the da/dN – ∆K input used for crack propagation life prediction, an additional 

effort [3] was initiated within the USAF Improved High Cycle Fatigue (HCF) Life Prediction 

Program to monitor and characterize the development of the HCF-induced cracks in Ti-6Al-

4V alloy from an initially undamaged state.  

The data reported [3] would be invaluable for developing the crack propagation-

based life prediction approach. At the same time, the direct observation of the naturally 

initiated cracks is extremely difficult to apply without having a) prior knowledge about the 

fatigue behavior of the material, b) skilled personnel and c) sophisticated equipment. It is 

prohibitively time-consuming and considerably more expensive than conducting conventional 

fatigue crack propagation testing. Besides, direct observation (via surface replication 

technique) of naturally initiated small cracks might be difficult or even impossible to apply to 

the tests simulating actual service conditions such as high/low temperatures or liquid 

environments. 

Within the same USAF Improved High Cycle Fatigue (HCF) Life Prediction 

Program, fatigue crack propagation behavior of the same titanium alloy and microstructure [3] 

was studied under both constant-R and constant-Kmax conditions [4]. Comparison of the 

results from both studies [5] shows very good agreement between actual small crack data and 

long crack data obtained from constant-Kmax test.  Since the equipment, specimen design, 

level of complexity and cost associated with the constant-Kmax testing are essentially the same 

as for conventional (constant-R) fatigue crack growth testing, this method may represent an 

effective alternative to the direct study of the naturally initiated small cracks.  

In the present study, the propagation behavior of naturally initiated small cracks was 

studied at stress ratios of R = 0.1 and R = 0.5. No significant difference was observed between 

small crack propagation behavior at R = 0.1 and R = 0.5 when the replication test results were 

presented in the form of “da/dN – a’” or “da/dN – ∆K” form.  At both stress ratios tested, 
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small cracks were shown to propagate much faster than the long cracks under identical 

conditions. These results further support the applicability of the Kmax = constant test method 

as an effective alternative to the direct study of the naturally initiated small cracks. 

In Figure 3.10, the fatigue crack propagation rate plotted as a function of the crack 

size for R = 0.5 (points) is compared to the earlier data for R = 0.1 (lines). No significant 

difference can be seen between small crack propagation behavior at R = 0.1 and R = 0.5. 

Similarly, reasonable agreement exists between the small crack data for both R = 0.1 and R = 

0.5 when plotted in a “da/dN – ∆K” format. At the same time, both sets of small crack data 

appear to be shifted to the left in respect to the available long crack data for the same material 

and microstructure.  

The results obtained further confirm the applicability of the Kmax = const test method 

as an effective alternative to the direct study of the naturally initiated small cracks. The 

detailed description of the test program is given in Appendix A. 
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(a) 

Figure 3.10(a & b).  Crack propagation rate as a function of crack size (a) and ∆K (b). 
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(b) 

Figure 3.10(a & b).  Crack propagation rate as a function of crack size (a) and ∆K (b). 
 

3.1.3 Total Life Methods for Smooth Specimens 

 Total life is determined for specimens under either constant load or constant strain 

conditions.  While the propagation life from some arbitrary (small) crack size is finite in the 

LCF regime, the propagation life for very high numbers of cycles to failure becomes small. In 

the HCF regime, this approach is often referred to as initiation or crack nucleation.  In the first 

phase of this program, total life methods concentrated on consolidation of data obtained at 

different stress ratios (R).  For HCF, the constant life Haigh diagram (often referred to as a 

Goodman diagram) was used to represent data at different values of R.  In this section, 

statistical approaches for representing S-N data and different methods for experimentally 

determining the fatigue limit strength are described. 

3.1.3.1 Ti-6-4 at 75°F -Step and Staircase for Minimum HCF Capability in Ti-6Al-4V 

The majority of Ti-6Al-4V tests and methods with Ti-6Al-4V specimens at 75°F are 

presented in the PRDA V final report.  Additional tests were run to establish the best way to 

obtain HCF minimum properties using step and staircase approaches.  Step tests are subjected 

to multiple load levels on each specimen to establish the specimens fatigue capability.  The 

specimen is initially subjected to a constant stress range for a set number of cycles.  If failure 
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does not occur within the block, the maximum stress on the specimen is increased until 

failure.  The constant life endurance stress range is calculated by Equation 3.3 as: 

 ∆σES = ∆σPS + (∆σF - ∆σPS)( Nf / NRO) (3.3) 
 
where, ∆σES is the constant life endurance stress range (or endurance strength), ∆σPS is the 

stress range from the prior unfailed block, ∆σF is the stress range from final block, Nf is the 

cycles to failure in the final block, and NRO is the number of cycles in each block prior to 

failure.  Step tests will result in a failure point for each specimen tested.  This can be an 

advantage when material is costly and test failures are required for needed assessments.  A 

summary of the step test matrix in this evaluation is provided in Table 3.4.  

The tests were run for Ti-6Al-4V at 75°F, R=0.1, and 900 Hz.  Tests were run with 

107 fatigue blocks and 4 ksi maximum stress steps.  The average number of cycles/specimen 

was ~5.2x107 cycles for a total of 260x106 cycles for the step test program.  Tests at 1000 Hz 

were not used for the assessment given the potential issues with the GEAE kHz machine at 

1000 Hz. 

 

Table 3.4.  Ti-6Al-4V Step Test Matrix at 900 Hz, R=0.1, and 75oF 
 

 

Spec ID 
frequency  

(Hz) 
 Starting  

Smax* (ksi)  
Final Smax at  

failure (ksi) 
#  

Steps 
Last Step  

Nf 
Interpolated 
Smax (ksi) 

121-2 900 61.5 77.5 4 8202785 76.78 
124-4 900 61.5 89.5 7 1125814 85.95 
47-10 900 61.5 (**) 81.5 5 5617819 79.75 
173-2 900 65.5 77.5 3 5627646 75.75 
47-9 900 65.5 81.5 4 8252952 80.80 

*step evaluation procedure (4 ksi Smax steps if no failure after 1e7 cycle blocks) 
if # steps =0, drop the starting Smax  on the next specimen 
if # steps =1-4, repeat the same starting Smax on the on the next specim
if # steps >4, increase the starting Smax on the next specimen 

** specimen 47-10 begun at initial Smax of 61.5 ksi.  
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Alternatively, a single load level on each specimen is used for the staircase 

approach.  A summary of the staircase matrix is provided in Table 3.5.  The first staircase test 

was run at Smax=67 ksi without failure.  Stresses were increased on additional specimens 

until failure occurred within 107 cycles.  Stresses on subsequent tests were continually 

increased or decreased based on Nf of the last tests vs. 107 target life.  Roughly ½ of the 

specimens failed within the targeted life regime.  Six of the staircase tests were long life 

failures that continued overnight or through the weekend awaiting setup of the next test 

specimen.  Given over-night or weekend test time was run without additional costs, the 

staircase matrix (Table 3.5) was similar in cost to the step matrix (Table 3.4). More staircase 

tests can be run at similar costs to step tests with multiple steps/specimens. 

 

Table 3.5.  Ti-6Al-4V Staircase Test Matrix at 900 Hz, R=0.1, and 75oF 

 

Spec ID  Specimen 
Smax* 

Nf if failure 
before 10^7 Nf runout Nf if failure 

after > 10^7

124-7 67.0 1.00E+07
78-6 71.0 1.00E+07

171-17 75.0 112048815
78-8 79.0 6436100

173-4 75.0 6809400
124-5 71.0 1.00E+07

171-16 75.0 22303000
121-14 79.0 1.00E+07
121-9 83.0 993941

171-12 79.0 963730

171-14 75.0 25831000
171-8 79.0 43796000

171-18 83.0 1.00E+07
171-6 87.0 8255264
171-3 83.0 1.00E+07

124-12 87.0 404495
121-11 83.0 4216400
121-10 79.0 3253398
121-2 75.0 31539755
171-5 79.0 21505004

78-7 83.0 631424
121-5 79.0 4793082
47-17 75.0 6996302

171-13 71.0 767559
121-18 67.0 1.00E+07

47-3 71.0 1.00E+07
*staircase evaluation procedure 
    - if failure prior to 10^7, drop Smax by 4.0 ksi on the next specime
     - if no failure by 10^7, remove specimen and increase Smax by 4
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The step and staircase results are plotted in Figure 3.11.   The results are 

qualitatively very similar.  A quantitative assessment of the step tests was done with 

probability plots (Figure 3.12).  Here, 50 corresponds to the average (50%) fatigue capability 

of the step test.  The slope on probability plots corresponds to the scatter for 107 fatigue 

capability.  This can be compared with the fatigue capability of staircase tests analyzed in 

Figures 3.13 and 3.14.  A 1D scatter in the stress direction is assumed in Figure 3.13.  The 1D 

stress scatter assumption is similar to analysis of the step tests.  A 1D life scatter is assumed in 

Figure 3.14.  The scatter assumption in life is similar to the approach typically used in 

analyzing low cycle fatigue results. 

Predictions with the step and staircase tests with baseline tests from the PRDA 

program (Nf<106 cycles) were also analyzed with the random fatigue limit (RFL) model.  The 

RFL model is described in detail in Appendix B.   
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Figure 3.11. Step and staircase test results for Ti-6Al-4V at 75°F and R=0.1 (step at 
interpolated Smax using the step interpolation approach). 
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Figure 3.12.  Step test results for Ti-6Al-4V at 75°F and R=0.1 shown on a probability plot. 
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Figure 3.13. Staircase failures for Ti-6Al-4V at 75°F and R=0.1 with average  

and–3s predictions assuming a 1D stress scatter. 
 
 
 

 
Figure 3.14. Staircase failures for Ti-6Al-4V at 75°F and R=0.1 with average 

and –3s predictions assuming 1D life scatter. 
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The baseline tests with Nf<106 cycles were selected as LCF tests that would typically be 

available from test programs in addition to HCF properties.  The model treats runout and 

failure tests with 2D scatter in both life (LCF regime) and the endurance stress (HCF regime).  

An advantage of the RFL model is that the 1D scatter assumptions are not required.  The RFL 

model predictions with the baseline + step or staircase results are given in Figure 3.15.  
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Figure 3.15 (a & b). Random Fatigue Limit Model predictions using baseline 
tests (Nf<106 cycles) + step or staircase approaches. 

 

In Figure 3.16, the average and lower bound HCF limits for all approaches are 

summarized.  Average HCF limits are relatively insensitive to the assumptions.  Predicted 

lower bound limits are highly dependent on the assumed scatter direction for the 1D scatter 

approaches (stress vs life scatter).  Lower bound limits are also highly dependent on the 

assumed scatter type (1D vs 2D scatter).  The best approach needs to be assessed within the 

current design systems.  Additional work establishing confidence limits for the RFL model 

also is needed for use in design.   

The RFL assessment for all single load Ti-6Al-4V tests is also included as a final 

assessment. Load control tests with maximum stresses above the material yield stress were 

not used in the final analysis.  HCF tests on the GEAE test machine at 1000Hz were excluded 

given possible control problems with these tests (PRDA report).   
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HCF Limits for T i-6Al-4V at 75F and R=0.1
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Figure 3.16.  Summary of predicted average and lower bound HCF limits for Ti-6Al-4V 
at 75°F and R=0.1.  (Note: similar predictions for step and staircase approaches 
with the 1D stress (s) scatter assumption; similar lower bound prediction with 
step or staircase with 2D scatter assumption; different lower bound predictions 
for 1D stress vs. life scatter; different lower bound prediction with 1D Vs 2D 
scatter assumptions). 

 

The model was fit with strain and load control tests at different R with the σequiv damage 

parameter defined as:  

 ( ) ( ) ww
equiv E −∆= 1

max5.0 σεσ  (3.4) 

where σequiv is the alternating Walker equivalent stress, E is the average elastic modulus for 

the material (E=16840 ksi for Ti-6Al-4V at 75°F),  ∆ε is the total strain range, σmax is the 

maximum stress as measured on test specimens or calculated with elastic-plastic analyses, and 

w is a material constant. Strain control tests were used to establish the baseline half-life stress-

strain properties.  The values of maximum stresses and strain are taken from strain control 

measurements near the specimen half-life.  The test results and Ramberg-Osgood fit are given 

in Figure 3.17.  The constant w=0.42 was obtained with a non-linear regression of the strain 

and load control tests.  The average and -3s RFL fits are given in Figure 3.18.   
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Figure 3.17. Maximum stress-strain results and fit for Ti-6Al-4V at 75°F elastic-plastic 
analyses. 
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Figure 3.18. Single load test results and random fatigue limit fits for Ti-6Al-4V tests at 75°F. 
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The average and –3s RFL fits are given below in Equations 3.5 and 3.6 for Ti-6Al-4V at 

75°F. 

Ti-6Al-4V average fit: log (Nf) = -2.39472 log (σequiv – 36.199) 
+7.629937 (3.5) 

 

Ti-6Al-4V -3s fit: log (Nf) = -2.39472 log  (σequiv – 23.758) 

+ 7.629937 (3.6) 

Step tests at the interpolated failure stresses were not used in the final baseline fits.  

Though step and single load tests produce equivalent results for R=0.1 (Figure 3.19a), step 

tests potentially produced unrealistically high allowable HCF limits at R=-1 (Figure 3.19b).   

Possible issues with step tests at negative R should be assessed in future work. 
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Figure 3.19. (a & b)  Step and staircase results for Ti-6Al-4V at 75°F. Note similar behavior 

at R=0.1 but increased allowable HCF limits for step tests at R=-1.0. 
 
 
3.1.3.2 Ti-17 Smooth Specimen Testing and Methods at 75°F  

 Smooth specimen tests in load or strain control were used to establish baseline Ti-17 

fatigue properties.  The specimen load axis was oriented along the blisk radial direction.  Prior 

to testing, smooth specimens were low stress ground and polished with a stress relief in a 

vacuum furnace for eight hours at 1130°F.  Strain control LCF tests at 30 cycles/minute were 

used to obtain baseline LCF and stress-strain properties.  Maximum stresses-strain values near 

Nf/2 for each specimen and the Ramberg-Osgood correlation for Ti-17 at 75°F are given in 
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Figure 3.20.  High cycle fatigue properties were obtained at 360 Hz from tests at UDRI.  The 

smooth specimen geometry for HCF testing is shown in Figure 3.21.   
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 Figure 3.20.  Half-life stress-strain behavior and fit for Ti-17 at 75°F. 
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Figure 3.21.  Smooth specimen geometry for baseline Ti-17 HCF tests. 
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Two issues were uncovered as the smooth specimen HCF tests results were 

analyzed.  First, it was found that smooth specimens machined as lot 1 had a higher endurance 

stress than specimens machined in lot 2 (Figure 3.22).  Secondly, it was found that endurance 

stresses for step tests were significantly higher than those found with single load tests (Figure 

3.23). 
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Figure 3.22.  HCF limits for lot 1 and lot 2 specimens with initial stresses at R=-1.0. 
(Note the higher apparent HCF threshold for specimens machined in Lot 1). 
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Figure 3.23. HCF limits for single load staircase tests and step tests at the interpolated 
fatigue stress at R=-1.0.  (Note the higher apparent HCF threshold for 
specimens tested with the step test procedure). 
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Unfortunately, specimens were not available in sufficient quantity to understand 

these issues.  The most consistent data set included strain control and single load staircase 

tests from both machining lots. This data and the average RFL fits through the tests are shown 

in Figure 3.24. 
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Figure 3.24.  Ti-17 fatigue tests average fatigue curve at 75°F. 
 
 

  The average RFL fits for Ti-17 at 75°F are given in Equation 3.7.  

 
Ti-17 average fit: log (Nf) = -1.12613 log (σequiv – 50.414) 
+ 5.647592 (3.7) 

 

σequiv is defined in Equation 3.4.  The constant w=0.445 produced the best fit correlating 

theTi-17 results at 75°F.  The baseline Ti-17 stress-strain response and average life fit is used 

to assess HCF for notches and airfoil geometries with simulated foreign object damage as 

discussed in Sections 3.3 and 3.4. 
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3.1.3.3 Critical Plane Modeling of Ti-6Al-4V at 500°F 

HCF testing for the smooth Ti-6Al-4V (AMS 4928) material at 500oF, was 

completed and the data is shown in Figure 3.25.  The tests were conducted at R = -1, 0.1, 0.5, 

and 0.8.  Also included were step tests at R = 0.5.  The R = 0.8 and 0.5 specimens were tested 

at maximum cyclic stress levels above 100 ksi.  Since the cyclic yield strength at 500oF is 

~100 ksi, it is believed that these data may have been influenced by the effects of cyclic 

plasticity and creep.  The R = 0.8 data were not included in the critical plane analysis below.  

The data in Figure 3.25 was analyzed using the Smith-Watson-Topper (SWT) and the Findley 

critical plane models. 
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Figure 3.25.  Max cyclic stress versus life curves for Ti-6A1-4V tested at 500°F. 

 

The SWT parameter was calculated as the product of the maximum normal strain 

amplitude, εa, on a ‘critical plane’ and the maximum normal stress, σmax, on the critical plane: 
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ESWT aεσ max=  (3.8) 
 

The ‘critical plane’ for any given multiaxial loading cycle is determined by 

computing the SWT parameter (for all time steps in the fatigue cycle) along planes with 

orientation angles ranging from 0 – 180 degrees with respect to the axial loading direction.  

Along each plane the max normal εa and the max normal σmax are computed over the entire  

fatigue cycle, using appropriate transformation equations for stress and strain.  The plane on 

which the SWT parameter is the maximum (for all time steps of the loading cycle) is then the 

‘critical plane’ for the given loading cycle.  In mathematical form this procedure can be 

expressed as: 

{ }
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
=

=
EESWT ayyaxx ,max,,max,

cycle
fatigue180-0

,maxmax εσεσ
θ

 (3.9) 

 
where, εx,a and εy,a are the max normal strain amplitudes in the x- and y-directions and σx,max 

and σy,max are the max normal x- and y-stresses over all time steps at a given orientation angle, 

θ.  The results for the SWT parameter are shown in Figure 3.26.  The correlation of the 

different stress ratios using the SWT parameter does not seem to be very good.  A least-

squares curve-fit obtained using the linear SWT parameter and the log of the life is shown in 

Figure 3.26.  The SWT curve-fit for the RT data is also shown in Figure 3.26.  For life cycles 

greater than 5x105, there is no difference between the RT and the 500 F SWT curve-fits 

suggesting that the 500 F condition does not influence the RT HCF strength, where, k is a 

fitting parameter.  For the present study, k = 0.31 was used.  This optimized value of k was 

obtained as that value which minimized the square of the difference between the FIN data 

value (for all the different R-ratios) and the curve-fit.  This value of k was similar to the value 

obtained for the RT smooth data. 

The FIN parameter is calculated using the maximum shear stress amplitude, τa, on a 

‘critical plane’ and the maximum normal stress, σmax, on the critical plane: 

maxστ kFIN a +=           (3.10) 
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Figure 3.26.  SWT parameter versus life curve for Ti-6Al-4V tested at 500°F. 

  
 

The ‘critical plane’ for any given multiaxial loading cycle is determined by 

computing the FIN parameter (for all time steps in the fatigue cycle) along planes with 

orientation angles ranging from 0 – 180 degrees with respect to the axial loading direction.  

Along each plane the max τa and the max normal σmax are computed over the entire fatigue 

cycle, using appropriate transformation equations for stress and strain.  The plane on which 

the FIN parameter is the maximum (for all time steps of the loading cycle) is then the ‘critical 

plane’ for the given loading cycle.  In mathematical form this procedure can be expressed as: 

{ }
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
++=

=
max,2max,2

cycle
fatigue180-0

,maxmax yaxa kkFIN στστ
θ

 (3.11) 

 

where, τa is the max shear stress amplitude and σx,max and σy,max are the max normal x- and y-

stresses over all time steps at a given orientation angle, θ.  The results for the Findley damage 

parameter are shown in Figure 3.27.  The correlation of the different stress ratios using the 

Findley parameter is quite good.  A least squares curve-fit obtained using the linear FIN 
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parameter and the log of the life is shown in Figure 3.27.  The Findley parameter curve-fit for 

the RT data is also shown in Figure 3.27.  For fatigue cycles greater than 250,000, the 500°F 

Findley curve-fit is above the RT curve-fit suggesting that the 500°F condition does not 

degrade the RT HCF strength. 
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Figure 3.27.  Findley parameter versus life curve for Ti-6Al-4V tested at 500°F. 

 
 
3.1.4 HCF/LCF Interactions for Ti-6Al-4V at 75°F 

 HCF and LCF tests are used to establish baseline material properties.  Mission tests 

can be used to assess additional failure modes that may exist if HCF/LCF interactions are 

important.  This was explored with mission tests at 75°F with Ti-6Al-4V material from the 

PRDA program.  The criteria used to select relevant mission tests includes: a) tests that avoid 

specimen ratcheting failure modes that are not representative of component failures, (b) LCF 

stresses that are in the main regime of design interest (average Nf~10,000 cycles),  
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(c) HCF stresses that are in the regime of design interest (R>0.5 and HCF > 107 cycles), 

(d) mission histories that include LCF + periodic HCF cycles until mission failure, and e) tests 

that can be run economically in the lab.  A double edge V-notch specimen geometry used in 

the PRDA program was used to avoid ratcheting for load control testing.  Loads were selected 

to keep the fatigue lives in the regime of design interest.  Baseline notch R=0.1 LCF tests 

were run to identify stresses for an LCF failure of ~10,000 cycles.  Baseline notch HCF tests 

were used to identify the R-ratio for an average HCF failures of ~107 cycles.  All interaction 

tests were missions that were repeated until failure.  Missions include an LCF load-up (R=0.1) 

+ 10,000 to 100,000 repeated HCF cycles (R=0.7 to 0.9) + an LCF unload reversal (R=0.1) 

for each mission.  The baseline and mission test conditions for the notch geometry are given 

in Table 3.6.  

Table 3.6.  Baseline and HCF/LCF Mission Tests 
 

LCF LCF HCF HCF Freq exper experimental Pred Mission Life 
SP ID Smin Smax Smax Smin HCF/mission (Hz) HCF cycles missions with Fs
36-13 9 90 NA NA LCF 0.5 NA 9,963 11,365
36-2 8 80 NA NA LCF 0.5 NA 10,766 16,489
48-7 8 80 NA NA LCF 0.5 NA 10,821 16,489
36-14 NA NA 80 56 HCF 1K 234,894,301 234,894,301 6,370,632
48-2 NA NA 80 56 HCF 1K 11,694,364 11,694,364 6,370,632
36-10 NA NA 80 56 HCF 1K 2,613,654 2,613,654 6,370,632
36-9 8 80 80 56 10,000 0.5/1K 16,400,000 1,640 613
48-5 8 80 80 56 10,000 0.5/1K 71,682,975 7,168 613
36-8 8 80 80 56 100,000 0.5/1K 14,298,296 143 63
36-4 8 80 80 56 100,000 0.5/1K 9,312,872 93 63
48-4 8 80 80 56 100,000 0.5/1K 405,933,382 4,059 63
36-12 8 80 80 72 10,000 0.5/1K 142,814,527 14,281 16,222
36-11 8 80 80 65 10,000 0.5/1K 94,130,587 9,413 16,222

note: predicted life obtained with initiation code (average fatigue curve, Miner's rule, 1e10 cutoff on Nf)  

 

The first group of mission tests was used to assess the HCF capability when minimal 

LCF damage is present.  This was evaluated with 10,000 to 100,000 HCF cycles/mission with 

a HCF cycle from 56 to 80 ksi (R=0.7).  These conditions were intentionally selected to avoid 

significant predicted LCF damage.  The number of HCF cycles to failure for these mission 

tests is compared to the number of cycles to failure for HCF alone with probability plots as 

shown in Figure 3.28.  Given the similarity of these distributions for the small set of data 
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presented, a significant HCF/LCF interaction does not seem to be present for cases when HCF 

damage dominates. 
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Figure 3.28. Capability of notched HCF tests compared to the HCF capability  

of HCF/LCF mission tests when HCF damage dominates. 
 
 

The second group of tests was run to assess if LCF failure modes are influenced 

when minimal predicted HCF damage exists.  Minimal HCF damage was evaluated with 

mission tests that included an LCF load-up reversal (R=0.1) + 10,000 repeated HCF cycles 

[Smax=80 ksi; Smin=72 for R=0.9 or 65 ksi for R=0.82].   The HCF parameters were selected 

near the minimum allowable stress for a 107 HCF limit.  Ideally, a designer can ignore HCF 

when the HCF stresses are at or below the minimum material capability.  The number of LCF 

cycles to failure for the notch mission tests as compared to Nf for the notch specimens with 

LCF alone is shown in Figure 3.29.  Predicted Nf uses the average smooth specimen Sequiv 

fatigue curve from the PRDA program with the modified Manson-McKnight fatigue 

parameter.  The local stresses from the notch are obtained from elastic-plastic analysis.  Notch 

life is predicted with the local notch stresses and notch gradients with the Fs approach.  These 
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tests are predicted well within the 2X scatter bands that are representative of a reasonably 

accurate LCF life method.  Low predicted HCF damage assuming no HCF/LCF interaction 

works well for these mission tests where the HCF damage is minimal.  This is probably the 

area of most interest to design - one can select a HCF limit based on minimum properties such 

that HCF can be ignored as a failure mode in a mission that contains HCF and LCF 

conditions. 
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Figure 3.29.  Notched LCF tests compared to the LCF of HCF/LCF 
mission tests with minimal HCF damage. 

 
 
3.2 MULTIAXIAL MODELING 

Over 20 multiaxial fatigue models were evaluated based on their ability to correlate uniaxial 

and biaxial smooth specimen fatigue data.  The data used for comparison purposes included 

uniaxial data at various stress ratios, and proportional and non-proportional biaxial data that 

included multiaxial mean stresses.  Test data from Ti-6Al-4V at room temperature (RT) and 

500°F and Ti-17 at RT were considered; however, the primary model evaluations were 

performed using only the Ti-6Al-4V RT data set as this included the greatest number of data 

points.  A small number of simulated biaxial mission history tests were also conducted to 
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evaluate the ability of the models to predict fatigue damage accumulation under more 

complex load histories. 

The fatigue models evaluated in this program included both “equivalent-stress” 

(stress-invariant) methods and “critical-plane” approaches.  The equivalent-stress models 

utilize a scalar parameter, typically consisting of an equivalent stress range and a mean or 

maximum equivalent stress term, to represent the multiaxial cyclic stress state.  The critical-

plane models are based on the assumption that fatigue cracks will initiate on “critical planes” 

in the material, defined as planes that experience the greatest accumulation of fatigue damage 

as generated by a combination of cyclic normal and/or shear stresses or strains.  The 

equivalent-stress models have the advantage of ease of implementation, whereas the critical-

plane models are often considered to be more closely associated with phenomenological 

observations regarding fatigue crack development. 

The following subsections describe the multiaxial fatigue data used in the evaluation 

process and the results of the model evaluations for the two titanium alloys at the different 

temperatures.  A discussion of the mission history results is included at the end of the section.  

Further details of the multiaxial tests and model evaluations can be found in Appendices C, D, 

and E. 

3.2.1 Smooth Specimen Multiaxial Test Data 

Over 30 biaxial tests were conducted by the University of Illinois on solid round 

specimens of Ti-6Al-4V and Ti-17.  All specimens were stress relieved and chem milled.  

These tests encompassed a variety of stress states, including torsion at various stress ratios (R 

= −1, 0.1, and 0.5), proportional tension-torsion (R = −1 and 0.1), and non-proportional 

tension-torsion load paths with various mean stress levels.  The test conditions were selected 

to provide a rigorous examination of the multiaxial models, and in particular to evaluate the 

models for load paths designed to simulate portions of actual service events. 

The non-proportional load paths are illustrated in Figure 3.30.  The circle path (90° 

out-of-phase) is often considered to provide a critical examination of deformation and fatigue 

damage.  The triangle, box, and check paths are designed to simulate portions of actual 

service events.  The box path, in particular, is representative of the stress state produced near 
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the edge-of-contact region in fretting fatigue simulations.  Additional details regarding the 

experimental procedures and results are contained in Appendix C. 
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Figure 3.30.  Non-proportional biaxial load paths. 

 

Although the majority of the multiaxial tests were conducted in the elastic range, a 

few tests experienced small-scale plasticity on the first reversal.  For these tests, the surface 

stresses were determined from the measured surface strains using an elastic-plastic finite 

element analysis conducted in ANSYS.  This analysis utilized the half-life cyclic stress-strain 

curve generated from the uniaxial strain-controlled LCF database. 

3.2.2 Multiaxial Modeling of Ti-6Al-4V at Room Temperature 

Based on the preliminary evaluations of all the multiaxial models considered in this 

program (see Appendix D), four models were selected for detailed study:  the modified 

Manson-McKnight (MMM) model, the Smith-Watson-Topper (SWT) parameter, the Findley 

model, and the Fatemi-Socie-Kurath (FSK) model. 

The MMM model was the only equivalent-stress model found to provide good 

agreement with the experimental results.  For a multiaxial stress state, the damage parameter 

(DP) for this model is defined in terms of a Walker equivalent stress as 

 w1
max

w
psueqvMMM )()(5.0DP −σσ∆=σ=  (3.12) 

 
where, ∆σpsu is a “pseudo stress range” defined as 
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and σmax is calculated as σmax = σmean + 0.5∆σpsu, where 
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In these equations, ∆σij and Σσij define the stress range and summed stress, 

respectively, for each stress component based on the maximum and minimum points in the 

fatigue cycle, and β is 
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)(

31

31
σΣ−σΣ
σΣ+σΣ

=β  (3.15) 

where, Σσ1 and Σσ3 are the sums of the first and third principal stresses, respectively, at the 

maximum and minimum stress points in the fatigue cycle.  The exponent w is a material and 

temperature-dependent constant that collapses variable mean stress data into a single curve. 

Several critical plane models were found to provide fair to good correlation of the 

uniaxial data, with varying levels of success in correlating the biaxial data.  Results are shown 

here for three critical plane models, selected to represent both normal (tensile) and shear-

based parameters. 

The SWT parameter is a normal stress/strain based model, with the damage 

parameter defined as 

 DPSWT = (εa)(σmax) (3.16) 

where, εa is the normal strain amplitude and σmax is the maximum normal stress in the cycle 

on the critical plane.  This model is included because it is a well-known parameter that is 

representative of all the tensile-based critical plane models.  The SWT parameter shown in 

Equation 3.16 is sometimes reformulated for ease of comparison to other models; for 

example, the term (σmaxεaE)1/2 produces a similarity to the MMM model (Equation 3.12) with 

w = 0.5, and retains the same units as the original parameter.  In using this variation, however, 

it must be recognized that the square-root operation tends to artificially enhance the accuracy 

of the model by minimizing differences between values. 
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The Findley and FSK models are formulated based on the assumption that the cyclic 

shear stress or strain is the primary damage-causing component on the critical plane, but the 

normal stress on that plane plays a secondary role.  The Findley damage parameter is defined 

exclusively in terms of stress: 

 DPFIN = τa + kσmax (3.17) 

where, τa and σmax are the shear stress amplitude and maximum normal stress in the cycle, 

respectively, on the critical plane, and k is a material and temperature dependent parameter 

that collapses variable mean stress data into a single curve.  The FSK model makes use of the 

shear strain amplitude, and is defined as 

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

σ
σ

+γ=
y

max
aFSK k1DP  (3.18) 

 

where, γa is the shear strain amplitude on the critical plane, σy is the yield strength of the 

material, and k is again a material and temperature dependent parameter that collapses 

variable mean stress data into a single curve. 

In this analysis, the critical plane was defined as the plane experiencing the 

maximum value of the damage parameter, rather than the plane experiencing the maximum 

shear or normal stress or strain amplitude.  Under general multiaxial loading conditions, the 

critical plane must be determined by an incremental search algorithm, in which the damage 

parameter is computed on all planes (in specified increments) from 0 to 180°.  When 

implemented in conjunction with finite element codes or for large load histories, this 

procedure can be computationally expensive.  However, under certain conditions (e.g., 

proportional, in-phase biaxial loading), the critical plane orientation and associated damage 

parameter can be analytically determined.  Closed-form expressions for the SWT and Findley 

models are included in Appendix E. 

The predictions from the four multiaxial models for the uniaxial Ti-6Al-4V data at 

RT are shown in Figures 3.31 through 3.34.  None of the step-test data were used in these 

evaluations.  The predictions are presented in two formats for each model.  The DP vs. N 

curves show the experimental damage parameter, calculated from the measured stress or 
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strain values, vs. experimental life.  The curves shown in these plots were generated from a 

least squares fit to the data, assuming an equation of the form 

 DP = ANb + CNd (3.19) 

where, A, b, C, and d are curve-fitting constants.  A sound model will collapse all the variable 

mean stress data into a single curve that can be adequately represented by Equation 3.19.  

However, direct comparison of the models using these plots is difficult due to the widely 

differing definitions of the damage parameter for each model.  Consequently, a second 

approach was employed to provide a direct comparison of the models for the uniaxial data.  In 

this approach, the maximum uniaxial cyclic stress level for a given stress ratio (R) was 

calculated from the predicted value of the damage parameter at a given fatigue life (N).  This 

value was then plotted against the actual (measured) value of the maximum cyclic stress at 

that life.  These results are shown in the form of plots of predicted σmax vs. actual σmax.  For 

some of the models, this latter approach required the assumption of elastic conditions for 

stress-strain calculations; consequently, only the HCF (load-control) data were used for these 

comparisons. 

As is evident from Figures 3.31 through 3.34, all four models provided reasonable 

correlations for the uniaxial data.  A quantitative comparison between the models is included 

in Table 3.7.  For each model, the ratio of actual to predicted σmax was calculated for every 

uniaxial data point.  The average and standard deviation of the group of data are shown in the 

table for each model.  As would be expected, the average value is very near unity for each 

model, since the predicted values were generated from a least-squares curve fit to the data.  

The standard deviation values are more useful for comparison, as they represent the degree of 

scatter in the data about the predicted curve.  Note that the MMM, SWT, and FSK models all 

have similar standard deviations, while the Findley model displays a slightly higher value.  

This is primarily due to the fact that the Findley model under-predicted the allowable stress 

levels for the R = 0.5 data, as can be seen in Figure. 3.33.  The MMM model also displayed 

the same tendency, although to a lesser degree (Figure 3.31). 
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Figure 3.31. Modified Manson-McKnight (MMM) model applied to uniaxial Ti-6Al-4V RT 

data. 
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Figure 3.32.  Smith-Watson-Topper (SWT) model applied to uniaxial Ti-6Al-4V RT data. 
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Figure 3.33.  Findley model applied to uniaxial Ti-6Al-4V RT data. 
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Figure 3.34.  Fatemi-Socie-Kurath (FSK) model applied to uniaxial Ti-6Al-4V RT data. 
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Table 3.7.   Comparison of Models for Uniaxial Ti-6Al-4V RT Data:  
Actual/Predicted σmax 

 
Model MMM SWT Findley FSK 
A/P σmax (average) 1.002 1.008 1.008 1.009 
A/P σmax (stand. dev.) 0.056 0.056 0.072 0.058 

 

The predictions of the four models for the biaxial Ti-6Al-4V RT data are shown in 

Figures 3.35 through 3.38, where the curve in each figure represents the fit to the uniaxial 

data.  The differences between the models are more pronounced when comparing the biaxial 

predictions.  With the exception of the SWT model, the biaxial data are reasonably centered 

about the uniaxial baseline curves.  The SWT model is noticeably non-conservative, in that 

the biaxial tests were more damaging than predicted by the uniaxial curve.  The MMM model 

had difficulty correlating the torsion data, and was highly non-conservative in its damage 

prediction of the circle (90–OP) path.  The Findley model produced fairly good predictions 

for most of the load paths, with the notable exception of the box path, in which the damage 

estimates were highly conservative.  However, by changing the definition of the σmax term in 

the Findley parameter from the maximum-normal-stress in the cycle to the maximum-normal-

stress at the shear reversal points, the Findley predictions for the box path are substantially 

improved.  Similar to the Findley model, the FSK model was also found to be conservative in 

its damage predictions for the box path. 
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Figure 3.35.  MMM model applied to biaxial Ti-6Al-4V RT data. 
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Figure 3.36.  SWT model applied to biaxial Ti-6Al-4V RT data. 
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Figure 3.37.  Findley model applied to biaxial Ti-6Al-4V RT data. 
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Figure 3.38.  FSK model applied to biaxial Ti-6Al-4V RT data. 

 

Due to the complexity of the biaxial load paths and the differing definitions of damage 

parameter for each model, direct quantitative comparisons cannot be made between the 

models as was done for the uniaxial data.  Indirect comparisons can be made, however, by 

considering the average value and standard deviation of the set of actual/predicted damage 

parameter ratios from each model for the biaxial data.  These values are shown in Table 3.8, 

along with the curve-fit parameters for each model.  These results show that the Findley 

model produced the lowest overall scatter in the data (lowest standard deviation in the 

actual/predicted DP values).  The MMM and SWT models also produced reasonably low 

scatter, but the SWT model had a very low average value, indicating the model is non-

conservative when used to predict biaxial fatigue damage.  Due to the fact that the tensile-

based critical plane model (SWT) produced very poor predictions of the biaxial damage, 

while the shear-based models (Findley and FSK) were reasonably accurate, it can be 

concluded that the initiation of fatigue cracks in Ti-6Al-4V is driven primarily by shear 

stresses. 
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Table 3.8. Curve-Fit Parameters and Model Comparisons for Biaxial 
Ti-6Al-4V RT Data:  Actual/Predicted Damage Parameter 

 
Model k A b C d A/P DP 

(Avg.) 
A/P DP 

(St. Dev.) 
MMM -- 3501.8 -0.5164 36.74 0.00068 0.953 0.122 

 
SWT -- 223.46 -0.6840 0.1861 -0.00783 0.737 0.121 

 
Findley 0.379 7190.8 -0.6347 52.896 -0.0186 1.020 0.101 

 
FSK 54.3 91.074 -0.6783 0.0795 -0.00695 1.025 0.229 
 

In addition to the constant-amplitude biaxial tests, six biaxial “mission-history” tests 

were also conducted on Ti-6Al-4V.  These tests were designed to simulate actual mission 

histories, in which a small number of highly damaging LCF cycles are coupled with a larger 

number of low-damage HCF cycles.  The purpose of these tests was to experimentally assess 

HCF/LCF interactions within a multiaxial stress state, and to evaluate the ability of the 

models to predict fatigue damage accumulation under more complex load histories.  In this 

program, the mission histories were derived from the box and check paths, which made up the 

LCF cycles.  The HCF cycles were defined from a small segment of the corresponding LCF 

cycle, as shown in Fig. 3.39.  The stress levels for each cycle were selected to provide a 

substantial difference in fatigue lives between the HCF and LCF cycles.  Specifically, stress 

levels for the LCF cycles corresponded to the previous tests that resulted in fatigue lives in the 

range of 40,000 to 60,000 cycles.  Stress levels for the HCF cycles were selected based on 

model predictions to result in fatigue lives on the order of 108 cycles. 

Two sets of box mission tests and one set of check mission tests were run.  Box 

missions 1 and 2 consisted of 1 LCF cycle coupled with 50 HCF cycles and 5 HCF cycles, 

respectively; the check mission consisted of 1 LCF cycle with 50 HCF cycles.  Two tests were 

run at each condition.  The experimental results are shown in Table 3.9. 
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Figure 3.39.  Biaxial mission histories. 

 

 

Table 3.9.  Experimental Mission History Results 
 

Cycle/Mission Box Mission 1 
1 LCF/50 HCF 

Box Mission 2 
1 LCF/5 HCF 

Check Mission 
1 LCF/50 HCF 

Average LCF Life 65,900 65,900 43,700 
Average Mission Life 20,400 44,100 47,200 

 

It is evident from Table 3.9 that there is a strong interaction effect between LCF and 

HCF cycles in the box mission histories, but not in the check mission.  None of the multiaxial 

models were successful at predicting the interaction effects in the box mission using a linear 

cumulative damage rule.  However, this is more likely a problem with the linear damage 

assumption rather than the models themselves.  A linear damage assumption predicts 

essentially no difference between the LCF and mission lives for all three missions.  

Experimentally, a factor of three reduction in fatigue life was found in the box history when 

50 HCF cycles were included, and a noticeable decrease in life was observed when just 5 

HCF cycles were added.  This indicates a highly nonlinear rate of damage accumulation in Ti-

6Al-4V when LCF and HCF cycles are combined.  However, the rate of damage 

accumulation is dependent on load path, as the check mission did exhibit results consistent 

with a linear damage assumption.  More details on the multiaxial modeling of the mission 

histories are included in Appendix D. 
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3.2.3 Multiaxial Modeling of Ti-6Al-4V at 500°F 

A limited number of uniaxial and biaxial fatigue data points for Ti-6Al-4V at 500°F 

were also generated for model evaluations.  As with the RT evaluations, no uniaxial step-test 

data were included in this analysis due to the uncertainty associated with those results.  

Excluding the step-test data, 16 uniaxial data points at R = −1, 0.1, and 0.5 were available.  In 

addition, four biaxial tests were conducted:  two proportional tests at R = 0.1 and two non-

proportional box-path tests. 

Model correlations for both the uniaxial and biaxial 500F data from the SWT, 

Findley, and FSK critical plane models are shown in Figures 3.40 through 3.42.  The solid 

curve in each figure represents the best fit to the uniaxial data assuming an equation of the 

form shown in Equation 3.19.  In all cases, the model predictions were quite poor for this set 

of data.  The uniaxial data appear to exhibit an increasing slope with increasing life, which is 

not well accounted for by any of the models.  A complication with this data set was the lack 

of measured strain values from the uniaxial tests.  As a result, all strains were estimated from 

elastic relations, which likely introduced significant errors in the analysis. 
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Figure 3.40.  SWT model applied to uniaxial and biaxial Ti-6Al-4V 500°F data. 
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Figure 3.41.  Findley model applied to uniaxial and biaxial Ti-6Al-4V 500°F data. 
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Figure 3.42.  FSK model applied to uniaxial and biaxial Ti-6Al-4V 500°F data. 
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Despite the reduced confidence in the model predictions for the 500°F data, it is still 

worthwhile to note that the Findley and FSK models were again highly conservative in their 

damage predictions for the box path.  In this case, the SWT model provided better predictions 

for the biaxial data.  However, more accurate strain calculations would be required before 

greater confidence could be placed in these analyses. 

3.2.4 Multiaxial Modeling of Ti-17 at Room Temperature 

The three critical-plane fatigue models were also evaluated using a set of uniaxial 

and biaxial fatigue data for Ti-17 at room temperature.  As before, no step data were included 

in the evaluations.  The uniaxial set consisted of strain-control (LCF) and stress-control 

(HCF) data at stress ratios of R = −1, 0.1, 0.5, and 0.8.  The biaxial set included torsion data 

(R = −1, 0.1), proportional tension-torsion data (R = 0), and non-proportional check path data.  

The results of the model correlations are shown in Figures 3.43 through 3.45.  The curves 

shown in each plot represent a best fit to the uniaxial data, assuming an equation of the form 

shown in Equation 3.19. 
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Figure 3.43.  SWT model applied to uniaxial and biaxial Ti-17 RT data. 
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Figure 3.44.  Findley model applied to uniaxial and biaxial Ti-17 RT data. 
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Figure 3.45.  FSK model applied to uniaxial and biaxial Ti-17 RT data. 

 

As with the Ti-6Al-4V RT data, all three models adequately collapsed the variable 

mean stress uniaxial data, although there appears to be a little more separation of the data by 

stress ratio, most noticeably between R = −1 and R = 0.1 data at higher lives.  When applied 

to the biaxial data, the SWT critical plane model was again generally non-conservative, 

indicating that fatigue crack initiation may be driven primarily by shear stresses in Ti-17.  The 

Findley and FSK models produced better overall damage predictions for the biaxial data, 

although both models tended to underestimate the fatigue damage caused by the torsion tests. 
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3.2.5 Summary and Conclusions 

The majority of the multiaxial fatigue models considered in this study were 

reasonably successful at predicting mean stress effects in Ti-6Al-4V and Ti-17 under uniaxial 

loading conditions.  However, significant differences were noted between models in their 

ability to predict multiaxial fatigue lives or damage.  Of the equivalent-stress models, only the 

modified Manson-McKnight model provided reasonably good multiaxial predictions.  The 

Findley critical-plane model provided the best overall correlations with experimental data for 

multiaxial loadings; however, the definition of the maximum normal stress in the cycle for 

this model is ambiguous and may be dependent on the load path.  Since the normal (tensile) 

stress based critical plane models were all highly non-conservative in their multiaxial 

predictions, it appears that fatigue crack development in these titanium alloys is driven 

primarily by cyclic shear stresses. 

The limited data pertaining to LCF/HCF interactions in Ti-6Al-4V indicate that 

small (HCF) cycles can cause significantly more damage than predicted by a linear 

cumulative damage rule, but the effect of the HCF cycles on the LCF mission life is 

dependent on the load path.  When used in conjunction with a linear damage rule, none of the 

multiaxial models were successful at predicting the observed experimental behavior.  

However, this is likely due in large part to the assumption of linear damage accumulation, and 

may be improved with a nonlinear damage model.  In any case, it is clear that multiaxial 

mission-life prediction must take into account the nuances of the load path and the 

relationships between the LCF and HCF cycles.  This poses severe challenges with the use of 

equivalent-stress models, in which the multiaxiality of the stress state is washed out in the 

calculation of an equivalent scalar parameter.  With critical plane models, however, the 

comparison of LCF and HCF damage on specific planes may provide better insight and 

flexibility in modeling the load-path dependence of LCF/HCF interactions. 

 

3.3 NOTCH EFFECTS 

3.3.1  Notched Specimen Behavior and Modeling 

The occurrence of foreign object damage (FOD) in fan and compressor blades, as 

well as fretting-fatigue at blade-to-disc attachments, can significantly reduce the high cycle 
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fatigue (HCF) resistance of advanced turbine engines.  In both cases, the reduction in fatigue 

resistance is due to highly concentrated stresses near the surface of the component.  The steep 

stress gradients that are often associated with such stress concentrations represent technical 

challenges for predicting HCF resistance.  Moreover, the extent of the stress concentration is 

strongly dependent on the geometry of the notch, or contact condition, and these can vary 

significantly in service.   

The prediction of the fatigue life under given loading conditions or the fatigue limit 

loading that will last forever (equivalent to an endurance stress) in a specimen or component 

which contains a notch or stress concentration requires a number of steps and obtaining 

information on the behavior and fatigue characteristics of the material.  To be able to describe 

the behavior of a notched specimen or component, the first thing that is needed is a stress 

analysis capability that considers both elastic and elastic-plastic behavior where applicable.  It 

has been demonstrated over the years that the maximum or hot spot stress at a notch is 

insufficient to predict the fatigue life or fatigue limit stress from smooth bar data.  The 

difference is usually associated with the existence of a stress gradient, which, in turn, results 

in a smaller area subjected to high stresses than in a smooth bar.  In addition, if the local peak 

stresses are beyond yield, stresses will be redistributed with cycling, referred to a shakedown, 

and local stress ratios may vary from the applied stress ratio. 

Once the stresses in the vicinity of a notch are known, both crack initiation and 

subsequent propagation have to be addressed.  Crack initiation models can be either scalar in 

nature or orientation dependent as in what are described as critical plane models.  Both types 

are described in this report.  The presence of severe stress gradients require modifications to 

conventional stress or strain based models that rely on maximum values at a point.  The uses 

of such models are referred to as total life methods. 

Models based on crack growth, specifically addressing whether stress intensities are 

and remain above the threshold stress intensity, are another approach to determining the 

integrity of the contact region.  These are referred to as fracture mechanics methods.  In both 

the fracture mechanics and total life approaches, the crack length to which a crack initiates as 

well as the initial crack length from which propagation begins are critical aspects of the life 

prediction methodology.   
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This section describes experimental and analytical efforts for overcoming the 

challenges associated with notch fatigue, including 1) critical fatigue experiments to define 

the functional dependence of notch threshold stresses on notch depth, notch root radii, and 

applied stress ratio; 2) development and validation of efficient engineering methods for 

estimating the relaxation and redistribution of stresses (shakedown) due to plastic deformation 

at notches; and 3) development and validation of engineering methods based on both crack 

initiation and crack growth/arrest concepts for predicting the fatigue threshold stresses at 

notches of varying acuity under both axial loading and bending.  Procedures for consolidation 

of data at different values of R while accounting for stress gradients are developed.  Results 

are obtained for both the Ti-6Al-4V and Ti-17 materials at room and elevated temperatures. 

3.3.1.1 Fatigue of Notched Specimens 

 A.  Notched Specimen Behavior  

  Notch specimens were used to establish fatigue behavior for stress 

concentrations.  The specimen load axis was oriented along the blisk radial direction.  Notch 

specimens were low stress ground and polished with a vacuum anneal for eight hours at 

1130°F.  The dimensions for the double edge V-notch specimen geometry is shown 

schematically in Figure 3.46.  

 The dimensions for the double edge U-notch specimen geometry are shown 

schematically in Figure 3.47.  The specimen simulative of airfoil leading edge geometries is 

shown in Figure 3.48.  The specimen was tested under 4-point bending to simulate airfoil 

leading edge stress gradients.  The loading fixture and specimen alignment was checked with 

strain gages for an un-notched blunt tip specimen.  The strain gage locations, neutral axis, and 

moment of inertia are given in Figure 3.49.  The strain gage results at the peak stress locations 

(gages 1,2,4,6) compare very favorably to finite element predictions (Figure 3.50).  

The blunt tip leading edge geometry was used to assess the fatigue capability of small 

notches.  The machined notches were ~0.010 inches deep with a 0.0044 inch root radii.  A 

representative small-machined notch geometry in the bend specimen is shown in Figure 3.51.  

Stresses were obtained for each notch test with 3D elastic and elastic-plastic finite element 

analysis using ANSYS at the interpolated failure loads for each specimen.  Step tests 
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Figure 3.46  Double edge V-notch geometry. 

 
 
 
 
 
 

 
Figure 3.47.  Double edge U-notch geometry. 
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Figure 3.48.  Bend bar simulating sharp and blunt airfoil leading edge geometries. 

 
 
 
 
 
 

 
Figure 3.49.  Ti17 bend specimen parameters and strain gage locations. 
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Figure 3.50.  Strain gage results and predictions for the bend bar geometry. 

 
 
were used for the notch methods given few single load notch tests were available in the 

program.  Nominal dimensions were used for the double edge V-notch and U-notch 

geometries.  Nominal specimen dimensions with actual measured notch depths were used for 

the small-machined notches in the bend bar geometries.   

200 um

45° tilt

 

Figure 3.51.  Small-machined notches in the Ti-17 sharp tip bend bar geometry  

 The critical specimen location was selected from the ANSYS model. σequiv 

with the modified Manson-McKnight parameter is calculated for the critical node stresses 

from the maximum and minimum load.  The modified Manson-McKnight parameter is 

defined in the PRDA program final report [1].  The notch tests with σequiv at the peak stress 
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locations and the baseline fatigue curve for Ti-17 is shown in Figure 3.52.  The notch benefit 

is small for the conventional notch geometries (double edge V-notch and U-notch 

geometries).  The peak local stress approach with the smooth specimen curve is conservative 

for the small notch tests (notch test results above the smooth specimen curve).   The small 

notches are of the size most relevant to FOD applications.  Notch methods will be based on 

the small-machined notch tests. 
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Figure 3.52.  Smooth and notched bar fatigue results with the peak local stress approach. 
 

B. Notch Life Methods 

 A feature stress (Fs) and a q-kf approach were evaluated to correlate the small 

notch behavior.  Both approaches address the conservative nature of the local stress life 

models with smooth specimen fatigue curves for notch life prediction.  The Fs approach has 

been outlined in the PRDA program.  This approach uses the surface stress weighting term 

given as:  
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where, Fs is the stressed area weighting term, σmax is the maximum principal stress on the 

surface for the maximum load case, σi is the first principal stress of all elemental faces on the 

surface, ∆Αi is the area of all elemental faces on the surface, and α is a material constant.  The 

local notch stress is adjusted with Fs as shown in Equation 3.21 prior to using the smooth 

specimen life curve. 
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where, σequiv,peak is the local concentrated elastic-plastic notch stress, Fsnotch is the feature 

stress parameter for the notch of interest, Fsref is the feature stress parameter for the baseline 

smooth bar geometry (0.161 in2 for the HCF smooth specimen geometry in Figure 3.52), and 

σequiv,Fsadj is the peak notch stress adjusted for Fs for use with smooth bar fatigue curves.  The 

material constant alpha is selected that correlates notch and smooth specimen behavior. 

 The second notch method evaluated is a q-kf approach.  This approach is taken 

from the Peterson handbook as given with Equations 3.22 through 3.24. 

 
 ( )unnotchedequivadjqequiv Kf ,, σσ =  (3.22) 
 
 
 )1(1 −+= KtqKf  (3.23) 
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where, σequiv,unnotched  is calculated at the critical location without the notch present, kt=notch 

concentrated stress/unnotched stress, ρ is the notch root radius, and ‘a’ is a material constant.  

kt can be difficult to define for 3D component geometries, but the approach is well suited to 
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small FOD or machined notches where the local stress can be referenced to the stresses in the 

unnotched geometry. 

 The correlation of small notch fatigue tests with the Fs and q approaches are 

shown in Figure 3.53.  The correlation was produced with α=60 for the Fs approach and 

a=1.8 mils for the q-kf approach.  The correlation is similar for both approaches.  The ability 

of these approaches to predict the HCF capability of specimens with simulated foreign object 

damage will be explored in later sections.  
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Figure 3.53. Small notch correlation with Fs and q-kf approaches as compared to 
smooth specimen fatigue curves. 

 
 

3.3.2 Fatigue of Small Sharp Notches  

 This section summarizes experiments designed to assess the HCF resistance of 

small, sharp notches typical of those encountered in service-induced FOD [1,6].  The primary 

objective of generating these results was to provide data to assess the viability of various 

fatigue models for predicting HCF notch behavior.  Consequently, care was taken to produce 

these notches without residual machining stresses, and where possible with surface finishes 
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identical to those on smooth specimens used to characterize the materials’ basic fatigue 

resistance [1].  In this way, the predictive models can be assessed with minimal confounding 

effects.  The critical issue for the models to address is how to properly account for the steep 

stress gradients that exist at these sharp notches.  The magnitude of the local notch stresses, 

and the steepness of the stress gradient were varied by employing test specimens with a wide 

range of notch depths and notch root radii, respectively.  In addition to their relevance to 

FOD, the experimental data and model verification are also relevant to attachment fatigue 

where steep stress gradients can occur at the high stresses generated at the edge-of-contact 

region. 

3.3.2.1 Specimen and Notch Preparation 

All tests were performed using the double edge notched (DEN) specimens shown in 

Figure 3.54.  This specimen was optimized for use with SwRI’s kHz fatigue test machines.  A 

variety of notch configurations were used to facilitate the production of notches having 

varying notch depths (b) and notch root radii (ρ), as shown in Figure 3.55.  Notch Type 1 was 

used to produce sharper and shallower notches, while Notch Types 2 and 3 were used to 

produce deeper and blunter notches.  Although the notch flank angle varied for these different 

types of notches, this factor had no significant influence on the test results, in part due to the 

fact that when producing the deep, sharp notches the dimension b1 was always maintained 

greater than ρ2. 

One of the primary challenges in preparing these specimens was to machine the sharp 

notches in a reproducible, residual stress-free manner, with the desired surface finish.  To 

achieve these conditions, the following three-step procedure was developed: 1) wire electro-

discharge machining (EDM) to reliably produce small, sharp notches; 2) stress relieve at 

1300°F for one hour to eliminate both bulk and notch residual stresses; 3) chem mil to remove 

possible EDM recast layer and associated embrittlement, as well as to produce a surface finish 

matching that previously used to generate the smooth bar S-N data that are used as input to 

the predictive models [1].   
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Figure 3.54. Double-edge-notch fatigue specimen used for small, sharp 
notch testing at 1000 Hz. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 3.55. Different notch types employed to facilitate machining of  
notches with a wide range of depths and radii. 
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Cross sectional views of typical notches produced by this three-step process are shown 

in Figure 3.56.  Further metallographic sections of the notches indicate that the chem milling, 

which typically removed 0.0015 in. to 0.002 in. of material, was sufficient to eliminate the 

EDM recast layer as shown in Figure 3.57.   

Figure 3.58 shows several SEM images of the EDM and chem milled notch surfaces.  

The top two micrographs illustrate the typical surface produced by EDM in Step 1 of the 

above notch preparation for root radii of 4 and 15 mils; note the irregular protrusions 

characteristic of melting and solidification in the recast layer.  This surface condition was 

subsequently removed by chem milling so as to preclude premature crack initiation under 

HCF loading.  The bottom two micrographs represent nominally similar notches as in the top 

two micrographs, but after chem milling. The characteristic alpha/beta microstructure of Ti-

6Al-4V confirms that the recast layer has been eliminated by removal of 1.0-1.5 mils of 

material from the original notch surface using chem milling in Step 3 of notch preparation. 

 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.56. Etched cross-sections of typical notches showing root radii of 2.5, 4, 6, 

and 21 mils that were machined using EDM plus chem milling. 
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 After EDM After EDM + Chem Mill

 
 
Figure 3.57.  SEM micrographs of sectioned and etched surfaces below 

notches after EDM versus after EDM plus chem milling; note 
lack of recast layer at the notch surfaces near top of photo on right.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.58.  Comparison of typical surface morphology of notch surfaces after EDM and 
chem milling. 
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The use of chem milling limited the sharpness of the notches to 3.8 mils or larger.  

Since notches sharper than this were crucial to test various aspects of the notch models, as 

well as to accurately represent the geometry of service–induced FOD, selected specimens 

were prepared and tested without the final chem milling step; these specimens had root radii 

of 1.98 mils, the sharpest used in the current test program. 

3.3.2.2 Notch Test Procedure 

For maximum testing efficiency, all notch testing was conducted using a step-

loading procedure that involved 5% increases in applied stress after each 107 cycles until 

specimen failure occurred. Since Ti-alloys do not appear to exhibit coaxing, this test 

procedure has been demonstrated to give results that agree with those from testing multiple 

specimens to failure at a fixed stress range [7].  All experiments were conducted in SwRI’s 

1000 Hz resonance test machine.  As will be demonstrated below, these results were in good 

agreement with previously generated data on these same materials obtained at 60 Hz [1]. 

Fracture mechanics based model predictions in Section 3.3.8 indicate the potential 

importance of both notch radii and notch depth on the threshold stress.  Thus, experiments 

were designed to cover a wide range of notch geometries with radii ranging from nominally 

0.002 inches to 0.021 inches and depths ranging from 0.009 inches to 0.050 inches.  These 

notch dimensions are representative of those observed in several previous surveys of service-

induced FOD [1,6]. 

3.3.2.3 Small Notch Test Results 

Because of the three-step machining process described above, actual notch 

dimensions differed somewhat from the target dimensions.  Table 3.10 summarizes the actual 

notch dimensions achieved, as well as the corresponding elastic stress concentration factors, 

kt, computed from Peterson [8].   
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Table 3.10.   Ti-6Al-4V Small Sharp Notched Fatigue Test Results 

Test Spec. b �   Test Total Cycles Threshold Notch  Notch 
Series ID in. in. kt* Steps to Failure  Stress, ksi* Preparation Type 

1 138-4 0.0470 0.0210 4.16 3   27,725,956 14.7 EDM+CM 3 
1 138-6 0.0470 0.0210 4.16 3   23,813,460 14.5 EDM+CM 3 
1 138-7 0.0470 0.0210 4.16 3   20,390,221 14.2 EDM+CM 3 
1 153-2 0.0470 0.0210 4.16 4   30,275,938 14.8 LSG+CM 3 
1 153-3 0.0470 0.0210 4.16 5   41,132,047 15.5 LSG+CM 3 
1 153-4 0.0470 0.0210 4.16 4   37,882,602 15.4 LSG+CM 3 
2 153-13 0.0469 0.00197 11.8 9   82,843,655 4.9 EDM 2 
2 153-33 0.0500 0.0038 9.00 7   68,634,405 5.9 EDM+CM 2 
2 153-14 0.0475 0.0047 7.95 4   31,927,301 5.6 EDM+CM 2 
2 153-43 0.0495 0.0064 7.08 3   29,236,240 6.0 EDM+CM 1 
2 153-44 0.0484 0.0064 6.99 9   90,519,234 7.9 EDM+CM 1 
2 153-9 0.0240 0.00197 8.61 10   91,688,391 7.3 EDM 2 
2 153-31 0.0244 0.0038 6.46 10   95,274,059 9.8 EDM+CM 2 
2 153-42 0.0236 0.0060 5.23 9   81,216,268 11.1 EDM+CM 1 
2 153-39 0.0089 0.0064 3.43 8   70,904,954 16.3 EDM+CM 1 

 
 *Threshold values expressed as nominal applied (gross cross sectional) stress ranges. 

 

The notch threshold stress ranges, ∆Sth, (at 107 cycles) measured in the step tests are 

also given along with the total number of steps and total cycles to failure for each specimen.  

For consistency with the fracture mechanics calculations of Section 3.3.8, the threshold stress 

ranges and kt values are expressed in terms of gross-section stress.  As indicated in the first 

column of Table 3.10, two series of experiments were performed.  Series 1 experiments were 

designed to assess the influence of the three-step notch preparation procedure on the measured 

threshold stress, while the Series 2 experiments were designed to assess the influence of notch 

depth (b) and notch root radii (ρ) on the measured threshold stress. 

The Series 1 experiments used the same relatively mild (Type 3) notch geometry 

tested at Metcut at 60 Hz earlier in the HCF Program [1].  Since low stress grinding can be 

used to prepare these mild notches, a comparison of notch preparation procedures involving 

low stress grinding versus chem milling was possible. Comparison of the present results at 

1000 Hz, with those previously generated at 60 Hz also enabled an evaluation of the potential 

influence of test frequency on the measured results.  Results expressed in terms of threshold 

stress ranges are summarized in Figure 3.59 where three sets of data are compared:  1) 60 Hz 
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Metcut data on notches prepared by Low Stress Grinding plus Chem Milling (LSG + CM); 2) 

1000 Hz SwRI data on notches prepared by LSG + CM; and 3) 1000 Hz SwRI data on 

notches prepared by Electro-discharge Machining plus Chem Milling (EDM + CM).  Good 

agreement was found among data from the above three cases.  On average, the threshold 

stress range at failure was 14.8 ksi with a standard deviation of ±0.5 (±3.4%).  These results 

confirmed that the EDM step in the three-step notch preparation procedure did not measurably 

influence the notched fatigue endurance, and that data obtained at 60 Hz and 1000 Hz are not 

significantly different.  

The measured threshold stress ranges from the Series 2 experiments on small, sharp 

notches of varying geometry are summarized in the bottom portion of Table 3.10.  It should 

be noted that two or three of the small, sharp notch tests just got to monotonic yielding based 

on the fact that the max stress given by kt x ∆S/(1-R) was greater than the assumed yield 

strength of 124 ksi.  However, this small bit of plasticity did not make a significant influence 

on the WCN predictions.  
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Figure 3.59. Comparison of threshold stress ranges for various notch machining procedures 
and test frequencies.  (All data acquired with notches of depth = 47 mils and 
radius = 21 mils at 10 million cycles and R=0.5). 
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These data are also plotted in Figure 3.60, where they are differentiated by the three 

different notch depths and plotted as a function of kt, corresponding to the different notch 

radii.  For comparison, the solid curve in this figure corresponds to ∆Sth = ∆σe/ kt, where ∆σe 

is the smooth-bar endurance limit at R = 0.5 and 107 cycles (48.0 ksi).  As can be seen the 

data tend to follow the general shape of curve defined by ∆Sth = ∆σe/ kt, although they tend to 

lie above this curve, particularly for the milder notches (kt < 6.5).  Further discussion of the 

possible reasons for this trend is provided in Section 3.3.7, where measured results are 

compared to predictions from the worst-case notch model. 
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Figure 3.60. Threshold stress ranges for small, sharp notch specimens with varying 
notch radii and notch depths compared to simple crack initiation criterion 
given by ∆σe/kt.  (All data obtained at 10 million cycles and R=0.1, and  
are expressed as gross stress ranges.) 
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3.3.2.4 Conclusions  

 Small, sharp notches can be reliably machined using: EDM + Stress Relief + Chem 

Mill.  Both metallography and fatigue testing confirmed that the EDM recast layer is removed 

at these notches by the final Chem Mill.  The above critical experiments are relevant to both 

FOD and attachment fatigue where steep stress gradients can occur. 

3.3.3 Finite Element Analysis of Notched Components 

 The ability to assess the effect of a notch or other stress concentration on the fatigue 

resistance of components is largely dependent on the ability to accurately determine the 

stress/strain distributions or gradients in the vicinity of the notch.  Although elastic stress and 

strain distributions can be efficiently generated using finite element techniques, localized 

plastic deformation often occurs in the vicinity of sharp notches and discontinuities.  The 

inclusion of nonlinear elastic-plastic material behavior into finite element models requires 

significantly greater computational resources (i.e., memory and time), particularly in cases in 

which cyclic plasticity must be accounted for.  Furthermore, the models often require greater 

attention to details such as mesh refinement, element shape, and nonlinear solution 

procedures.  Due to the added complexities and computational requirements involved in 

elastic-plastic finite element analysis, approximate methods that can efficiently and accurately 

model the stress redistribution resulting from plastic deformation near notches are highly 

desirable.  However, such methods must be validated using proven and reliable techniques. 

 As part of the effort to develop efficient prediction techniques for the HCF 

resistance of notched components, several elastic-plastic finite element models were 

generated and solved for a variety of notched components under various loadings.  There were 

two primary objectives in performing these analyses: (1) to provide reliable elastic-plastic 

stress-strain distributions in notched components subjected to uniaxial and multiaxial 

loadings, for the purposes of assessing the capabilities and accuracy of the approximate notch 

analysis methods developed in this program, and (2) to provide the notch stress information 

required by the crack initiation models for predicting HCF threshold stresses at sharp notches. 

 All finite element analyses of notched components were conducted using the 

commercial software ANSYS.  A multilinear kinematic hardening rule was used in 

conjunction with the cyclic stress-strain curve for Ti-6Al-4V at room temperature obtained 
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from half-life LCF data generated in this program.  Applying a Ramberg-Osgood fit to the 

data, the cyclic stress-strain curve for Ti-6Al-4V can be expressed as 
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where, σ has units of ksi, and the cyclic yield strength was taken as σy = 109.2 ksi.  From this 

equation, cyclic stress-strain values were calculated and used as input for the models.  The 

stress-strain values are shown in Table 3.11.  

 

Table 3.11.  Stress/Strain Values Used in ANSYS Elastic-Plastic Analyses 
(Kinematic Hardening) 

 
Stress (ksi) 109.22 113.0 114.0 115.5 116.3 116.8 117.2 117.6 118.3 119.7 121.0 
Strain (in/in) .006474 .008659 .01030 .01536 .02043 .02497 .02965 .03551 .04951 .1007 .2004 

 

All models were constructed using 8-node, three-dimensional structural solid 

elements with extra displacement shapes included for better accuracy.  A mesh refinement 

study was performed on each model to verify that the discretization error was sufficiently 

small.  For each of the elastic-plastic analyses in which cyclic plasticity was anticipated, 10 to 

20 cycles were run to ensure the local (notch-root) plastic strains reached a cyclically stable 

state.  This was verified by examining the equivalent plastic strain and the largest principal 

plastic strain at the root of the notch at the end of each load cycle.  In most cases, it was found 

that negligible changes in these values occurred after the fifth cycle, and the analysis was 

subsequently terminated after 10 cycles.  In a few cases involving large-scale, 

nonproportional plastic straining, 20 cycles were completed to ensure a stable state had been 

reached. 

 For the models being used as validation measures to the approximate notch analysis 

methods, both elastic and elastic-plastic finite element analyses were conducted.  The elastic 

stress and strain distributions across the notch section were used as inputs to the 

approximation models, and the resulting elastic-plastic approximate solutions were compared 

to the elastic-plastic finite element results for accuracy.  The specific notch geometries 

considered in this study and the resulting comparisons and threshold stress estimates are 
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included in Sections 3.3.7 and 3.3.8.  Further details of the finite element notch analyses are 

included in Appendices F and G. 

3.3.4 Approximate Notch Analysis 

Notches in structural components subjected to high cycle fatigue can cause 

significant stress concentrations that often result in localized plastic deformation, leading to 

premature initiation of fatigue cracks. Therefore, the fatigue strength and durability 

estimations of notched components require detailed knowledge of the stresses and strains in 

such regions. 

The stress state in the notch tip region is multiaxial in most cases and often involves 

complex loading such as out of phase torsion and bending loads. Although modern Finite 

Element commercial software packages make it possible to determine notch tip stresses in 

elastic and elastic plastic bodies with a high accuracy for short loading histories, such 

methods are still impractical in the case of long loading histories experienced by turbine 

engine components subjected to combined LCF and HCF, for example. A representative 

cyclic loading history may contain from a few thousands to a few millions of cycles. 

Therefore incremental elastic-plastic finite element analysis of such a history would require 

prohibitively long computing time. For this reason more efficient methods of cyclic elastic-

plastic stress analysis are necessary. One such a method, suitable for calculating multiaxial 

elastic-plastic stresses and strains in notched bodies subjected to proportional and non-

proportional loading histories, is the equivalent strain energy density method. In this method, 

use is made, analogous to the original Neuber rule, of the equivalence of increments of the 

total distortional strain energy density contributed by each pair of associated stress and strain 

components. 

The equalities of strain energy increments for each set of corresponding hypothetical 

elastic and actual elastic-plastic strains and stress increments at the notch tip can be shown  

graphically (Figure 3.61) as the equality of surface areas of the two pairs of rectangular 

elements representing the increments of strain energy density. The area of dotted rectangles 

represents the total strain energy increment of the hypothetical elastic notch tip input stress 

while the area of the hatched rectangles represents the total strain energy density of the actual 

elastic-plastic material response at the notch tip. 
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Figure 3.61. Graphical representation of the incremental Neuber rule. 

 

 The method developed uses the ratios of strain energy density contributed by each 

pair of corresponding stress and strain components. In order to analyze non-proportional 

loading paths the energy equations are written in an incremental form. Because the ratios of 

strain energy density increments seem to be less dependent on the geometry and constraint 

conditions at the notch tip than the ratios of stresses or strains, the analyst is not forced to 

make any arbitrary decisions about the constraint while using these equations. Because plastic 

yielding is dependent mainly on deviatoric stresses the entire formulation is written in 

deviatoric stress space. 

In the case of a monotonic (no unloading) non-proportional stress path the 

qualitative correctness and accuracy of the method was demonstrated by comparing the 

calculated notch tip stress-strain histories to those obtained from the finite element method.  

The elastic-plastic finite element stress results were obtained using the ABAQUS finite 
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element package. The isotropic strain-hardening plasticity model was used for calculations. 

The geometry of the notched element was that of the circumferentially notched bar shown in 

Figure 3.62.  The loads applied to the bar were monotonically increasing torsion in the first 

phase and then increasing tension in the second phase with the torsion load being kept 

constant. The maximum applied load levels were chosen to be 50% higher than it would be 

required to induce yielding at the notch tip if each load was applied separately. 

 

Figure 3.62.  Stress-strain coordinates and geometry of torsion-tension notched bar. 
 
 
The calculated and the FEM determined strain components, ε22

a and ε23
a, and the stress 

components, σ22
a
 and σ23

a, are shown in Figures 3.63 and 3.64.  Note that the calculated 

stresses and strains and the results of the finite element analysis are identical in the elastic 

range.  This is expected since the model converges to the elastic solution in the elastic range. 

Just beyond the onset of yielding at the notch tip, the strain results that were predicted using 

the proposed model and the finite element data begin gradually to diverge. It can be 

concluded that the method based on the equivalence of the total strain energy increments 

overestimates the actual notch tip strains but the predicted strains are reasonably close to the 

numerical FEM data.  Details on the methodology for two and three-dimensional notch 

analysis and validation are provided in Appendix H. 
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Figure 3.63. Comparison of the calculated and FEM determined strain paths for 
the monotonic non-proportional torsion-tension input stress history. 

 

 

Figure 3.64. Comparison of the calculated and FEM determined stress paths for the 
monotonic non-proportional torsion-tension input stress history. 
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3.3.5 Shakedown Analysis Method For Isotropic and Anisotropic Materials 

Shakedown occurs due to stress relaxation and redistribution arising from non-linear 

strains generated during loading.  Plastic deformation can occur in regions of high stress, such 

as notches and underneath contact surfaces.  A compressive residual stress is left in the 

structure after elastic unloading as a consequence of stress relaxation.  This static compressive 

stress is beneficial in inhibiting both crack initiation and crack propagation by lowering the 

local stress ratio, R, and in helping to increase the critical crack size by reducing the 

maximum crack-tip driving force.  After the formation of the compressive residual stress, the 

structure is said to have undergone shakedown.  Following shakedown in typical turbine 

engine components, further load excursions will result only in linear-elastic behavior as non-

linear behavior has been “shaken out”. 

 Stress analyses for determining the relaxed and residual stress states due to 

shakedown for use in design and reliability assessments generally rely on time-consuming and 

costly procedures such as non-linear finite element analysis (FEA).  To more readily obtain 

shakedown stresses, a simplified shakedown methodology was developed that utilizes linear 

elastic stress solutions which, in general, do not require as much FEA computing resources to 

generate as do non-linear solutions.  The details of the developed shakedown methodology are 

given in Appendix I:  Isotropic Shakedown Methodology for Bivariant Stress Field. 

 In two previous projects separately funded by the FAA and P&W, SwRI developed 

and delivered two shakedown stress analysis modules for isotropic materials.  The module 

developed for the FAA performs a shakedown stress analysis based on a univariant stress 

field and has been incorporated into the DARWINTM computer program [9].  The module 

developed for P&W enables shakedown analyses to be performed for bivariant stress fields.  

These modules are appropriate for isotropic materials under proportional loading conditions, 

and account for load shedding and re-distribution while maintaining force and moment 

balance.  These existing modules were used together with shakedown software developed by 

Professor Glinka at the University of Waterloo for isotropic materials, to provide a starting 

point for the current work, which is designed to extend the capability of the existing 

methodology in a number of areas critical to high cycle fatigue. 
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 The present task involved integrating and extending the shakedown methodology for 

bivariant stressing developed for P&W to non-proportional loading for isotropic and 

anisotropic materials.  The extension to non-proportional loading is necessary to properly treat 

contact stresses at attachments.  The methodology for estimating nonlinear stresses from 

linear elastic solutions for isotropic materials developed by Glinka was utilized as the starting 

point in the development of a point relaxation module for both isotropic and anisotropic 

materials.  Since there were no analytical shakedown methodologies for anisotropic materials 

available to help guide the development of the current work, a new approach had to be 

formulated and implemented. 

 Verification of the developed isotropic shakedown module was accomplished by 

comparing the analytical results with the finite element solutions SwRI obtained employing 

the ABAQUS computer program.  Only a summary of this verification is given herein; more 

details are presented in Appendix I. 

 The major accomplishment of the isotropic shakedown project was the development 

of the isotropic shakedown module for bivariant stressing employing Fortran 77. The module 

implements a shakedown methodology that has been enhanced by SwRI to include a modified 

Neuber approach, and a load shedding and re-distribution scheme.  The module has been 

verified against three-dimensional elastic-plastic finite element results for a notched plate 

subjected to various combinations of remote tension and bending for materials displaying a 

wide range of strain hardening capacities.   

 3.3.5.1 Development of Isotropic Shakedown Module for Non-Proportional Loading 

The isotropic shakedown methodology was initially based on Glinka’s delivered 

point relaxation module, and an extended module that he also delivered that attempted to take 

account of load re-distribution. However, under some circumstances the predictions of 

Glinka’s extended modules had unacceptable inaccuracies, and it was agreed by the HCF 

Team that SwRI would improve the accuracy of this module by integrating Glinka’s point 

relaxation module with the isotropic shakedown module developed previously by SwRI for 

DARWINTM and Pratt & Whitney.  The improved module enables a more accurate 

determination of load shedding and load re-distribution under bivariant stressing conditions 

than does Glinka’s extended shakedown module. 
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It turned out, that this new shakedown module could still not capture the high levels 

of triaxiality at the notch predicted by finite element computations.  It was, therefore, 

necessary to significantly modify some of the methodology incorporated in Glinka’s point 

relaxation module. These major modifications included a change to the way Neuber’s rule 

was implemented, basing the new approach on equivalent stresses and strains rather than the 

individual stress components. Glinka’s approach resulted in excessive constraint, leading to 

much lower peak stress values at the notch for the primary principal stress (the stress 

component normal to the load bearing section) when compared with the stress levels 

determined by FEA.  In addition, Glinka’s approach tended to predict an out-of-plane stress 

(the secondary principal stress) that differed little from the linear elastic solution because of 

the constraint imposed on the distribution of incremental strain energy density.  SwRI 

modified this approach based on a parameter derived from the linear elastic solution to 

account for stress triaxiality.  This parameter is a measure of the degree of plane stress/plane 

strain conditions at each nodal position. 

This enhanced shakedown module has been validated against FEA results and found 

to be in excellent agreement with them.  It is emphasized that the new improved shakedown 

module is not at present applicable to reverse loading conditions. The extension of the module 

to these situations is beyond the scope of the present task. 

To account for the non-proportional loading, an incremental approach is utilized 

based on Glinka’s point relaxation module for non-proportional loading.  The introduction of 

the incremental approach to account for the non-proportionality in the loading path requires 

revising the scheme used in the P&W’s shakedown module.  To do this, a “pseudo” stress 

normal to the load bearing section is defined to “store” the elastic-plastic results at the current 

step.  This pseudo stress is also used to estimate the elastic-plastic increment for the next step 

during the course of non-proportional loading.  The implementation of the “pseudo” stress 

required revision of the schemes used for evaluating load shedding and for maintaining force 

and moment balance over the load bearing section.   

 The point relaxation program provided by Professor Glinka at Waterloo University 

was modified and linked with the SwRI’s isotropic shakedown routine.  During the 

shakedown computation, which involves stress relaxation, load shedding and load 
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redistribution, the SwRI isotropic shakedown routine calls the point relaxation module for 

each node of a refined mesh that represents the load bearing section.  The program structure is 

shown as a flowchart in Figure 3.65. 

 

DRIVER
Handles input and output

SHKDN_3D_HCF
Performs stress relaxation, load shedding

and load re-distribution, and force/moments
balance check

GLKNR2P11
Serves as the interface between SwRI's shakedown

module and Glinka's point relaxation module)

GGP1A
Perfoms point relaxation

 

Figure 3.65.  Flow diagram for SwRI’s isotropic shakedown module. 
 

 

3.3.5.2 Validation of Isotropic Shakedown Module for Non-Proportional Loading 

Extensive validation of the enhanced isotropic shakedown module developed by 

SwRI has been performed.  The validation is based on the FEA results previously generated 

by SwRI for notched 3-D plates subjected to various combinations of tensile stresses and 

bending moments, as illustrated in Figure 3.66. 
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Figure 3.66.  Geometry and loading conditions for finite element analysis used to verify 
SwRI's isotropic shakedown module.  Various combinations of tensile stresses 
and moments were applied to the notched plate. 

 
 

Table 3.12 summarizes the loading combinations applied to the notched plates.  The 

dimensions of the plate are 10 inches for the width (W), 5 inches for the thickness (t), and 20 

inches for the height (h).  The radius (r) of the notch is equal to 1 inch.  The hypothetical 

materials used in the validation display a wide range of strain, hardening capacity, including a 

case with low hardening that was representative of Ti-6Al-4Ti. The constitutive relationship 

between stress and strain was represented by a Ramberg-Osgood equation.  

Table 3.12. Load Combinations used in the Verification of the Isotropic  
Shakedown Model for Bivariant Stressing for a Material  
with Strain Hardening Capacity Typical of Ti-6Al-4V 

 
Applied Loads Loading 

Cases Sz (ksi) Mx (ksi-in) My(kip-in) 
A 50 0 0 
B 25 0 2500 
C 25 1600 0 
D 20 1800 1800 
E 55 0 0 
F 30 0 3500 
G 30 2500 0 
H 25 2400 2400 

x 
y 

z Sz 

M

M
W t
r
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Only part of the validation is provided in this section.  (Full results are presented in 

Appendix I.)  The hypothetical material constitutive relationship used to generate the results 

reported here had a strain hardening capacity typical of Ti-6Al-4V.  A plot of the Ramberg-

Osgood equation representing the stress-strain curve is shown in Figure 3.67.   
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ε/(σo/E)=σ/σo+α(σ/σo)β

where α=0.43, E=27700ksi
σo=62.52 ksi, β=31.5

 

Figure 3.67. The stress-strain curve used for validation showing the Ramberg-Osgood 
equation and the values of the parameters used. 

 

Comparisons between the developed shakedown model results and the FEA results 

are shown in Figures 3.68 and 3.69 for Loading Cases A and B in Table 3.12, respectively.  

Loading Case A applies a remote tension to the notched plate which leads to a stress 

magnification factor equal to 3.28, while Loading Case B has an additional in-plane bending  

moment applied.  The results predicted by the as-received Glinka’s point relaxation module 

are also included in the figures to demonstrate the importance of the modifications made by 

SwRI to capture the triaxial stress state at the notches, and the need to maintain force and 

moment balance.  As can be seen, the results obtained by the SwRI’s shakedown module 

(open symbols) are in very good agreement with the results obtained from FEA (gray solid 

symbols).  The variation of the out-of- plane stress predicted by the point relaxation method 

(symbols with a cross inside) tends to follow the linear elastic solution and predicts much 

lower stress values than the FEA results.   
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To get good agreement between the isotropic shakedown model and FEA results, it 

was necessary to modify the isotropic shakedown module received from Professor Glinka to 

capture the stress triaxiality at the notch tip arising from out-of-plane constraint and to take 

account of force and moment balance during the load redistribution process.  The detailed 

procedure is summarized in Appendix I. The newly developed enhanced isotropic shakedown 

module that incorporates the modifications described above can achieve solution accuracy 

comparable with FEA results, especially for materials such as Ti-6Al-4V, which display low 

strain hardening capacity. 

3.3.6 Comparison of Approximate Notch Analysis Methods 

Several notched component geometries were selected to provide validation measures 

and comparisons for the elastic-plastic approximation methods developed by Glinka and 

SwRI.  These geometries were selected with the intent of providing a variety of loading 

conditions to thoroughly evaluate the accuracy and limitations of the approximation methods.  

Loading combinations and levels were chosen to produce an array of cyclic elastic-plastic 

stress/strain states, ranging from small scale, first-reversal proportional plasticity to large 

scale, non-proportional cyclic plasticity. 

Of the two codes evaluated in this program, the Glinka code is more versatile in its 

present form, as it is not restricted by notch or component geometry or type of loading; i.e., it 

can be used to analyze proportional or non-proportional cyclic loading applied to any notched 

component.  While the SwRI methodology is not restricted on its theoretical basis to certain 

notched component geometries or loadings, the delivered code was limited to the analysis of a 

rectangular cross-section under monotonic loading (not cyclic).  Consequently, the validation 

of the SwRI code was more limited than that of the Glinka code. 

3.3.6.1 Validation of the Glinka Code 

The three component geometries used in the validation of the Glinka code are shown 

in Figures 3.70 through 3.72.  Geometry 1 (Figure 3.70) was intended to provide a baseline 

validation test for the approximation methods.   

 



 

 

 

 

 

x/r
0 1 2 3 4 5

σ/
σ o

-0.4

0.0

0.4

0.8

1.2

1.6

2.0

2.4

σx, FEA

σy, FEA

σz, FEA

σx, SwRI's Shakedown Module

σy, SwRI's Shakedown Module

σz, SwRI's Shakedown Module

σx, Neuber (Point Relaxation)

σy, Neuber (Point Relaxation)

σz, Neuber (Point Relaxation)

y/r=0

x/r
0 1 2 3 4 5

σ/
σ o

-0.4

0.0

0.4

0.8

1.2

1.6

2.0

2.4

σx, FEA

σy, FEA

σz, FEA

σx, SwRI's Shakedown Module

σy, SwRI's Shakedown Module

σz, SwRI's Shakedown Module

σx, Neuber (Point Relaxation)

σy, Neuber (Point Relaxation)

σz, Neuber (Point Relaxation)

y/r=1.237

x/r
0 1 2 3 4 5

σ/
σ o

-0.4

0.0

0.4

0.8

1.2

1.6

2.0

2.4

σx, FEA

σy, FEA

σz, FEA

σx, SwRI's Shakedown Module

σy, SwRI's Shakedown Module

σz, SwRI's Shakedown Module

σx, Neuber (Point Relaxation)

σy, Neuber (Point Relaxation)

σz, Neuber (Point Relaxation)

y/r=2.5

 
 

 (a) (b) (c) 
 

 

Figure 3.68.     Comparison of stress components predicted by SwRI's isotropic shakedown module with the results obtained from 
FEA for Loading Case A (Table 3.12).  The results computed from Glinka's point relaxation module are also 
included.  Results in (a) are for y/r=0  (the free surface at the side of the plate), (b) are for y/r=1.237  (a plane one 
quarter of the way through the plate), and (c) are for y/r=2.5 (at the mid-plane).  The results in (a) predicted by  
SwRI's isotropic shakedown module cannot be visually differentiated from the point relaxation results. 
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Figure 3.69.  Comparison of stress components predicted by SwRI's isotropic shakedown module with the results obtained  
from FEA for Loading Condition B (Table 3.12).  The results computed from Glinka's point relaxation are 
also included.  Results in (a) are for y/r=0 (the free surface at the side of the plate), (b) are for y/r=1.237  (a 
plane one quarter of the way through the plate), and (c) are for y/r=2.5 (at the mid-plane).  The results in (a) 
predicted by SwRI's isotropic shakedown module cannot be visually differentiated from the point relaxation 
results. 
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Figure 3.70.  Geometry 1 for Glinka code validation: flat plate with center hole in tension. 

 

The stress gradients around the notch are not too severe, and typical of those found 

in many service components.  The notch plasticity levels were varied by applying a range of 

load magnitudes.  In all cases, the loading was applied cyclically at R = 0 (R = Pmin/Pmax), 

with nominal stress levels (Pmax/A, with A defined on the gross cross-section) varying from 

40 ksi to 100 ksi in 20 ksi increments.  An elastic analysis was also performed to provide the 

input required by the approximation code.  For this geometry, the elastic-plastic stress 

gradients were compared along a line through the notch section at both the midplane and 

outer surface of the component. 

Geometry 2 (Figure 3.71) represents the notched tension/torsion specimen tested 

by the University of Illinois as part of the HCF program.   
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Figure 3.71.  Geometry 2 for Glinka code validation: round bar with large 
circumferential notch in tension/torsion. 
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This component provides a more thorough validation of the multiaxial capabilities of the 

approximation methods.  A variety of multiaxial stress/strain gradients were produced in the 

notch section by varying the relative axial and torsion load levels.  Four cyclic loading cases 

were considered for this geometry:  (1) axial loading only (R = 0), (2) torsion loading only 

(R = 0), (3) proportional loading (R = 0, with σmax ≈ τmax at notch root), and (4) non-

proportional loading (box path with R = −1).  The box path consists of a four-point cycle, 

with load levels ordered as follows:  (1) Pmax, Tmax,  (2) −Pmax, Tmax,  (3) −Pmax, −Tmax,  (4) 

Pmax, −Tmax.  For each load case, one elastic analysis and three elastic-plastic analyses were 

performed.  The elastic-plastic stress gradients were compared along a radial line through 

the notch section. 

Geometry 3 (Figure 3.72) is similar to Geometry 2, except the circumferential notch 

is smaller and sharper.  This geometry was designed to produce stress gradients similar to 

those experienced near edge-of-contact (EOC) fretting locations.  This component geometry, 

loaded in tension/torsion, is intended to provide a more critical validation of the 

approximation module under loading conditions commonly experienced in aircraft turbine 

engines.  Two cyclic loading cases were considered for this geometry:  (1) proportional 

loading (R = 0, with elastic τmax ≈ 0.6σmax at notch root), and (2) non-proportional loading 

(box path with R = −1).  For each load case, one elastic analysis and three elastic-plastic 

analyses were performed.  The elastic-plastic stress gradients were compared along a radial 

line through the notch section. 
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Figure 3.72.  Geometry 3 for Glinka code validation: round bar with small 
circumferential notch in tension/torsion. 
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Sample comparisons between the elastic-plastic stresses obtained from the finite 

element analyses and the Glinka code for the three geometries are shown in Figures 3.73 

through 3.75.  Complete results are included in Appendix F. 

Surprisingly, the greatest discrepancies between the FEA and Glinka results were 

found in Geometry 1 (e.g., Figure 3.73).  
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Figure 3.73.  Comparisons between FEA and Glinka stresses for Geometry 1,  

P/A = 60 ksi, center of notch section at maximum load. 

 

At maximum load, the Glinka code overestimated the magnitude of the equivalent 

stress in the yield zone, as well as the depth of the yield zone, along both the edge and 

centerline of the component.  Corresponding discrepancies were found in σy.  At minimum 

load (unloading), σeqv and σy from FEA and Glinka were in agreement at the notch surface, 

although the Glinka code predicted much higher residual stresses below the notch root.  This 

is a result of the larger plastic zone size calculated by the Glinka code at peak load. 

The results from the Glinka code were generally found to be in better agreement 

for Geometries 2 and 3.  Figure 3.74 shows a typical comparison for Geometry 2 at one of 

the four corner points of the box path.   
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Figure 3.74. Comparisons between FEA and Glinka stresses for Geometry 2, box path (non-

proportional loading), P = 8200 lb, T = 1435 in-lb, point 1. 

 

Figure 3.75 shows the comparison for Geometry 3 under proportional loading, at 

maximum load.  In most cases, as illustrated in Appendix F, the equivalent stress 

distributions through the notch section from FEA and Glinka were quite similar, although 

there were some discrepancies in the individual stress components.  For example, there was 

a significant error in the Glinka axial stress (σz) at point 3 of the box path for Geometry 2; 

however, the error was reduced at point 4.  In addition, there were discrepancies in some of 

the stress components just below the notch surface in Geometry 3 at maximum load, 

although the stresses at the notch root were reasonably accurate. 

The superior performance of the Glinka code for Geometries 2 and 3, relative to 

Geometry 1, likely results from the method by which the Glinka code redistributes the 

stresses across the notch section.  Specifically, the Glinka code utilizes the elastic equivalent 

stress distribution along a single line through the notch section, rather than considering the 

elastic stress distribution over the entire cross-section.  This method presents no problems 

for Geometries 2 and 3 since the stress distributions on any cross section are axisymmetric; 
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Figure 3.75. Comparisons between FEA and Glinka stresses for Geometry 3, proportional 
loading, P/A = 40 ksi, T = 0.06 in-lb, maximum load. 

 

i.e., the stress distributions are identical along any radial line.  Thus, using the 

elastic equivalent stress gradient along a single radial line to account for redistribution of 

elastic-plastic stresses is sufficient.  In contrast, for Geometry 1, the stress distribution varies 

through the thickness of the component due to the constraint near the notch.  In this case, the 

stress redistribution due to yielding must take into account the gradients in two directions.  

The Glinka code, in the current form, cannot fully account for bi-directional stress gradients. 

3.3.6.2 Validation of SwRI Code 

Due to the geometric restrictions of the SwRI code, only two component 

geometries were used to validate the results from this program.  The first geometry was the 

same Geometry 1 used in the validation of the Glinka code, shown in Figure 3.70, subjected 

to the same loading levels (although only the results at maximum load were considered, as 

the code was not set up for cyclic loading).  The second geometry is shown in Figure 3.76, 

identified as Geometry 4.   
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Figure 3.76.  Geometry 4 for SwRI code validation: rectangular bar with edge 
notch in tension/torsion. 

 
 

This geometry consisted of a rectangular component containing a small edge notch 

in one side only.  This notch was intended to produce much steeper stress gradients than 

those encountered in Geometry 1.  This geometry was subjected to two loading conditions:  

axial loading and combined axial/torsion loading.  In each case, one elastic analysis and 

three elastic-plastic analyses were performed.  The elastic-plastic stress gradients were 

compared along a line through the notch section at both the midplane and outer surface of 

the specimen, for both geometries. 

Sample comparisons between the elastic-plastic stresses obtained from the finite 

element analyses and the SwRI code are shown in Figures 3.77 and 3.78.  In these plots, all 

stresses have been normalized with respect to the yield strength.  Complete results are 

included in Appendix F.  Note that in the SwRI comparison for Geometry 1, the y and z axes 

have been interchanged relative to the Glinka comparisons. 

In comparing the elastic-plastic results obtained from the Glinka and SwRI codes 

for Geometry 1 (Figures 3.73 and 3.77), it is clear the SwRI code was in much closer 

agreement with the FEA results than the Glinka code.  Although there were small 

discrepancies in σy and σz at the notch root along the specimen centerline (Figure 3.77), the 

depth of the plastic zone was accurately approximated, and the stress magnitudes just below 

the surface were in close agreement.  Along the edge of the component, the stress results 

were in very close agreement with FEA calculations (see Appendix F). 
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Figure 3.77.  Comparisons between FEA and SwRI stresses for Geometry 1,  
P/A = 60 ksi, center of notch section at maximum load. 
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Figure 3.78.  Comparisons between FEA and SwRI stresses for Geometry 4 
proportional loading, P/A = 30 ksi, T = 4.5 in-lb, center of  
notch section at maximum load. 



 

 101

In approximating the elastic-plastic stresses from the elastic solution, the SwRI 

code takes into account the full stress distribution on the entire component cross-section, 

rather than along a single line as the Glinka code does.  Thus, full equilibrium is maintained 

as the stresses are redistributed across the section due to yielding.  As a result, the stress 

gradient through the thickness of the part (from the centerline to the edge), which affects the 

magnitudes of the stress components and the depth of the plastic zone, is better accounted 

for by the SwRI code, leading to more accurate elastic-plastic stress estimates in 

components with a rectangular cross-section.  For axisymmetric components, in which a 

stress gradient occurs in only one direction (radial), the differences between the two codes 

would likely be much less.  This could not be verified, however, as the SwRI code was not 

formulated to analyze such components. 

 A sample elastic-plastic approximation from the SwRI code for Geometry 4 is 

shown in Figure 3.78.  This component consisted of a rectangular cross-section with a sharp 

edge notch subjected to combined axial and torsional loads, producing a more complex 

stress state with steeper gradients than found in Geometry 1.  Along the component 

centerline (Figure 3.78), there were some notable differences between the SwRI and FEA 

computed magnitudes of σz and σy at the notch root, although the size of the plastic zone 

and the σeqv distribution were in very close agreement.  Along the edge of the component, 

the agreement between the SwRI and FEA results was very good (see Appendix F). 

3.3.6.3 Summary 

The two approximate elastic-plastic notch analysis methods considered here both 

displayed promising results under certain conditions.  The Glinka code provided reasonable 

stress estimates for axisymmetric components (such as circumferentially notched round 

bars), in which the stress gradients are limited to one direction.  However, for non-

axisymmetric components, in which the stress gradients may be bi-directional, the Glinka 

approximations were much less accurate.  The SwRI code provided better overall stress 

approximations for components with a rectangular cross-section.  However, in the current 

form, the SwRI program is more limited in its versatility, as it has not been coded to analyze 

non-rectangular sections or handle loading conditions that result in cyclic plasticity.  In 

addition, some problems were encountered in running the SwRI code under loading 
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conditions that produced very large-scale plasticity.  This should not be considered a serious 

drawback, however, as the primary intent of the approximation code is to analyze notched 

components under conditions of fairly localized yielding. 

3.3.7 Threshold Stress Estimates Using Fracture Mechanics  

 The fracture mechanics approach employed herein to predict the HCF threshold 

stress, ∆Sth, assumes that microcracks can initiate relatively early in the life of a notched 

component due to the damage imparted by the initial FOD impact, the highly concentrated 

HCF stresses associated with either the FOD notch or the edge-of-contact zone, or the 

intermittent occurrence of low cycle fatigue (LCF).  Moreover, since the stress gradients at 

sharp notches and edge-of-contact zones are steep and die out at relatively short distances 

from the notch surface, it is necessary to consider the unique behavior of small fatigue 

cracks [10,11,12] when performing a fracture mechanics analysis.  Based on the notch 

analysis of Topper et al [13], methods to predict the threshold stresses for FOD [14,15,16] 

and fretting fatigue [17,18] have been developed. Comparisons of model predictions with 

results of simulated FOD and machined notch experiments [15,16,1], as well as fretting 

fatigue experiments [16,17,1], have been encouraging.  

 The method used, termed the “Worst Case Notch” (WCN) model, enables the 

boundaries between crack initiation, crack growth followed by arrest, and crack growth to 

failure to be delineated, as illustrated in Figure 3.79 [13,14,15]. As shown, “true” crack 

initiation, indicated by the lower curve in Figure 3.79 (a), is assumed to actually occur as 

predicted by the classical S-N approach when the applied stress range is equal to the 

endurance limit divided by the elastic stress concentration factor (∆σe/kt).  However, for 

sharper notches, the initiated cracks can subsequently arrest due to the unique behavior of 

small cracks, which cause ∆Sth to initially increase, achieve a maximum, and finally 

decrease as crack size increases, as shown in Figure 3.79 (b).  The growth/arrest boundary in 

Figure 3.79 (a) is determined by equating the applied stress intensity factor (SIF) range to 

the threshold SIF for fatigue crack propagation.  The unique behavior of small fatigue cracks 

is modeled in the WCN approach by a crack-size-dependent threshold SIF [17,18,19] that is 

consistent with experimental data on a variety of engineering materials [19] including Ti-

6Al-4V [20].   
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Figure 3.79.  Schematic representation of the Worst Case Notch (WCN) model. 
 

The remainder of this section summarizes several enhancements to the WCN 

model, and compares the model predictions with the small, sharp notch experimental results 

described in Section 3.3.1.  Additional details on the development of the enhanced WCN 

model are provided in Appendix K. 

3.3.7.1 Incorporation of Notch Plasticity and Surface Cracks in the WCN Model 

The WCN model was originally developed for through-thickness cracks and 

surface cracks with one degree of freedom (DOF) emanating from notches [14,15,16,1].  

Consequently, in analyses involving thumbnail cracks, these cracks were restricted in shape 

so that they remained semi-circular, and crack growth was characterized only by the SIF at 

the deepest point on the flaw.  These restrictions resulted in certain predicted crack growth 

behaviors that were not entirely consistent with observations.  To overcome these 

limitations, the WCN model has been extended to semi-elliptical surface cracks whose 

growth is characterized by two DOF, namely, the SIFs at both the surface and deepest points 

on the crack front. In these cases, crack growth and arrest is determined by the manner in 

which crack shapes evolve from the initially specified shapes, and this evolution is governed 

by the stress gradient ahead of a notch and the crack growth rate equation.  Therefore, 

implementation of the WCN model for two DOF cracks requires HCF crack growth 

calculations to be performed.  To facilitate these calculations the crack growth rate behavior 

was described using the Walker crack growth rate equation based on an effective stress 
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intensity factor, ∆Keff [1, see Section 3.2.2.2)].  This general equation describes crack growth 

rate behavior from initiation at threshold through to failure from the onset of static failure 

modes. 

 To incorporate notch plasticity and associated shakedown of the mean stresses at 

the notch, an approximate elastic-plastic stress analysis was used to determine the local 

notch-tip stress state.  The methodology used here was based on the isotropic shakedown 

module for univariant stressing developed for the computer code, DARWINTM [21].  This 

univariant shakedown method is a simpler version of the bivariant shakedown method 

described in Sections 3.3.5.  The shakedown module requires as input the elastic stress field 

ahead of a notch, which was obtained using a modification of the method of Amstutz and 

Seeger [22], as described in [1].   

 Figure 3.80 compares predictions of the WCN model for a 2-D through-thickness 

crack both with and without plastic shakedown for a notch of 0.025 inch depth and varying 

notch radii to give the range of kt values shown.  In this figure, the threshold stress is 

normalized by the limiting threshold value obtained for a notch with a high kt.  As indicated, 

the threshold values determined with and without shakedown differ significantly at the 

initiation of cracking, but the two sets of values differ only slightly at the threshold stress 

corresponding to failure.  The reason for this can be seen from the plot of the local stress 

ratio (R) that is also presented in Figure 3.80.  At the higher cyclic stresses needed to initiate 

and propagate cracks to failure, shakedown has occurred at the notch tip and changed the 

local stress ratio at initiation so that it is no longer simply related to the remote stress ratio, 

specified as being 0.5 in this example.  Indeed, at high kt values, the local stress ratio 

becomes negative.  Although these negative stress ratios will increase the cyclic threshold 

stress needed to initiate cracking, they clearly do not significantly influence the threshold 

needed to cause propagation to failure.  This is a consequence of the fact that the residual 

stress field due to shakedown is very localized at the notch tip, and cracks can readily 

propagate to depths where the localized stress has little influence on the applied SIF.  

Threshold stresses that fall between the initiation and failure envelopes shown in Figure 3.80 

will initiate cracks either on the initiation envelope, or at cyclic stress values above this 

envelope if shakedown occurs, but these cracks are predicted to eventually arrest. 
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Figure 3.80.  Comparison of WCN model predictions with and without plastic 
shakedown of notch-tip stresses. The local R-value is also shown to 
decrease with increasing notch severity as the result of plastic shakedown. 

 
 

Figure 3.81 compares WCN model predictions for 2-D and 3-D surface cracks.  

Although the trends in threshold behaviors for the two cases are similar, the 3-D crack 

model for notches with high kt values predicts that failure will occur at threshold stresses 

less than those predicted for the 2-D crack.  It should be noted that in the fatigue crack 

growth calculations the 3-D crack was allowed to grow at both the deepest and surface 

locations of the crack front, so that situations could occur during growth where one location 

was propagating when the other crack tip location was not, and vice versa.  This is the 

reason why the crack with the additional DOF associated with the 3-D crack gives lower 

threshold stresses.  

It should be pointed out that the small, sharp notch experiments described in Section 

3.3.1 were designed based on calculations using the 2D model, since the 3D model was not 

available at that time.  Based on the results of the more accurate 3D model, experimental  
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discrimination between the predicted threshold stress for initiation and for failure will be 

more challenging to demonstrate since these two curves lie closer together than they do for 

predictions based on the approximate 2D model. 
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Figure 3.81.  Comparison of WCN model predictions for 2-D versus 3-D cracks. 
All results include the effects of plastic shakedown of notch mean 
stresses. 

 
 

3.3.7.2 Comparison of WCN Predictions with Experimental Results 

Results from the small, sharp notch tests are summarized in Figure 3.82, where 

they are compared to predictions of the 3D WCN model.  In discussing these results, it is 

useful to separately consider blunt (kt < 6.5) and sharp (kt > 6.5) notches.  For the case of 

blunt notches, the data tend to lie above the curve defined by the assumed initiation curve 

(∆σe/ kt), regardless of notch depth.  However, for the sharp notches, the data tend to be 

layered with respect to notch depth as predicted by the WCN model.  This is most clearly 

illustrated for the case of the notch depth of 24 mils where the data point is considerably 

above the initiation curve but in excellent agreement with the WCN prediction for b = 24 

mils.  A similar trend can be seen for the case of b = 48 mils, however in this case the 
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distinction between the predicted initiation and failure curves is less distinct because the two 

curves are relatively close together.  

Ideally, one would like to generate additional small sharp notch data at higher kt 

values for all notch depths to verify the predicted limiting values for the various notch 

depths.  However, generating such data is limited by the sharpest notches that can be 

machined.  In fact recall that the sharpest notch radii in the present experiments (ρ = 2 mils) 

could only be produced by EDM, since the final chem milling used for all other notches 

significantly reduced the notch sharpness to about ρ = 4 mils.  Initially there were 

reservations about machining sharp notches by using EDM  (without subsequent chem 

milling) because of the possibility of producing notches that would initiate cracks 

prematurely.  However, this does not appear to have been the case since the threshold 

stresses for small sharp EDM notches were significantly above the initiation curve, as well 

as above data on blunter notches produced by EDM plus chem milling.  Moreover, this trend 

is consistent with the WCN theory that predicts a limiting threshold stress that depends on 

notch depth and corresponds to the growth and arrest of microcracks in the steep stress 

gradient ahead of the sharp notches. 

The fact that blunt notches (kt < 6.5) also resulted in measured threshold stresses 

that were above the initiation curve, corresponding to ∆σe/ kt, could be due to a number of 

factors.  First, this simple initiation criterion may be inaccurate for the biaxial stresses that 

exist at the notch surface.  Thus, it may be necessary to include a more accurate multiaxial 

crack initiation criterion such as that employed in the Fs approach described in Section 

3.3.8.  To assess this hypothesis, the Fs predictions of Section 3.3.8 are included in Figure 

3.82 for comparison.  These predictions, which use the multiaxial criterion, shift the 

predictions in the correct direction—i.e., they predict higher threshold stresses than those 

given by ∆σe/ kt. However, the predicted results are now greater than the measured results.  

This is an undesirable prediction for use in HCF design since the predictions are non-

conservative with respect to the measured results.  It may be that the multiaxial initiation 

criterion is accurate for blunt notches, but the surface area correction term in Fs is 

overcompensating for notch size effects. 
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Figure 3.82.  Comparison of WCN and Fs model predictions with small, sharp 
notch data for varying notch depths. 

 

An alternative explanation for the deviation between the measured blunt notch data 

in Figure 3.82 and the simple initiation prediction given by ∆σe/ kt is that crack growth is 

contributing to the specimens life, which would effectively increase the threshold stress in 

the step test.  It may be possible to differentiate between the above two interpretations by 

carefully monitoring experiments for the presence of crack initiation, crack growth or arrest.  

This could be achieved either by interrupting multiple specimens and performing 

metallographic sectioning, or by obtaining crack size measurements on a single specimen 

using either crack replication, or direct observation in a cyclic loading stage of a scanning 

electron microscope. 

3.3.7.3 Exit Criteria Assessment for Fatigue Notch Predictions 

The initial phase of the HCF program established exit criteria for both FOD and 

attachment fatigue model predictions [1].  Since the objective of the notch models  
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summarized in this section was to provide a predictive capability that could be applied to 

FOD and attachment fatigue, it is appropriate to use these FOD and attachment fatigue exit 

criteria to gage the success of the notch models.  These exit criteria are expressed in terms of 

two statistical parameters—a mean ratio (A/P) of actual measured (A) to predicted (P) 

values, and a relative coefficient of variation (RCOV).  The RCOV is the ratio of the 

coefficient of variation (COV) of the predicted results to the COV of baseline results, which 

consist of key materials’ property data input needed to perform the predictions.  For 

example, in the case of the WCN model, the baseline was the threshold stress intensity 

factor values (∆Kth) as a function of load ratio (R); in the case of the Fs model the baseline 

was the multiaxial fatigue initiation data versus R and stress state.  The COV values for both 

of the above baseline cases were found to be equal (COV  = 0.100) [1] thereby simplifying 

the comparison of the two notch models.  The ideal case of perfect agreement between A 

and P values is characterized by a mean ration (A/P) = 1 and a RCOV = 1. Values of the 

above statistical parameters for the WCN and Fs model predictions are summarized in Table 

3.13, where they are compared to the Exit Criteria for FOD and attachment fatigue. 

 

Table 3.13.   Comparison of FOD and Contact Fatigue Exit Criteria  
 Against Notch Model Predictions 

 

FOD and Attachment Fatigue Exit Criteria WCN Predictions Fs Predictions 
 
     Mean ratio (A/P): 1 ± 0.15        1.11   0.80 
 
     RCOV:  < 2.5         1.32 (1)   1.19 (2) 

 
     COV:   ---               0.132   0.119 
 

(1) –  The baseline COV for the WCN predictions is given by ∆Kth( R) with a COV = 
0.100 

(2) –  The baseline COV for the Fs predictions is given by the multiaxial initiation 
parameter with COV = 0.100 

 



 

 110

The statistics for the WCN and Fs model predictions in Table 3.13 were determined 

by fitting the results to Weibull cumulative distribution functions as shown in Figure 3.83.  

For comparison, the baseline results for the case of ∆Kth( R) are also shown. (Results for the 

multiaxial initiation parameter are not shown but would have a similar slope to that of the 

∆Kth(R) data since both baseline data sets have a COV = 0.100.)   

 
Figure 3.83. Comparison of Weibull plots for WCN and Fs model predictions. 

Baseline plot ∆Kth vs R data is also shown for comparison.  The WCN 
model predictions meet the exit criteria, while the Fs model fails to meet 
the exit criteria due to its non-conservative predictions (A/P = 0.80). 

 

In Figure 3.83, the decreased slopes of the notch model predictions relative to that of 

the baseline curve reflect the expected higher COV of the predictions versus the input 

baseline materials property data.  The mean ratio (A/P) for each of the predictive models is 

given by the respective (A/P) value at 50% cumulative probability of occurrence.  The fact 

that the curve for the WCN predictions falls to the right of the baseline curve and exhibits a 

mean ration (A/P) = 1.11 indicates that the WCN predictions are conservative with respect 

to the actual measured results by about 10%.  In contrast, the curve for the Fs predictions is  
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to the left of the baseline curve and exhibits a mean ration (A/P) = 0.80 indicating that the Fs 

predictions are non-conservative with respect to the actual measured results by about 20%.  

Based on results in Table 3.13 and Figure 3.83 it can be concluded both the WCN and Fs 

predictions meet the RCOV exit criterion, however the mean ratio (A/P) criterion is only 

met by the WCN predictions and not met by the Fs predictions. 

3.3.8 Threshold Stress Estimates using the Stressed-Surface-Area (Fs) Approach 

It is well known that the use of the peak notch root stress, as calculated from the 

theoretical stress concentration factor, kt, results in overly-conservative fatigue life 

predictions for notched components.  Although there are likely numerous contributing 

factors, evidence suggests that the stress gradients near the notch play a significant role; i.e., 

the steeper the stress gradient, the more non-conservative the prediction using Kt.  To 

account for this phenomenon, a common design methodology employs a fatigue notch 

factor, kf, which corrects kt as a function of the notch root radius for use in fatigue 

calculations. 

An alternative technique for analyzing the fatigue characteristics of notched 

components makes use of the amount of highly stressed surface area in the vicinity of a 

notch.  The stressed-surface-area, or Fs approach, accounts for the stress gradient effect 

through consideration of the stress distribution on the surface of a component in the vicinity 

of the notch.  In applying this method, a factor is calculated that provides a correction to the 

peak notch root stress as determined by theoretical, numerical (e.g., FEA) or experimental 

techniques.  The corrected notch root stress may then be used in conjunction with 

conventional fatigue life/strength prediction methods employed for unnotched components. 

To evaluate the capabilities of the Fs method in predicting allowable long-life 

stress levels for simulated FOD specimens, the method was used to estimate the threshold 

(long-life) stress levels for the small-notch specimens tested by SwRI.  An elastic finite 

element analysis was first performed for each specimen to obtain the peak notch root stress 

and the surface stress distribution across the specimen.   
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A geometry dependent factor, Fsnotch, was then calculated for each specimen as 

 ∑
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where, the summation is performed over the elements in the model adjacent to a free surface 

of the specimen, σ1,i is the first principle stress on the free surface of element i (averaged at 

the nodes), Ai is the free-surface area of element i, σmax is the maximum notch root stress, 

and α is a material constant obtained by correlating smooth and notched test data.  Since 

Fsnotch is calculated from a ratio of stresses, it does not change appreciably with load level 

provided notch root yielding is small; thus, it was calculated from an elastic FEA solution.  

This factor was then used to determine the adjusted notch root stress, 

 peak
notch

/1

ref

notchadjusted,Fs
notch Fs

Fs
σ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=σ

α

 (3.27) 

 

where, Fsref is the value of Fs for a baseline axial specimen and peak
notchσ  is the peak notch root 

stress at a particular load level.  The peak stress in Equation 3.27 must take into account 

localized yielding, and must therefore be calculated from an elastic-plastic finite element 

analysis.  The adjusted notch root stress can then be used in conjunction with conventional 

stress-life data to estimate the corresponding fatigue life or fatigue limit load for a particular 

notched specimen. 

In this analysis, the peak and adjusted notch root stresses were calculated in terms of 

the modified Manson-McKnight (MMM) equivalent stress for the cyclic loading condition, 

with α = 35 and Fsref = 0.161.  The following function was used to relate the MMM 

parameter to the fatigue life of Ti-6Al-4V: 

 0.5(∆σpsu)w(σmax)1-w = 3501.8N-0.5164 + 36.74N0.00068 (3.28) 

Equations 3.26 through 3.28 were used to estimate the nominal threshold stress 

levels for the notched specimens corresponding to a fatigue life of 107 cycles, assuming a 

stress ratio of R = 0.5. 
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The small-notch specimens tested by SwRI and modeled in this analysis consisted of 

a double-edge notched specimen with rectangular cross-section, with gross-section 

dimensions of 0.235 inch × 0.125 inch.  The notch geometry is illustrated in Figure 3.84.  

For this analysis, notch dimensions (ρ and b) were chosen to correspond to the average 

measured notch dimensions of the specimens tested by SwRI.  It should be noted that in 

many cases, the measured notch dimensions deviated substantially from the target values, 

and there were substantial deviations from the average for certain specimens within a group.  

Thus, direct comparison between the experimental and predicted threshold stress levels must 

be done with caution. 

ρ

b
 

Figure 3.84.  Small notch details. 

The notch dimensions and associated elastic stress concentration factors for the 

notched specimens considered in this study are shown in Table 3.14.  These notch 

dimensions correspond to the eleven configurations of notch-type 1 originally identified for 

testing by SwRI.  The stress concentration factors were calculated from the elastic FEA 

solution.  Two values of kt are included in the table for each specimen, one based on the net-

section area through the notch (the traditional definition of kt), and the other based on the 

gross-section area (0.235 inch × 0.125 inch).  The net-section kt values range from 

approximately 2.7 to 5. 

Threshold stress estimates were generated using the Fs approach for the eleven 

notched specimens listed in Table 3.14.  Due to experimental difficulties, not all notch 

configurations were ultimately tested.  The predicted threshold stress levels, based on the 

gross cross-section dimensions, are shown in Table 3.15.  Also included in this table, where 

applicable, are the experimentally determined values obtained by SwRI, for notches of 
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similar dimensions.  The experimental values represent the 107-cycle notch fatigue strength 

at R = 0.5 obtained using a step-test approach. 

 
Table 3.14.  Small Notch Dimensions and Elastic Stress Concentration Factors 

 
 

Notch ID 
 

ρ (in) 
 

b (in) 
k t 

(net section) 
k t 

(gross section) 
1 0.0047 0.0041 2.94 3.04 
2 0.0049 0.0080 3.59 3.86 
3 0.0035 0.0023 2.70 2.76 
4 0.0038 0.0085 4.07 4.39 
5 0.0054 0.0040 2.77 2.87 
6 0.0064 0.0080 3.24 3.48 
7 0.0062 0.0230 4.56 5.67 
8 0.0064 0.0490 4.99 8.55 
9 0.0090 0.0090 2.96 3.21 

10 0.0090 0.0240 3.94 4.95 
11 0.0090 0.0500 4.27 7.43 

 

Table 3.15.  Threshold Stress Estimates for Small Notched Specimens Using the Fs 
Approach 

 
Predicted Experimental 

No. ρ (in) b (in) σmax (ksi) ∆σ (ksi) ∆σ (ksi) Spec. ID ρ (in) b (in) 
1 0.0047 0.0041 51.0 25.5     
2 0.0049 0.0080 39.6 19.8     
3 0.0035 0.0023 57.4 28.7     
4 0.0038 0.0085 35.0 17.5     
5 0.0054 0.0040 53.0 26.5     
6 0.0064 0.0080 43.2 21.6 16.3 153-39 0.0064 0.0089 
7 0.0062 0.0230 26.2 13.1 11.1 153-42 0.0060 0.0236 

6.0 153-43 0.0064 0.0495 8 0.0064 0.0490 17.5 8.75 7.9 153-44 0.0064 0.0484 
9 0.0090 0.0090 45.4 22.7     
10 0.0090 0.0240 29.5 14.75     
11 0.0090 0.0500 19.9 9.95     

 

Although limited in number, the comparisons between experimental and predicted 

threshold stress levels provide some useful information concerning the capabilities and 

accuracy of the Fs approach.  In all cases, the predicted threshold stress levels exceeded the 

experimental values.  However, the differences between the actual and modeled notch 

dimensions may have contributed to the discrepancies to some degree.  For example, in case 
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#6, the actual notch depth was approximately 10% greater than the modeled value.  This 

would increase the effective stress concentration factor, thereby reducing the nominal 

threshold stress level.  The differences in notch dimensions were less severe in the other 

cases. 

Despite being slightly non-conservative, the predicted threshold stress levels 

obtained using the Fs approach for the small-notched components can be considered to be 

reasonably accurate.  This indicates that the stressed-surface area (Fs) method has the 

capability to account for the steep stress gradients encountered in the vicinity of small 

notches, such as may result from foreign object damage to fan and compressor blades.  More 

details on the implementation of the Fs approach may be found in Appendix G. 

3.3.9 Critical Plane Modeling of Notched Ti-6Al-4V HCF Data at 500°F 

 HCF testing for the notched (kt = 2.5) Ti-6Al-4V (AMS 4928) material was 

conducted at 500°F, and the data are shown in Figure 3.85.  The tests were conducted at R = 

0.1, 0.5, and 0.8.  Some of the R = 0.8 and 0.5 specimens were fatigued to 107 cycles at a 

lower stress level and then further cycled at a higher stress until failure.  The step-test 

formula was used for these specimens to account for the damage accumulation during the 

initial cycling and also to determine the stress level at which specimen failure would occur 

after 107 cycles. 

 The data in Figure 3.85 was analyzed using the Smith-Watson-Topper (SWT) and 

the Findley critical plane models.  The effect of plasticity at the notch was accounted for by 

using the cyclic stress-strain curve for Ti-6Al-4V at 500°F (from the Pratt & Whitney 

database) along with the Glinka notch shakedown code GG3.  The results for the SWT 

parameter calculated at the notch tip are shown in Figure 3.86.  The correlation of the 

different R-ratios using the SWT parameter is reasonably good.  However when compared 

to the SWT curve-fit for the 500°F smooth data, there seems to be a shift between the 

smooth and notch curves.  Using the concept of the ao parameter, it was shown for the Ti-

6Al-4V RT data that the smooth and notched curves correlated better when the damage 

parameter was calculated at a distance ao from the notch tip.  For the 500°F data, it was 

decided to use ao = 0.0033 inch based on earlier studies at RT.  
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Figure 3.85.  Max cyclic stress versus life curves for notched Ti-6Al-4V tested at 500°F. 
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Figure 3.86.  SWT parameter calculated at notch tip for Ti-6Al-4V. 
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Figure 3.87 shows the SWT parameter calculated at this value of ao.  The 

correlation between the smooth and the notched data is much better by using notch stresses 

and strains at ao = 0.0033 inch to calculate the SWT damage parameter. 
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Figure 3.87.  SWT parameter calculated at 0.0033” from notch tip for Ti-6Al-4V. 

 
 

The results for the FIN parameter (k = 0.26) calculated at the notch tip are shown 

in Figure 3.88.  This optimized value of k was obtained as that value which minimized the 

square of the difference between the FIN data value (for all the different R-ratios) and the 

curve-fit.  The correlation of the different R-ratios using the FIN parameter is reasonably 

good.  However when compared to the FIN curve-fit for the 500°F smooth data, there seems 

to be a slight shift between the smooth and notch curves.  Figure 3.89 shows the FIN 

parameter calculated at the same value of ao = 0.0033 inch. 

The correlation between the smooth and the notched data is slightly better using 

notch stresses and strains at ao = 0.0033 inch to calculate the FIN damage parameter.  

However, this correlation could be improved by using a slightly lower value for ao 
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Figure 3.88.  FIN parameter calculated at notch tip for Ti-6Al-4V. 
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Figure 3.89.  FIN parameter calculated at 0.0033” from notch tip for Ti-6Al-4V. 



 

 119

3.4 FOREIGN OBJECT DAMAGE (FOD) 
 
3.4.1 Introduction to Foreign Object Damage (FOD) 

Foreign object damage (FOD) occurs when objects such as sand, stones, 

workman’s tools, or other debris are ingested into an engine.  These events take place 

typically upon takeoff and landing.  In the earlier program, assessments were made of the 

nature of the damage found in some typical airfoil components.  The damage is typically in 

the form of a notch covering a wide range of notch depths, radii, and possible cracking at the 

root of the notch.  In addition to characterizing the notch geometry, residual stresses were 

calculated for several different impact conditions and were found to vary with the angle of 

impact.  In parallel studies, microstructural damage was found to occur below the surface of 

severe impacts.  The severity of a notch, from a geometric point of view, is characterized by 

a stress concentration factor, which, under FOD, can vary significantly in service.  This is 

clearly illustrated for the case of service-induced FOD, shown in Figure 3.90, where damage 

can range from dents, to sharp tears, to rounded and v-shaped notches of varying depths.   

 
 
Figure 3.90. Examples of dents, gouges, and notches produced by FOD at leading edge of 

a fan blade (10X Mag.). 
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As shown in Figure 3.91, surveys of service-induced FOD have confirmed the 

wide variation in FOD depth [6,19].   

 
Figure 3.91.  Distribution of service-induced FOD depth from several surveys. 

 

These variations in overall FOD geometry result in a wide range of elastic stress 

concentration factors (kt) as shown in Figure 3.92 [19].   

 

 

 

 

 

 

 

 

 

Figure 3.92.  Distribution of elastic stress concentration values for service-induced 
FOD from the SwRI survey. 
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Thus, robust engineering methods are needed to predict the influence of these 

geometric variables on HCF threshold stresses.  In this section, analytical and experimental 

investigations are described where the fatigue limit strength of a material subjected to real or 

simulated FOD is characterized.  In addition to the experiments and modeling, a perturbation 

study is carried out analytically to assess the fatigue strength under a range of geometric 

variables associated with the FOD event. 

3.4.2 Foreign Object Damage Methods 
 
3.4.2.1 Test Specimen Geometries to Simulate FOD 

Different test specimen geometries were used to simulate leading edge airfoil 

geometries.  The axial specimen geometry is shown in Figure 3.93.  This specimen was 

tested under axial applied loads.  The edges of the specimen were machined with a 12-mil 

root radius that is simulative of a blunt tip airfoil leading edge geometry.  The bending 

specimen geometry is shown in Figure 3.94.  This specimen is tested under 4-point bending 

to simulate the stress gradients in an airfoil.  The edge of this specimen was machined with 

7- mil or 14-mil root radii to simulate a sharp and blunt tip airfoil geometry. 
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Figure 3.93.  Axial loaded specimen to simulate a blunt tip airfoil leading edge. 
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Figure 3.94.  Bend bar simulating sharp and blunt airfoil leading edge. 

 

3.4.2.2 Simulated FOD Characterization 

Airfoil FOD was simulated at the edge of the axial and bending specimens with a 

steel chisel indenture fired from a solenoid gun. The solenoid gun provides a relative high 

velocity impact compared to techniques like a pendulum with much better control and 

repeatability than ballistic impact methods.  The FOD indenture had a nominal root radius of 

5 mils with a 60° included angle.  FOD at ~10 mils deep with a 30° impact angle is shown 

with different views in Figure 3.95.  Note in Figure 3.95(b) the onset of shear cracks in the 

material being extruded during the FOD introduction process.  FOD at ~20 mils deep is 

shown with different views in Figure 3.96.  Numerous shear cracks were observed on the 

flanks of the FOD damage in the extruded material, but no tears or cracks were observed at 

the root of the FOD notches.  Fatigue tests were run for specimens with simulated FOD to 

establish the HCF capability of specimens with FOD. 
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(a)         (b) 

 
Figure 3.95.  SEM micrographs of FOD damage with a nominal depth of 10 mils  

introduced at 20 degrees into a blunt tip Ti-17 axial FOD specimen. 
 

   
   (a)         (b) 
 

Figure 3.96. SEM micrographs of FOD damage with a nominal depth of 20 mils 
introduced at 20 degrees into a blunt tip Ti-17 axial FOD specimen. 

 

Post-test fractography was used to measure the FOD depth and impact angle as 

schematically shown in Figure 3.97.  The FOD depth was determined with a line normal to 

the FOD as a notch depth profile.  The FOD impact angle was determined from a line 

normal to the FOD impact with respect to a line tangent to the specimen leading edge face.  

An example of deep FOD in a sharp tip bend specimen is given in Figure 3.98.  Lines to 

obtain the FOD impact angle and depth are shown schematically.  An example of shallow 

FOD in the blunt tip bend specimen is given in Figure 3.99.  FOD depths and angles have 

been obtained with fractography for all failed specimens for FOD modeling. Pre-test FOD 

dimensions were used for modeling when failure was not at the FOD impact.   
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D, Notch Depth
in Profile

Line Tangent
to LE Radius

θ

Impact Angle

 
Figure 3.97. Schematic view of FOD depth (D) and impact angle (θ) as measured 

on fracture planes. 
 

01-13

D

θ

D: FOD depth

θ: FOD angle

 
 
 

Figure 3.98. Fractography for deep FOD in the sharp tip geometry for specimen 1-13S. 
D is the FOD depth and θ represents the FOD orientation. 
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01-45

 
 
Figure 3.99.  Fractography for shallow FOD in the blunt tip geometry for specimen 1-45B. 

 
3.4.2.3 Test Matrix and the HCF Capability of Specimens with Simulated FOD 

The Ti-17 axial FOD tests were run at UDRI.  The axial specimen test matrix is 

summarized in Table 3.16.   

Table 3.16.  Summary of the Axial FOD Test Matrix 
 

10 deg FOD impact 6 4
30 deg FOD impact 6 6 3
50 deg FOD impact 6 4

R= -1.0,    
FODed+SRAxial FOD Specimens R= -1.0,    

As-FODed
R= 0.5,     

As-FODed

 
 

Fatigue tests were predominately run at R= -1 to match HCF validation test conditions (Ti-

17 FOD validation testing).  Each of these tests was designed to be 107 cycle step tests.  
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Three different FOD impact angles were evaluated for the axial tests in the as-FODed and 

FODed+stress relief (SR) condition.  The as-FODed case is most relevant for engine 

applications.  Tests with FOD+SR were used for methods assessment for cases where 

residual stresses were minimized with a stress relief in a vacuum furnace for eight hours at 

1130°F after the FOD impact.  The Ti-17 bending tests were run at Cincinnati Test Lab on 

Sontag machines under the direction of GEAE.  The bending specimen test matrix is 

summarized in Table 3.17.  Each of these tests was designed to be a 106 cycle step test.  

Bending tests were run at one nominal impact angle for sharp and blunt tip leading edge 

geometries.  Tests were run for the geometries in the as-FODed and FODed+SR conditions.  

Table 3.17.  Summary of the Bending FOD Test Matrix 
 

Sharp Tip, 30 deg FOD impact 6 4
Blunt Tip, 30 deg FOD impact 5 4

Bending FOD Specimens R= -1.0,    
As-FODed

R= -1.0,    
As-FODed

 
 
The HCF results are given as kf as a function of geometry, impact angle, stress relief, and 

the FOD depth.  kf is defined as Sequiv with the smooth specimen curve (Figure 3.100) for 

the test life normalized by Sequiv at the specimen failure stress calculated for the unnotched 

condition.   
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Figure 3.100.  Ti-17 fatigue tests average fatigue curve at 75°F. 
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Calculated kf for axial and bending tests are given in Figures 3.101 through 3.102.  

These results indicate significant scatter, but clearly show several trends.  Increasing FOD 

depth and increasing impact angles increases kf, thus reduces FOD tolerance to HCF.  The 

blunt tip generally produced lower kf or more HCF capability for FOD in the bend 

geometry.  This data will be used to assess kf predictions for specimens with FOD. 

Ti17 Axial Specimen FOD at 75F (R=-1 unless noted)
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Figure 3.101.  Variation in kf with FOD depth for room temperature Ti-17  
axial FOD step tests that were successfully completed. 
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Figure 3.102.  S max as a function of the estimated FOD depth for pizza hut specimens. 
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3.4.2.4 Stress Analysis 

3D elastic and elastic-plastic stress analysis was performed with ANSYS for each 

FOD test.  The FOD notch was modeled by subtracting an indenture volume from the base 

model (Figure 3.103).  The average FOD notch root radius (4.4 mils) and flank angle (81°) 

are taken from FOD measurements prior to failure (Figure 3.104).  The FOD depth and 

impact angle was measured from SEM micrographs of failed specimens (examples given in 

Figures 3.99 and 3.100).  A 3D elastic-plastic stress analysis with ANSYS was performed 

for each specimen at the average interpolated failure loads.  This analysis incorporates the 

skewed notch front, the notch V-shape, and the notch root radius.   

 
Figure 3.103.  Example of the wedge impacting the specimen edge for FOD modeling. 

 
 

D, XDEPTH

θ, IANGLE

NOTCH CUTTER PARAMETERS

AWEDGE
(81º)
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View A-A

View A-A
 

 
Figure 3.104.  Cutting tool dimensions for FOD geometry modeling with ANSYS. 
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Elastic stresses in the axial FOD specimen for an intermediate FOD depth and a 

range of impact angles are shown in Figures 3.105 through 3.107.  Elastic stresses in a blunt 

tip-bending specimen for a low and high impact depth are given in Figures 3.108 and 3.109.  

Elastic stresses in a sharp tip bending specimen for low and high impact depths are given in 

Figures 3.110 and 3.111.  Elastic calculated kts as a function of FOD impact angle and depth 

of notch for the axial geometry are summarized in Figure 3.112.  Elastic calculated kts as a 

function of FOD depth for the sharp and blunt tip geometries in bending are shown in Figure 

3.113.  The kt correlation is also provided for life method assessments for FOD. 

 
 
 
 
 
 

Specimen 7F1-6
Impact Angle: 10°
Depth: 15.6 mils

σmax= 31.84 ksi (unnotched)

 
 
Figure 3.105.  Stress analysis for axial FOD for a low FOD impact angle (Specimen 7F1-6). 
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Specimen 7F1N-55
Impact Angle: 30°
Depth: 14.2 mils

σmax= 21.10 ksi (unnotched)

 
 

Figure 3.106.  Stress analysis for axial FOD for an intermediate FOD impact 
angle (Specimen 7F1N-55). 

 
 
 

Specimen 7F16-22
Impact Angle: 50°
Depth: 13.8 mils

σmax= 11.16 ksi (unnotched)

 
 

Figure 3.107.   Stress analysis for axial FOD for a high FOD impact angle (Specimen 
7F16-22). 
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Specimen 01-22S
Impact Angle: 28°

Depth: 5.4 mils
Mmax= 129.57 in-lbs

 
 

Figure 3.108.   Stress analysis for bending-low FOD depth in a sharp tip geometry 
(Specimen 01-22S). 

 
 
 
 

Specimen 01-20S
Impact Angle: 35°
Depth: 17.5 mils

Mmax= 127.50 in-lbs

 
Figure 3.109.   Stress analysis for bending-high FOD depth in a sharp tip  

geometry (Specimen 01-20S). 
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Specimen 01-45B
Impact Angle: 20°

Depth: 7.0 mils
Mmax= 225.20 in-lbs

 
 

Figure 3.110.   Stress analysis for bending-low FOD depth in a blunt tip 
geometry  (specimen 01-45B). 

 
 
 
 

 
 

Figure 3.111.   Stress analysis for bending for a high FOD depth in a 
blunt tip geometry  (specimen 01-26B) 

 

Specimen 01-26B
Impact Angle: 22°
Depth: 22.0 mils

Mmax= 106.69 in-lbs



 

 133
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Figure 3.112.   Elastic calculated kts for measured FOD depths and 

impact angles in the axial specimen geometry. 
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Figure 3.113.   Elastic calculated kts for measured FOD depths and impact 

angles in the bend specimen geometry. 
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3.4.2.5 Predictions of Allowable HCF Limits for Specimens with FOD 

Crack initiation methods were used to predict allowable HCF limits for FOD. The 

baseline HCF capability for Ti-17 is taken from the smooth specimen correlation (Figure 

3.100).  The first prediction ignored the FOD stress concentration and damage.  This 

approach is easy to implement, but is inaccurate for FOD tests (Figure 3.114).  This result is 

generally non-conservative as expected.  FOD decreases the fatigue capability of airfoil 

geometries and needs to be accounted for with a FOD tolerant design system.   

The next approach utilizes the calculated local peak stresses with the smooth 

specimen fatigue curve.  For this approach, stress components are obtained from the notch 

geometry with maximum and minimum load cases at the interpolated loads with 3D elastic-

plastic stress analysis.  This approach is generally conservative (Figure 3.115) as expected.  

The local stress approach with smooth specimen fatigue curves under-predicts the HCF 

capability of specimens for small notches (Figure 3.116).   
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Figure 3.114.   Prediction of the HCF capability of specimens with FOD 

using the unnotched stresses. 
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Peak Local Stress HCF Predictions for FOD
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Figure 3.115.   Prediction of the HCF capability of specimens with FOD from  

the peak concentrated stress.  
 
 
 

 
Figure 3.116.  Smooth and notched bar fatigue results with the peak local stress approach. 
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Local stress approaches were modified with notch fatigue stress concentration (kf-

q) and feature stress (Fs) approaches.  The constant a=1.8 mils was found to correlate small 

Ti-17 machined notch tests at 75°F (Figure 3.117).  This approach is used to predict FOD 

capability from kt and q.   
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Figure 3.117.   Small notch correlation with Fs and q-kf approaches as compared 

to smooth specimen fatigue curves. 
 

These predictions are represented with solid black lines for different geometries 

and impact angles in Figures 3.118 through 3.122.  Significant scatter exists in FOD tests 

results, but calculated kf with the q approach generally provides a reasonable prediction of 

the mean HCF behavior of specimens with FOD for different impact angles and FOD 

depths. The results are summarized for tests in the as-FODed and as-FODed + stress relief 

(SR) conditions in Figures 3.123 and 3.124.  The predictions are best with a reduction in test 

scatter when the stress relief cycle is employed after FOD to reduce residual stresses (Figure 

3.124).  Results with q and Fs approaches are similar as summarized in Figures 3.125 and 

3.126.  Additional work should include: a) assessment of q and Fs approaches for notch and 

FOD tests over a range of notch root geometries, b) evaluation of the q and Fs approaches 

with airfoil test results, and c) implementation of the approaches for design applications. 
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Figure 3.118.   Predicted and experimental kf for FOD tests in the axial 

specimen geometry with a 10-degree impact angle. 
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Figure 3.119.   Predicted and experimental kf for FOD tests in the axial 

specimen geometry with a 30-degree impact angle. 
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Figure 3.120.   Predicted and experimental kf for FOD tests in the axial 

specimen geometry with a 50-degree impact angle. 
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Figure 3.121.   Predicted and experimental kf for FOD tests for a bending 

specimen with the sharp tip geometry. 
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Blunt Leading Edge Bend Specimen with FOD 
( R=-1.0, ~20 deg Impact Angle)
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Figure 3.122.   Predicted and experimental kf for FOD tests for a bending  

specimen with the blunt tip geometry.  
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Figure 3.123.   Predicted HCF capability vs. the baseline fatigue behavior 

for as-FODed tests. 
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Figure 3.124.   Predicted HCF capability vs. the baseline fatigue behavior 

for as-FODed tests with a stress relief cycle to minimize  
residual stresses. 
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Figure 3.125.   Similar predicted HCF capability with q and Fs approaches 

for axial specimens with FOD. 
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HCF Predictions for Bending Specimens with FOD 
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Figure 3.126.   Similar predicted HCF capability with q and Fs approaches  

for bending specimens with FOD. 
 
 
 
3.4.3 New Analytical Results for Ti-6-4 
 
3.4.3.1 Overview of FOD Analytical Studies 

Analytical modeling studies of leading edge FOD impact events were conducted to 

determine the effects of various parameters on leading edge damage, residual stress 

distribution, and predicted high cycle fatigue capability.  The parameters investigated were 

impact velocity, impact angle, blade centrifugal loads, projectile geometry, and imperfect 

impact. This work is a follow on effort to the previously documented work (in Chapter 5 and 

Appendix 5B of the HCF PRDA Final Report) [1].  More in-depth documentation of this 

current analysis is included in Appendix L of this report. MSC/DYTRAN was used for 

analysis of the high speed, impact events.  Existing DYTRAN finite element models of the 

AF/UDRI specimen were utilized for the analysis.  Figure 3.127 shows the AF/UDRI 

specimen finite element model geometry and a close up of a steel ball projectile. 
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RCONN Interface

 

 
 

Figure 3.127.  Finite element model of sharp edge specimen impacted at 30°. 
 
 

The dynamic analysis modeling included rate dependent material properties and 

material failure.  The material failure model is based on the Von Mises yield function.  

Material strain rate dependency is included.  The chosen material failure model allows for 

failure of the element by definition of an effective plastic strain at failure.  The high strain 

rate effective plastic strain at failure utilized in this analysis is 35%.  The selection of 35% 

was based on a combination of literature surveys and finite element correlation with impact 

specimens exhibiting failure.  The single effective plastic strain variable utilized does not 

distinguish between different material failure modes such as tension, compression, shear, 

and mixed modes.  Incorporating a material failure model that predicts different failure 

modes should be addressed in future work.  A more accurate failure model will provide a 

better residual stress state and deformation of the FOD site location. Mesh density and 

material model sensitivity studies were performed previously and documented in the HCF 

PRDA Final Report.  The current work has developed a HCF-LCF fatigue cycles to failure 

model based upon a Walker methodology.  This fatigue model is used to investigate 

parameter influences on predicted fatigue life to failure. 
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Three analytical studies were performed in this effort. The first analytical study is 

an investigation of blade preload (due to centrifugal load) effects on the residual stress 

distribution around the FOD site.  The second study looks at projectile geometry effects by 

comparing a steel ball impact to an equal mass steel cube impacting along an edge of the 

cube.  The third study looks at the effect of imperfect FOD impact by perturbing the location 

of the impact site.  For these three studies residual stress distributions, and predicted cycles 

to failure are investigated and compared. 

3.4.3.2 FOD Analytical Findings 

The centrifugal loading study indicated that as blade preload increased higher 

compressive and tensile residual stresses would be produced at the FOD site.  Figures 3.128 

and 3.129 illustrate the higher local stress levels due to the 20-ksi blade preload.  Figures 

3.128 and 3.129 show the residual stress field chord wise through the specimen blade cross-

section.  The blade in Figure 3.128 was impacted at a 0 ksi preload stress before being 

loaded to the 40-ksi nominal section stress shown.  Figure 3.129 has the blade impacted at a 

20-ksi preload stress prior to being loaded to the 40-ksi nominal section stress shown. 

      0° Impact 40 ksi Nominal Stress    30° Impact 40 ksi Nominal Stress 

        
 

Figure 3.128.  Impact occurred under a 0 ksi preload condition. 
 
 
      0° Impact 40 ksi Nominal Stress    30° Impact 40 ksi Nominal Stress  

  
 

Figure 3.129.  Impact occurred under a 20 ksi preload condition. 
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The influence of preload on predicted fatigue life was not clearly observed, and 

might be attributed to a relative coarse mesh density, and the use of a simple material failure 

model.  It was observed that including residual stress does reduce the predicted fatigue life 

to failure by more than a few orders of magnitude as indicated in Figure 3.130, which also 

shows that increasing the impact angle reduces the predicted fatigue life.  More variance 

exists in the “without residual stress” predicted fatigue life results.  Model mesh density 

might affect the variance. After impact, the finite element model is faceted at the local FOD.  

Local facets produce sharp angles that are stress risers.  Including the residual stress reduces 

the predicted fatigue life and smoothes out the curves. 
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Figure 3.130.  Predicted fatigue life of preloaded blade cycled to 20-ksi nominal stress. 

 

 The steel ball versus cube analytical study also showed that including residual 

stress reduced the predicted fatigue life.  The equal mass steel cube proved to be more 

damaging to predicted life than the ball.  In this study a velocity effect was observed for the 

45-degree impact.  Predicted fatigue life decreased as velocity increased but the curves were 

also converging with the increasing velocity.  This suggested a possible upper limit on 
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velocity for a minimum predicted fatigue life point.  The impact site perturbation study used 

the blunt edge specimen to investigate the effect of imperfect 0 degree and 30-degree 

impacts.  A perfect impact would occur on the centerline tip of the specimen leading edge 

radius.  As the velocity vector was perturbed away from the perfect impact, significant 

variation in predicted fatigue life to failure was observed.  Predicted fatigue life was seen to 

vary by a factor of 2.9 for the 0 degree impact perturbation study and by a factor of 4.9 for 

the 30 degree perturbation study.  Overall, it was found that residual stress, projectile 

geometry, impact velocity, and impact angle affect predicted fatigue life.  This study has 

shown that the capability now exists to predict fatigue life given the characteristic impact of 

a foreign object.  Further methodology development and calibration to test specimens will 

have to be done to accurately predict life, but this effort is not seen as significant.  

Additional analysis information may be found in Appendix L. 

3.4.4 FOD Validation 

Current airfoil leading edge high-pressure compressor (HPC) damage tolerance 

design evaluation methods rely heavily on empirical data, which inevitably lag behind new 

airfoil design technology and materials. Extrapolation of the empirical data to new designs is 

tenuous. Obtaining bench data for new design evaluations is costly and does not provide the 

information in time for impact during the design phase. 

Therefore, this program endeavors to develop a reliable analytical tool to evaluate 

leading edge damage tolerance. This tool needs to be easily implemented into the current 

design system and be fast enough to be a useful design tool. Development and validation of 

this tool requires a complete and well-controlled set of experimental data. This section 

describes how this experimental dataset was obtained, and used to evaluate/validate the 

analytical models proposed.  

3.4.4.1 Experimental Approach 

An advanced front stage HPC blisk design, shown in Figure 3.131, was chosen as 

the test vehicle for the airfoil FOD fatigue tests. The blisk was conventionally machined out 

of a Ti-17 forging. The airfoil surfaces were tested in the as bench finished condition; i.e., 

not shot-peened. The blades were wire-EDM’ed from the blisk to provide the individual 

specimens, as seen in Figure 3.132. 
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Figure 3.131.  Blisk prior to wire EDM removal of blade specimen. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 3.132. Individual blade specimen instrumented for bench vibe stress distribution 

testing. 
 
 

Careful definition of the FOD characteristics was essential for the analytical 

modeling.  Although real field FOD is irregular and difficult to define with a few 

parameters, the simple notches defined in Figure 3.133 are considered typical and 

representative.  All the notches have a 60 degree included wedge angle, and a defined notch 

root radius.  The notch depth was defined as a true profile depth as shown.  The impact 

angle was taken from the concave surface leading edge tangent line as shown.  The leading 

edge thickness was defined 0.015 inches aft of the leading edge. 
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The following parameters were experimentally investigated in DOE fashion as 

shown in Table 3.18:  mode shape, notch depth, impact angle, and notch root radius.  The 

different mode shapes represent a change in leading edge thickness and unnotched stress 

field.  The second flex critical vibratory location is further out in span than the first flex, and 

therefore, is at a thinner leading edge location.  The second flex through-the-thickness stress 

gradient is approximately twice that of the first flex mode.   

Table 3.18.  FOD Test Matrix 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Notch Depth 
in Profile 

θ 

Impact Angle 
0.015 

LE Thk. 

Line Tangent 
to LE Radius 

Figure 3.133.  FOD notch geometry definition. 

Run No. Mode Notch Depth (in.) Impact Angle Notch Rad. (in.) 

1 1F Unnotched
0 N/A 

2 1F .008 - .012 20 0.003-0.004 

3 1F .018 - .022 20 0.003-0.004 

4 1F .008 - .012 40 0.003-0.004 

5 1F .018 - .022 40 0.003-0.004 

7 2F .008 - .012 20 0.003-0.004 

8 2F .018 - .022 20 0.003-0.004 

9 2F .008 - .012 40 0.003-0.004 

10 2F .018 - .022 40 0.003-0.004 

11 1F .018 - .022 40 Sharp (~ 0.001) 

12 2F .018 - .022 40 Sharp (~ 0.001) 

3-4 specimens per run no. LE Thk (in.) 

1F 0.024 

2F 0.020 
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The range of notch depths extends from just large enough to be easily detected to 

the most severe notch that would not produce a tear (initial crack).   The range of impact 

angles covers those experienced by front stage compressors due to particle velocity and 

blade stagger.   The notch root radii ranged from 0.0035 to as sharp as could be reliably 

produced (~0.001). All but two conditions had at least three test specimens, and one had 

four.  

The notches were produced by a relatively low impact velocity method. A solenoid 

gun and tool bit were used to accurately produce the desired notches.  The fatigue tests were 

conducted as step-tests run to 107 cycles using siren excitation.  The excitation level was 

controlled with a strain gage remote from the notch location and the leading edge tip 

deflection was also recorded.  

Scanning Electron Microscope photographs in Figure 3.134 show representative 

FOD notches for the test matrix conditions.  The blunt root radius notch shows a little more 

out-of-plane material flow than the sharp notch. 

 

40 deg. X 
0.010 Deep 

20 deg. X 
0.010 Deep 

40 deg. X 
0.020 Deep 

Post-test 

40 deg. X 
0.020 Deep 

Notch Radius of 
0.003 - 0.004 Sharp Notch 

Radius ~0.001 

 
Figure 3.134.  SEM photographs of representative FOD notches. 
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3.4.4.2 Analytical Approach 
 

Two analytical methods for predicting leading edge HCF damage tolerance were 

evaluated.  The first method is the fatigue notch sensitivity (q) conversion of the theoretical 

stress concentration factor (kt) to fatigue notch factor (kf) given by Equation 3.29.  The 

fatigue notch factor is defined as the unnotched fatigue limit over the notched fatigue limit, 

which is taken to be equivalent to the notched stress over the unnotched stress.  The fatigue 

notch sensitivity (q) was experimentally determined to be 0.71 for Ti-17 smooth and small 

notch specimens with notch root radii of 0.0044 inch.  The material constant (a) was then 

calculated to be 1.8 mils for this Ti-17 material.   

The second method attempts to take into account the fact that the stressed area for 

a notch is much smaller than that of a typical axial fatigue test specimen used to generate 

Goodman fatigue data.  The Fs factor is calculated by Equation 3.30 for both the notched 

geometry and the axial fatigue test specimen.  The ratio of these Fs factors taken to the 

exponent 1/α provides a reduction factor for the concentrated notch stress.  The material 

constant (α) was determined to be 60 from smooth and small notch Ti-17 specimens.   

unnotched

notched
tf kqk σ

σ=−+= )1(1  (3.29) 
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kt is defined as the notch concentrated stress/ unnotched stress  
ρ is the FOD root radius 
 a is a material constant 
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FsRef is the surface area for the axial baseline test specimen. 
α is a material constant 
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Both analytical methods obtain the notch concentrated stress from a finite element 

sub-model solution of the notched blade leading edge as described in the following section. 

Finite element sub-modeling was used to estimate the FOD notch concentrated 

stress. The following outlines the sub-modeling procedure used.  A solid model section of 

the actual blade leading edge, extending 0.25 inch in each direction from the notch location 

as shown in Figure 3.135, was imported into ANSYS.  A solid model of the 60-degree 

wedge impact tool was created with the desired tip radius for the notch root.  The tool was 

then intersected with the leading edge at the vibratory critical location, to the desired depth 

and at the correct impact angle, to generate the notch of interest using Boolean subtraction. 

The region immediately surrounding the notch (0.10 inch x 0.10inch), was segregated into a 

separate volume for meshing with ten-node-tetrahedral elements, see Figure 3.136.  The 

mesh size in the notch root radius was limited to ten percent of the notch radius.  The 

remainder of the sub-model was meshed with eight-node-brick elements.  The modal 

displacements from the full model solution were then scaled and mapped onto the sub-model 

cut boundaries.  A static stress solution was then generated to obtain the notch concentrated 

stress. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This sub-model approach only provided an element size reduction of 20% from a 

full model approach (40,000 Vs 50,000), and is therefore unnecessary from a computational 

standpoint.  Future analysis will be done with a full model using modal analysis. 

Impact Tool 

 

0.50” 

 
Figure 3.135.   Solid model of blade 

leading edge

 
Figure 3.136.   FE mesh of notched 

leading edge. 
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The full finite element model of the blade specimen was validated using bench test 

frequency and strain distribution data.  The FEM frequencies for the first 11 modes were all 

within 3% of the bench frequencies as shown in Figure 3.137, which is excellent agreement 

considering that blade-to-blade variation can be more than 3% for some modes.   
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Figure 3.137.  FEM frequency predictions compared to bench data. 
 

Figure 3.132 showed a photo of the bench test specimen with strain gages.  The 

leading edge strain gage data is compared with the FEM predictions for the first two flex 

modes in Figure 3.138.  There is excellent agreement between the FEM and bench data in 

terms of  % max. radial strain.  These comparisons provided good validation for the FEM. 
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Figure 3.138.  FEM leading edge strain predictions compared to bench data. 
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The unnotched FEM sub-model static stress results were compared with the full 

FEM modal results for first flex validation.  Figure 3.139 shows the radial stress (SX) 

normalized by the max. equivalent stress (SEQV) at the notch section.  These are plotted 

against the airfoil axial and tangential coordinate locations to help visualize the stress 

gradients.  The agreement between the models is excellent everywhere except near the sub-

model boundary.  

 
   Full Model    Sub-Model 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The boundary-affected area of the sub-model is substantially removed from the 

notch area as shown.  Therefore the first flex sub-model was considered validated. 

3.4.4.3 Results 

The notch fatigue test results are presented in terms of fatigue notch factor (kf) 

versus notch depth for both first flex (Figure 3.140) and second flex (Figure 3.141) modes.  

The different impact angles and notch root radii are plotted as different symbols.  A 

regression analysis of these DOE results was conducted for each mode and the resulting 

correlation fits are shown as the solid lines.   

 

LE Concave Surface
Approx. Extent of 
Deepest Notch 

Figure 3.139.  Comparison of 1F leading edge radial stress/max. equ. stress. 
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Figure 3.140.  Measured fatigue notch factor for first flex. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.141.  Measured fatigue notch factor for second flex (2F). 
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For the first flex results, the notch depth and impact angle were both found to be 

statistically significant parameters (p<0.05).  The notch root radius influence was 

insignificant.  For the second flex mode, both the notch depth and notch root radius were 

statistically significant parameters.  However, the impact angle still accounted for a 

significant amount of the variation and was again included in the correlation. 

The cause of the difference in the notch root radius effect between modes is 

unresolved.  Fractographic analyses of the failed second flex sharp and 0.0035 root radius 

specimens may be performed to try to determine what difference there may be in the crack 

initiation.  Scanning electron microscope photos of the unopened cracked specimen were 

inconclusive. 

The results, for the first flex mode, from both the q-kf (Figure 3.142) and Fs 

(Figure 3.143) analysis methods are shown along with the corresponding experimental 

results.  The results are again plotted in terms of kf versus notch depth for the two different 

impact angles. Each method’s sensitivity to notch root radius was investigated by analyzing 

a second slightly larger 0.0045 radius.  

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.142.  Predicted q-kf notch factor for first flex compared to measurement. 
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Figure 3.143.  Predicted Fs notch factor for first flex compared to measurement. 
 

Both analysis methods are conservative compared to the data and give very similar 

results for the 20-degree, 4.5 mil notch radius case. Both methods over predict the notch 

depth sensitivity and slightly under predict the impact angle sensitivity.  However, the Fs 

method’s impact angle dependence better matches the data trend.  Finally, the Fs method 

appears to be more sensitive to the notch root radius.  Recall that for this first flex mode, 

there was no notch root radius dependence in the data. 

3.4.4.4 Conclusions 

Definitive conclusions are difficult to draw from this one airfoil data set and the 

corresponding analysis predictions for only one of the modes.  For the geometry tested, the 

data does indicate a moderate dependence on the FOD notch depth and a weak dependence 

on the impact angle.  The notch root radius dependence is yet to be understood. 

The prediction methods are similar and conservative for the geometry tested.  

However, these same methods applied to laboratory test specimens are able to predict the 

mean FOD HCF damage tolerance.  

Although it is too early to down select to either analysis method, these results favor 

the q-kf method, which has slightly better agreement with the data. Another advantage of the 

q-kf method is that it is easier to implement than the Fs method.  However, additional 
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evaluation of both methods is required using the second flex data and the sharp notch data.  

Additional airfoil data sets will also be required to validate/calibrate either method. 

 

3.5 ATTACHMENT FATIGUE IN Ti-6A1-4V 

3.5.1 Introduction  

The prediction of the fatigue life under given loading conditions or the fatigue limit 

loading that will last forever (equivalent to an endurance stress) in an attachment region 

requires a number of steps and obtaining information on the behavior and fatigue 

characteristics of the materials in contact.  For the purposes of this program, it is assumed 

that the behavior is governed solely by the contact stress field, independent of any material 

degradation (or strengthening) in the contact region due to the contact conditions.  Thus, 

wear is not considered as a possible mechanism in the analyses described in this section.  

The only tribological factor considered is the coefficient of friction, which, it is recognized, 

may evolve with number of cycles as does wear. 

To be able to describe the behavior of an attachment region, the first thing that is 

needed is a stress analysis capability, which considers sliding (slip) where applicable, and 

full contact (stick) where applicable.  The general case where both slip and stick are present, 

generally referred to as fretting fatigue, is a non-linear problem because the stick and slip 

regions do not remain fixed. The general analysis of this problem has to track the evolution 

of the stick/slip boundary and account for the moving stress field.  Numerical and analytical 

methods are described for obtaining the stress fields in the attachment region in this section. 

Once the stresses are known, both crack initiation and subsequent propagation 

have to be addressed.  Crack initiation models can be either scalar in nature or orientation 

dependent as in what are described as critical plane models.  Both types are described in this 

report.  The presence of severe stress gradients require modifications to conventional stress 

or strain based models that rely on maximum values at a point.  The uses of such models are 

referred to as total life methods. 

Models based on crack growth, specifically addressing whether stress intensities 

are and remain above the threshold stress intensity, are another approach to determining the 
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integrity of the contact region.  These are referred to as fracture mechanics methods.  In both 

the fracture mechanics and total life approaches, the crack length to which a crack initiates 

as well as the initial crack length from which propagation begins are critical aspects of the 

life prediction methodology.   

Finally, models are developed and tested for several different contact geometries 

under a range of loading conditions where data obtained at different values of stress ratio 

have to be consolidated.  Specimens range from flat uniaxial under constant normal loading 

to a single tooth fir tree geometry.  Consolidation of data at different values of R and 

accounting for stress gradients are based on procedures developed under this program and 

are described in the earlier chapters that deal with initiation methods, total life methods, 

multiaxial stress methods, and notches. 

This section begins with a description of the contact stress analysis CAPRI that 

was developed at Purdue under the previous contract and transitioned to the engine 

companies and the Air Force.  Next follows a brief description of extensions to the code 

required for dissimilar material contacts and arbitrary load histories resulting in CAFDEM 

that has also been transitioned to the engine companies.  This leads to application of stresses 

calculated by CAFDEM and CAPRI to total life prediction of experiments conducted under 

controlled laboratory conditions.  As mentioned above, total life prediction requires 

information about fretting crack sizes and experiments aimed at assessing these cracks are 

described next.  The chapter concludes with description of the use at the engine companies 

of the attachment fatigue life prediction capability developed under the BAA program. 

3.5.2 Contact Stress Analysis 

 Efforts of the PRDA program showed that stresses at the edge-of-contact in gas 

turbines contain large gradients.  Typical gradients are illustrated in Figure 3.144.  It is 

costly and difficult to quantify these gradients using the finite element methods embedded in 

existing engine company design systems. Purdue researchers developed software based on 

FFT solution to the singular integral equations that govern contact between two similar 

materials, CAPRI.  Figure 3.144 illustrates comparison between CAPRI, or quasi-analytic, 

results and those obtained using conventional finite element method (FEM) calculations.  

Note the large gradients.  CAPRI performs these calculations much faster than does FEM.  
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CAPRI was transitioned to the engine companies and the Air Force at the conclusion of the 

PRDA program.  Engine company personnel requested that the capability to analyze 

dissimilar material contacts as well as arbitrary load histories be added to the code.  These 

efforts led to the development of CAFDEM described in Appendix M. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.144.   Typical stress distributions associated with fretting fatigue 
of nominally flat contacts [20]. 

 

3.5.3 Experimental Results 

3.5.3.1 Fretting Fatigue Experimental Rig 

 The blade/disk contact is equivalent to a nominally flat profile in contact with a flat 

surface. The forces acting on the contact can be resolved into a normal component and a 

tangential component over the contact region. Nominally flat fretting pads, with rounded 

edges, and flat dog-bone specimens are used to duplicate the local geometry at the 

blade/disk attachments in engine hardware. To simulate the loading conditions, the 

nominally flat pad and the flat specimen are clamped together to generate a normal load and 

then subjected to an oscillatory tangential load. Such a configuration was achieved in the 

laboratory using a fretting chassis attached to a standard uniaxial servo-hydraulic testing 

machine. In addition to the contact loading, the laboratory experiments apply a bulk load to 
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the specimen. The bulk load applied plays a significant role in growth of cracks initiated due 

to high stress gradients generated by the contact. 

The fretting chassis, used for the standard fretting fatigue tests at room 

temperatures, is a superstructure built on the fatigue machine that allows the generation of 

tangential loads that are in phase with the bulk load while applying a nominally constant 

normal load. Figure 3.145 shows the components of the fretting chassis schematically. The 

stiff beam provides the bulk of the stiffness of the chassis. The pads rest on the top platform 

that also provides the means of application of the normal load. The normal load is applied 

via a pair of hydraulic actuators that transmit the load onto the top platform. Note that the 

two pressure rods ensure that pressure is applied symmetrically to the pads. The thin steel 

diaphragms offer little resistance to the pressure loading, but offer a large resistance that 

carries the portion of the tangential load transmitted to the chassis. This ensures that almost 

all of the pressure is transmitted to the specimen through the pads, while maintaining the 

required stiffness to produce a large tangential force.  A finite element analysis has shown 

that more than 98% of the pressure is transmitted to the specimen. The pad-tops fix the pads 

to the chassis. The tangential force produced was about 50% of the bulk load applied, 

subject to a maximum of the force required to produce gross sliding. This load is monitored 

throughout the fatigue experiments, by recording the difference of the upper and lower load 

cell readings. 

Figure 3.145 shows a schematic of the various loads. The crush load (normal load) 

per unit depth is P, Q is the tangential load per unit depth, Fo is the force applied at the 

bottom of the specimen (measured by the actuator load cell). The reaction force as measured 

by the cross-head load cell (top grip) is referred to as F. Note that the difference between Fo 

and F gives the tangential force, 2Q. The bulk stress, σo, is Fo divided by the cross-sectional 

area of the specimen. 
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Figure 3.145.   Components of the fretting chassis with a schematic detailing the 

definition of forces applied to the rig [23]. 
 
 
3.5.3.2 Fretting Fatigue Lives of Ti-6Al-4V on Ti-6Al-4V Contacts 
 

Results for fretting fatigue experiments at Purdue conducted with Ti-6Al-4V/Ti-

6Al-4V experiments are given in Table 3.19.  The experimental parameters were chosen 

with guidance from the engine companies to develop edge-of-contact stresses similar to 

those that occur in hardware.  The desired ratio between normal and tangential loads was 

greater than the initial coefficient of friction.  Thus sliding occurred during the first few 

fretting cycles.  The friction (coefficient of friction) increased due to sliding so that the 

fretting contact transitioned to partial slip.  This common phenomena is called mixed-mode 

fretting in the literature [21].  It is illustrated by results for contact between Inco718 and Ti-

6Al-4V shown in Figure 3.146.  The results in Table 3.19 are for the steady-state stick zone 

conditions.  The friction coefficient used in the calculation of equivalent stress is 0.5.  Figure 

3.146 also illustrates that the stick-zone is not symmetric within the contact due to the effect 

of the bulk stress.  The stress calculations include this effect as well [22]. 
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Table 3.19.  Experimental Data for Ti-6Al-4V/Ti-6Al-4V Fretting Contacts* 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
*Loads are illustrated in Figure 3.149.  Nf is total number of experimental cycles;σeq is the 
equivalent stress for the loading parameter; Ni is the initiation  life associated with the 
equivalent stress; and Nprop is the propagation life. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.146.   Illustration of transition of friction coefficient and growth of 

stick zone during mixed-mode fretting fatigue experiment. 

 Inputs Measured Calculated 

Exp. P (lbs/in) σmax (ksi) Rσ Qmax 
(lbs/in) 

Qmin 
(lbs/in) Nf σeq (ksi) Ni Nprop 

PR02 9176 39.7 -0.07 3916 -3337 54,744 67.1 4847 40,957 
PR03 9080 32.0 -0.06 3129 -2580 160,628 63.6 6268 197,952 
PR04 9104 35.2 -0.02 3220 -2636 144,242 67.1 4847 146,177 
PR05 9451 42.7 -0.01 3868 -3204 39,947 68.2 4504 41,327 
PR06 9525 40.5 -0.03 3739 -3283 69,279 68.6 4388 54,778 
PR07 9099 38.1 -0.05 3479 -3260 93,930 66.1 5197 85,586 
PR09 9995 48.1 -0.01 4607 -3775 26,391 71.1 3762 19,146 
PR10 9432 48.4 -0.02 3309 -1893 386,049 65.0 5630 232,404 
PR11 6669 41.9 0.49 2337 -1425 337,578 56.4 12,427 157,986 
PR12 6709 49.8 0.50 2389 -2029 161,986 59.2 9229 68,385 
PR16 6677 50.1 0.49 3080 -1461 168,637 58.2 10,208 37,282 
PR22 6763 42.1 0.50 2293 -1464 1,285,642 57.4 11,112 135,940 
PR23 6787 46.0 0.50 2719 -1369 245,311 57.6 10,875 65,229 
PR13 6792 34.8 0.49 1978 -1122 1,728,051 54.8 15,086 471,084 
PR14 6768 39.0 0.49 1978 -1524 1,000,038 58.7 9700 595,004 
PR17 6717 41.9 0.49 2304 -1472 1,000,863 54.6 15,479 129,113 
PR20 6755 39.0 0.49 2436 -1079 1,502,266 57.7 10,749 210,079 
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3.5.4 Fatigue Life Prediction 

 As illustrated previously, the fretting contact problem has been solved very 

efficiently using a set of singular integral equations (SIE) that relate the relative slip and the 

initial gap function to the contact tractions. An FFT based approach is used to obtain the 

sub-surface stress distributions for similar material contacts and a discrete Fourier transform 

technique has been successfully implemented for solving sub-surface stresses associated 

with dissimilar material contact. This approach can also be used for any arbitrarily specified 

profile and hence is more flexible than finite elements and is computationally efficient.  

The complexity of fretting adds another level to the already intricate phenomenon of 

fatigue crack nucleation. While many theories for fretting crack nucleation have been 

proposed, most of them fall short of quantitative prediction of the cycles to crack nucleation 

[25-26]. From the stress analysis, it is clear that the fretting fatigue stress state is highly 

complex and multiaxial. Therefore, a model for a quantitative prediction of nucleation life 

has to take into account the multiaxial stress state in the specimen. 

Stress invariant life parameters offer an approach for life calculation that is 

independent of the coordinate system and without the need to calculate a critical plane 

orientation and hence are obtainable very fast from the given stress field.  The parameter σeq 

is defined as [27] 

 )1(
max )()(5.0 ww

psueq
−∆= σσσ  (3.31) 

The stress invariant effective stress range is defined as 

 

 (3.32) 

where, ∆σpsu is the alternating pseudo stress range, and ∆σij defines the pseudo-stress range 

for each stress component based on maximum and minimum points in the fatigue cycle.  

The Manson-McKnight mean stress term used to establish σmean and σmax is given as: 
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 (3.33) 

where σmean is the mean stress, and Σσij  represents the summed stress for each stress 

component based on maximum and minimum points in the fatigue cycle. The Manson-

McKnight coefficient (β=βMM) is defined as MMβ = 
31

31

σσ
σσ

Σ−Σ
Σ+Σ

 where Σσ1 is the sum of the 

first principal stresses at the maximum and minimum stress points in the fatigue cycle and 

Σσ3 is the sum of the third principal stress at the maximum and minimum stress points in the 

fatigue cycle. 

As is described elsewhere in this report, the large stress gradients at the edge-of-

contact require special treatment.  Here the approach taken is to modify the local stress by a 

stressed area term that recognizes the peak stress with the stress gradients on the surface are 

important.    This approach is based on the probability of finding a weak grain on the surface 

where the stress is high and has been adapted from weak link approaches.  Further 

background on the stressed area approach (Fs) and its use with the present data is in given in 

Reference [23].   The application of the Fs approach to notch fatigue can be found in 

Appendix G.  (See also section 3.3.8.) 

Two sets of experiments were analyzed, using the equivalent stress and the stressed 

area approach, to obtain an estimate of the life of Ti-6Al-4V specimens used in the 

experiments. The first set of experiments is for contact of similar isotropic materials (Ti-

6Al-4V) detailed in Table 3.19 [28], whereas the second set involved fretting contact of 

dissimilar isotropic materials (Inco718 pads and Ti-6Al-4V specimens, detailed in Table 

3.20).  

The value of µ used was 0.5 for the first set and 0.74 for the second. The equation 

governing the crack nucleation from the baseline uniaxial testing data was reduced to  

 

σeq = 52476 (Ni) -0.6471 + 450.85 (Ni) -0.03582 (3.34) 
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Table 3.20.  Experimental Conditions for Fretting Fatigue Experiments with Ti-6Al-4V 
Specimens and IN718 Pads*  

 

*Nucleation lives were predicted using σeq in Equation 3.34. σeq is calculated with and 
without the residual stress effect.  Fret02 is a runout test. Propagation lives were 
predicted by fracture mechanics calculations [29]. 

 

The elastic contact stresses representative of the experiments indicated that the 

material near the contact edge yields plastically. This effect was treated approximately by 

capping σmax at 110 ksi.  Comparison between the predicted nucleation lives and 

experimental lives in Table 3.19 illustrates that propagation must be included in a total life 

approach. 

3.5.5 Verification of Stress Analysis Through Crack Prediction Analysis in Pads 

As indicated in Table 3.19, the measured fatigue lives (Nf) were much longer than 

those calculated (Ni) by the equivalent stress analysis given in Equation 3.34.   The problem 

is that this “initiation” life model does not account for the possibility of fatigue crack growth 

during the fatigue process.  In conventional fatigue loading, this may not be an issue, as 

cracks quickly propagate to failure once they have formed, so that the total fatigue life is 

predominantly a period of crack nucleation as predicted by the equivalent stress model.  One 

unique feature of the fretting fatigue process, however, is that the large contact stresses are 

confined to a small area, and rapidly decrease in magnitude outside that region.  Thus, it is 

possible for fretting induced cracks to slow down, and possibly arrest, before coming under 

the influence of the cyclic stress fields associated with remote loading outside the contact 

zone.   

σeq (ksi) σeq (ksi)
P (lb/in) Top σmax (ksi) Top σmin (ksi) Bot. σmax (ksi) Bot. σmin (ksi) Qmax (lb/in) Qmin (lb/in) no residual σ with residual σ

Fret01 8251 23.1 7.7 35.5 0.5 3716 -2145 74.1 52.6 686600
Fret02 8160 24.1 8.2 35.6 0.3 3463 -2369 76.8 48.5 1000000
Fret03 8568 27.8 9.7 40.6 0.3 3837 -2811 76.9 43.1 394218
Fret04 8137 28.2 9.9 39.8 0.2 3484 -2887 81.5 52.2 114266
Fret05 8129 30.9 11.7 45.0 0.2 4234 -3468 80.5 62.6 119400
Fret06 8292 31.5 12.3 45.0 0.2 4059 -3643 81.6 54.6 116022
Fret07 8221 34.7 12.1 50.6 0.3 4779 -3560 80.9 64.0 127343
Fret08 8184 34.8 13.2 49.9 0.3 4526 -3866 81.4 57.4 32435
Fret09 8371 39.1 13.5 56.0 0.1 5065 -4031 82.8 65.5 51304
Fret10 8068 37.9 14.3 54.8 0.2 5066 -4213 85.3 64.1 25402
Fret11 8620 34.9 23.1 50.7 10.1 4746 -3895 85.0 63.2 64130

LifeExpt. No.
Controllable Loads Measured/Calculated Loads
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A “total life” analysis was conducted to include both crack formation by the 

equivalent stress model and a fatigue crack growth period obtained by mode I fracture 

mechanics predictions.  Stress intensity factors were computed by weight function 

procedures in this latter case for small cracks that developed in the contact stress gradients 

predicted by the fretting analysis [29], and used with the fatigue crack growth properties of 

the test material to predict the fatigue crack portion of life.  The total fatigue life, defined as 

the sum of the equivalent stress “initiation life” prediction and the “crack growth” life, is 

shown in Figure 3.147 for the titanium/titanium fretting experiments.   
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Figure 3.147.   Comparison of predicted to experimental lives for Ti-6Al-4V on 
Ti-6Al-4V fretting fatigue tests.  The predictions are plotted  
for initiation only (Ni = plus and x symbols) and initiation  
plus propagation (Nf = square and triangles) [29]. 

 

Similar results for Icon718 fretting pads in contact with Ti-6-4 specimens are 

shown Figure 3.148.  Note that incorporating a fatigue crack growth period in the total life 

calculation gives much better predictions for the fretting fatigue life in both material 

combinations, and that these calculations required the dissimilar contacting material 

capabilities of CAFDEM. 
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Figure 3.148.   Predicted and experimental life comparison for Inco718 on  
Ti-6Al-4V fretting fatigue tests [29]. 

 
 
 
3.5.6 Coupling Capri/CAFDEM with FEM 

3.5.6.1 Background 

General Electric Aircraft Engines (GEAE) and Purdue University have developed a 

computationally efficient method for analyzing three-dimensional partial slip contact 

problems.  The approach is to combine the advantages of the finite element method (FEM) 

with that of the singular integral equation (SIE) methods developed at Purdue University.  

FEM is used to model the influence of the blade and disk geometry along with the engine 

operating conditions (speed, gas loads, and blade loads) to (1) determine the pressure and 

shear load inputs to the SIE method and (2) to determine the “bulk” stress distribution 

resulting from the remote (non-edge of contact) loading.  The superposition of the edge of 

contact and bulk gradients are important for determination of stress gradients necessary for 

fracture mechanics evaluations of cracks initiating at or near the edge of contact location. 

The 3D FEM model allows for stress analysis of complicated 3D geometry where 

2D analytical models fail, and the 2D SIE model allows for computationally efficient, high 

resolution contact stress evaluation where 3D models fail.  The loads are obvious input 

requirements for the SIE method.  In addition to the stresses due to contact, the engine 
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operational loads generate a significant bulk stress in the subsurface material.  The SIE does 

not incorporate the bulk stress into the contact stress solution; therefore, the hybrid model 

includes the effects of both contact and bulk stresses by superposing the 2D SIE contact 

stress solution with the 3D bulk stress obtained from the same coarse 3D FEM model that 

supplies the contact loads.  The contribution of the contact stresses in the coarse model FEM 

solution is assumed to be negligible.  In conjunction with the edge of contact stresses, the 

SIE method calculates the expanded contact length.  This contact length indicates the 

location in the FEM model from which the bulk stresses should be obtained.  A bulk stress 

gradient is extracted from the FEM model along a straight path perpendicular to the surface 

at the edge of contact into the subsurface depth.  The stresses of interest are those that would 

open a crack, namely stresses perpendicular to the projected crack plane.  The final contact 

stress solution is then reported as the SIE tangential stress superposed with the FEM 

calculated bulk stress.  

This approach also results in a significant reduction in time to determine the 

localized stresses at the edge of contact.  For a simple case, FEM modeling using the 

Cormier, et al. [30] submodeling approach can take over a week of engineering time as 

compared to hours for the hybrid FEM-SIE method.  This detailed submodeling requires an 

extremely fine mesh size often on the order of 0.00005 inch for a fully converged solution.  

Such fine mesh models are not typically generated for disk-blade dovetail attachments. 

 This hybrid method is demonstrated for a typical airfoil geometry and then is 

validated based on a comparison of the hybrid and a pure FEM analysis.  Examples are also 

given for engine components that have been analyzed using the hybrid method. 

 This numerical/analytical hybrid method uses a “coarse” FEM model (Figure 

3.149) to obtain the component bulk stresses, loads, and moments. Although referred to as 

“coarse” for purposes of resolving contact stresses, these meshes are typical of models used 

for LCF calculations with element sizes on the order of .05 inch (three orders of magnitude 

coarser than that required for a converged edge of contact FEM solution).  
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Figure 3.149.   3D FEM model of dovetail notch illustrating 2D slice taken for 
SIE contact stress evaluation. 

 

The results of these FEM analyses can provide the necessary inputs for the hybrid 

method, so that no additional FEM analyses are required to perform a hybrid contact 

analysis.  Equivalent 2D contact loads are then calculated at parallel x-y plane slices for 

several z-locations into the depth of the contact by taking the “coarse” mesh FEM result and 

dividing by the distance between nodal slices.  These 2D loads can then be used by the SIE 

to evaluate the associated contact stresses at each nodal slice.  Experience has shown that 

this mesh size is adequate to obtain converged values of the contact loads (and is also coarse 

enough to avoid including any significant level of stress concentration from the edge of 

contact loading).  The final hybrid solution is obtained by superposing the SIE calculated 

edge of contact stress gradient with the bulk stress gradient obtained by FEM.  

3.5.6.2 Validation of Hybrid FEM-SIE Method 

The results of a very fine mesh FEM analysis were compared with those from the 

hybrid method.  The case used for comparison is a titanium disk dovetail attachment with 

the axis of the dovetail skewed relative to the axis of rotation of the disk.  The coarse FEM 

model used in the hybrid process had element sizes on the order of 0.070 inches in the 

contact region, while the fine FEM model element sizes are on the order of 0.0005 inches.  

The detailed FEM analysis was not performed using the very structured submodeling 
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approach of Cormier, et.al. [30] and based on the mesh size is probably not a fully 

converged edge of contact FEM stress analysis.  Needless to say, the fine FEM model took 

weeks to prepare and run, while the coarse model is a relatively routine stress analysis 

conducted in a much shorter time interval. 

Figure 3.150 compares a stress gradient obtained using the hybrid process 

described with a stress gradient extracted from a finely discretized FEM model.  These are 

the stresses perpendicular to the projected crack plane (parallel to the pressure face and are 

plotted along a vector perpendicular to the pressure face).  The stresses in Figure 3.150 are 

normalized relative to the peak surface stress determined from the fine FEM mesh.  The 

result from the hybrid method results in a local surface stress 14% higher than the FEM 

results.  It is anticipated that if the FEM analysis had used a more refined mesh that the local 

stress would be somewhat higher.  In any case, the stress gradients for both methods were 

very similar. 
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Figure 3.150.  Comparison of hybrid approach stress gradient to fine FEM. 
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3.5.6.3 Use of Hybrid Method for Component Evaluation 

The hybrid method has been successfully used to perform stress analyses for more 

than 15 different GEAE engine applications.  These evaluations were performed and funded 

by GEAE engine programs and projects.  The majority of these applications are dovetail 

attachments, although analysis of interrupted rabbet joints has also been performed.  These 

analyses have been used to examine field events, provide insights to design and 

modifications of attachment regions, to evaluate the effects of non-conforming hardware, to 

confirm and reinforce FEM analyses, and to examine the sensitivities of various parameters 

on the local edge of contact stresses.  The hybrid method, and the SIE analysis in particular, 

has been invaluable for the timely examination of the relative performance of various design 

geometries and loadings. 

For most of these cases, the results of the hybrid stress analysis were used as input 

for fracture mechanics evaluations.  These evaluations utilized standard fracture mechanics 

methods in use at GEAE and are utilized to determine the growth of typical edge of contact 

cracks.  Due to the generally large stress magnitudes that occur at the surface of edge of 

contact problems, a method based on the work of Neuber [31] was used to estimate stress 

redistribution due to material plastic behavior.  The gradients for mission points with 

stresses less than the peak stress were determined by permitting elastic unloading from the 

elastic-plastic gradient.  All fracture mechanics analyses were performed using GEAE’s 

state of the art fracture mechanics code.  The features of this code include temperature 

dependent material properties as well as the influence of cyclic crack growth, time 

dependent crack growth, and shot peening.  The appropriate options were used for the 

evaluation of the components. 

For the cases where there was significant field experience, there was an excellent 

correlation between the fracture mechanics analysis and the field experience.  The 

population of components evaluated included cases where both field cracks had and had not  
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been experienced.  This positive correlation strongly suggests that the hybrid FEM-SIE 

method is an accurate stress analysis method.1 

3.5.6.4 Future Development Needs 

In the process of evaluating GEAE operating components, several issues were 

raised as to either the accuracy or process for determining the inputs to the hybrid FEM-SIE 

stress analysis methods.  The potential benefits of including this method in the GEAE design 

and stress analysis toolbox have generated significant interest; however, there have been 

several features of this method that will require further development if they are to be 

included in our standard best practices. Some of these areas of interest are elaborated upon 

below. 

A typical military mission, including the different types of missions experienced 

by a single aircraft (also known as mission mix) often consists of over 10,000 mission 

points.  For life critical features such as bolt holes, local stresses can be accurately predicted 

through use of mission simulation programs and limited use of FEM analysis based on linear 

response.  This same approach cannot be applied to contact regions due to the non-linear or 

path-dependent nature of friction in the contact region.  Analysis of these complex missions 

using SIE analysis would require the definition of P, Q, and M for each mission point.  At 

the current time, the absence of such technology limits the use of the hybrid FEM-SIE 

method. 

                                                 
1Subsequent to the completion of the work described herein, several other numerical exercises have 
been carried out using a hybrid FEM/SIE method. In the cases studied, the dovetail configurations 
were such that the forces developed were dependent upon the compliance of the specific dovetail as 
well as the local contact (pad) geometry. This makes these configurations statically indeterminate. It 
was found that the force obtained from a “crude” finite element analysis was not a converged value, 
that is, a finer mesh provided a different value.  This issue is exacerbated by the nonlinear effect that 
friction plays in mission calculations. Thus, putting the force from a crude FEM analysis into the SIE 
code CAPRI did not provide an accurate local stress analysis. Only the use of a very fine mesh 
provided a nearly convergent solution, which tended to negate the benefits of using CAPRI for an 
accurate and time-efficient solution for local stresses. The degree of accuracy of the hybrid method 
described in this report, and the degree of inaccuracy of the hybrid method applied to statically 
indeterminate problems is dependent on the specific geometry involved and, thus, no general 
conclusions can be drawn at this point. 
  
 It should also be noted that after this report was written, modifications have been made to 
the computer code CAPRI so that it now considers  bulk loads in the solution.  
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Many applications, especially for turbine components, involve dovetail 

attachments between blades of one material type and a disk of a different type of material.  

Much of the experience at GEAE has involved the use of CAPRI, the similar material 

version of SIE.  The recent development at Purdue of CAFDEM, the dissimilar material 

version of SIE, allows the effects of these dissimilar material attachments to be analyzed.  

Initial uses of CAFDEM at GEAE have been met with issues pertaining to robustness and 

difficulties obtaining solution convergence.  Although in general solutions are ultimately 

obtained by manipulation of various convergence parameters, such manipulations make the 

automated implementation of CAFDEM difficult.  Enhancement of the robustness of the 

numerical solution of the SIE for dissimilar materials would accelerate the use of this 

method in the GEAE analysis toolbox. 

In addition to the history effects inherent in a mission, the variation of both the 

normal and tangential loads is a reality between time points of a mission.  The 

implementation of the SIE solution in CAFDEM allows for the variation of both of these 

load parameters, while the similar material version, CAPRI, assumes a constant normal load 

while accounting for the variation of the tangential load.  Development of a version of 

CAPRI that allows the variation of both loads would permit a more wide spread use of this 

technology. 

3.5.6.5 Summary Comments Regarding GEAE Experience 

The significant developments made to edge of contact stress analysis in this 

program have made a great difference in the way in which gas turbine disk-airfoil 

attachments are analyzed.  This has led to a much better understanding of the localized 

loading and material capability at these critical locations.  The highly collaborative 

interaction between Purdue University and the engine companies has led to practical ways to 

implement basic knowledge of the physics of contacts into engineering analyses of operating 

components.  Application of the hybrid FEM-SIE method combined with the positive 

correlation with field experience has accelerated the introduction of this technology into the 

tools used by GEAE designers.  A few technological barriers still need to be breached before 

this technology can be fully implemented as a standard process, but the progress made 
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during this program has made a very significant contribution to the analysis and life 

prediction of disk-blade attachments. 

3.5.7 Conclusion 

The summary accomplishment of the attachment fatigue team is the notion that 

fretting fatigue can be treated with conventional mechanics-based life prediction tools.  The 

favorable agreement between prediction and experiment supports the case that fretting 

fatigue can be modeled using conventional fatigue life prediction approaches provided that 

the analysis is capable of correctly obtaining the local contact stress field.  Mechanics and 

materials research conducted by many members of the HCF materials team, as well as the 

USAF sponsored MURI on HCF, have gone into supporting the idea that fretting can be 

treated using conventional fatigue and fracture tools.  This is a substantial accomplishment 

in the fretting fatigue basic research community.  Much of the data presented above and in 

the substantial set of publications resulting from this program substantiates this conclusion. 

As is detailed in Section 3.5.6.3, the above conclusion led GEAE to use life 

prediction tools developed as part of the program to analyze 15 different GEAE engine 

applications.  Pratt & Whitney used this notion to develop a comprehensive set of tools that 

it is using in attachment fatigue life prediction as summarized in Appendix N.  Figure N4 of 

that Appendix illustrates clearly that attachment fatigue life prediction meets the program 

exit criteria.  Such rapid technology transition is a major accomplishment. 

It is recommended that work continue to validate the life prediction tools for 

complicated load histories in controlled laboratory settings as well as further developing the 

life prediction tools for coated and shot-peened surfaces.  Such development requires a 

combination of fretting fatigue experiments to assess the effect of surface treatment on 

tribology, detailed fractography of the fretting specimens and pads and embedding the effect 

of surface treatment in the modeling capability. 
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Chapter 4 
Nickel Based Single Crystal Alloys 
 
 
4.1 MATERIAL 
 

PWA 1484 is a second-generation single crystal alloy containing nominally 3% Re 

and developed by P&W for advanced turbine airfoil applications. The alloy is bill of 

materials for the Joint Strike Fighter (JSF) and was selected by the HCF Consortium as the 

material of choice for this program.  PWA 1484 is a precipitation strengthened cast mono 

grain nickel superalloy based on the Ni-Cr-Al system. The macrostructure of this material is 

characterized by parallel continuous primary dendrites spanning the casting, without 

interruption, in the direction of solidification. Secondary dendrite arms (perpendicular to 

solidification) define the interdendritic spacing. Solidification for both primary and 

secondary dendrite arms proceeds in <001> family directions. Carbides, undissolved eutectic 

pools and associated microporosity are concentrated in the interdendritic regions. These 

features represent microstructural discontinuities, and often exert a controlling influence on 

the fatigue crack initiation behavior of the alloy. 

4.1.1 Microstructure 

The microstructure consists of approximately 60% by volume of γ' precipitants in a 

Γ matrix. In both alloys the cuboidal precipitate ranges from 0.35 to 0.6 m. The γ' precipitate, 

based on the intermetallic compound Ni3Al, is the strengthening phase in nickel based 

superalloys. The high volume fraction of γ' precludes dislocation bypass at low and 

intermediate temperatures forcing precipitate shearing. Long-range dislocation motion via 

precipitate shearing is favored because the ordered precipitate is coherent with the matrix. 

The atomic lattices of each are coplanar with only a slight lattice spacing mismatch. The 

precipitates resist this shearing to a varying degree due to temperature and environment, 

depending on dislocation dynamics within the ordered γ' structure. 
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4.1.2 Coatings 

The original plan for this program was to test all except a few specimens in the 

uncoated condition.  However, initial work on uncoated specimens at 1900°F (Appendix O) 

showed that there was a significant effect of oxidation on the uncoated surface on the failure 

mode and HCF capability.  Since all production single crystal turbine blades are fabricated 

with some type of environmental coating to eliminate such oxidation effects, continuing to 

test uncoated material created the risk that the HCF models produced by this program would 

not be valid for single crystal turbine blades in an engine.  Therefore, the decision was made 

in December 2000, to apply a commercially available PtAl diffusion coating to all Task S.2 

specimens to be tested later at 1900°F.  (Specimens tested early in the program at 1900°F 

were uncoated since the crack growth behavior being determined was for the base alloy in 

the presence of air.  All specimens tested at 1100°F were also uncoated.)  PtAl coatings are in 

relatively wide use on single crystal turbine blades from many engine manufacturers, so this 

coating type represented a point of common ground. 

Howmet Thermatec Division was selected as the coating supplier and a purchase 

order was placed to coat the gage sections of specimens with their single phase MDC150L 

PtAl coating.  The ends of the specimens were masked to prevent coating that might interfere 

with the threads that provided load introduction and alignment.  A coating cycle was selected 

to produce a coating approximately 2-mils thick.  Because the coating process was at high 

temperature and the specimens were already fully heat treated, after coating the specimens 

were re-heat treated using standard PWA 1484 parameters at and below the coating 

temperature (i.e., specimens were not re-solutioned or primary aged). 

The coating microstructure as received from Howmet is shown in Figure 4.1.  This 

figure shows a coating of overall thickness of 0.0021 inches.  The coating is divided into two 

layers, as is typically seen in diffusion aluminide coatings on superalloys: an outer, Al-rich 

additive layer of single-phase β-Ni (Pt) Al, and an inner inter-diffusion layer consisting of a 

mixture of β, γ’, and refractory metal TCP’s and carbides.  While such coatings are brittle at 

low temperatures, they are known to be ductile at the 1900°F test temperature selected for the 

higher temperature tests. 
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Figure 4.1. Typical microstructure of MDC150L PtAl coating applied 
 on 1900°F PWA1484 specimens. 
 

 
4.1.3 Fabrication 

4.1.3.1 Procurement 

Precision Cast Components (PCC) Airfoils Inc., a current production source for 

PWA 1484 castings, was selected to provide cast material for the program after a review of 

all possible potential suppliers.   

Master alloy was obtained from a single heat that conformed to the specification 

chemistry of PWA 1484.  Master heat chemistry certifications were supplied by PCC.  The 

master heat chemistry, major elements, is given below: 

 

C Cr Co Mo W Al Ta Re Hf Ni 
0.026 4.97 9.92 1.92 5.9 5.69 8.57 2.89 0.09 Bal 

 

All bar and plate castings made from the master heat were serialized so that they 

could be traced to the master heat. All castings were etched and inspected metallographically 

to ascertain the presence of non-conforming defects.  Defects would include recrystallized 

and equiaxed grains, low and high angle boundaries, slivers, and striations. These were 
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carefully mapped for each casting and their location documented (1,2,3).  Three types of 

round bar castings were made:  

 1.)  0.625” diameter by 6” long with a primary orientation of <001>, 

 2.)  0.625” diameter by 6” long with a primary orientation of <011>  

 3.)  1.0 “ diameter by 8” long with a primary orientation of <001>. 

 Additionally, single crystal slabs were cast as follows: 

1.)  Short slabs: 3” tall by 6” wide by 0.625” thick having the primary <001> 
orientation in the 6” direction, The secondary orientations of the short slabs 
was intentionally varied. Some were cast to provide <001>, some with <110> 
and some with a <120> orientation. 

 
2.)  Tall slabs: 6” tall by 3”” wide by 0.625” thick having the primary <001> 

orientation in the 6” direction  
 
3.)  Thick slabs: 6” tall by 3” wide by 1.75” thick having the primary <001> 

orientation in the 6” direction. 
 
All bar and slab castings were Hot Isostatically Pressed (HIP) per the recommended 

PWA 1484 requirement such that non-surface connected porosity would be less than 1%. 

Heat treatment was performed by PCC and conformed to the PWA 1484 specification. 

Foundry certifications were supplied by PCC Airfoils Inc. and these covered the master heat 

detailed chemistry, master heat stress rupture qualification test, and metallographic reports 

documenting any residual non-surface connected porosity and solution requirements for each 

type of casting. 

 A. Grain Maps 

Grain maps were used to identify the location of secondary grain 

imperfections and any defects. The following types of secondary grain defects were mapped: 

High Angle Boundaries (HAB): These boundaries are visible grain boundaries of secondary 

grains that grow in the same direction as the main crystal.  For the round bars, an HAB  

was defined as a deviation of 8 degrees or more of the secondary grain from the main crystal.  

Low angle boundaries (LAB) occurred when the deviation of the secondary grain was less 

than 8 degrees. These boundaries were considered acceptable defects and were not identified 

on the grain maps. 
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• Slivers:  Slivers are narrow, secondary grains that are aligned with the primary 
orientation and are usually too fine for a determination of the misorientation. 

 
• Freckle Chain:  During crystal growth secondary dendrites often break off. 

These broken dendrite tips then become nuclei for chains of secondary equiaxed 
grains usually aligned in the crystal growth direction. The occurrence of the 
freckle chains was recorded in the Grain Maps. 

 
• Equiaxed Cluster:  An equiaxed cluster is a collection of several misoriented 

secondary grains with a low aspect ratio.  These growth defects were also 
recorded in the Grain Maps. 

 
4.1.3.2 Orientation 

Laue x-ray diffraction measurements were performed and reported by PCC Airfoils 

Inc.  The Laue results showed that the primary orientation of all bars was within the required 

10 degrees of <001>.  In addition, the degree of misorientation between the required 

secondary and primary orientation and a casting’s serial number was also provided.  The 

orientation data for each casting was carefully documented in detail referencing the serial 

number of the casting.  

 

4.2 FRACTURE MECHANICS MODELING AND TESTING 

4.2.1 Background 

4.2.1.1 Objectives and Approach 

The objective of this work was to develop analytical and experimental approaches 

for addressing the effects of frequency, stress ratio, crystal orientation, and temperature on 

the threshold and near-threshold fatigue crack growth behavior of PWA 1484 single crystal 

alloy under HCF conditions.  In addition to the above, mode mixity (KII/KI) was also 

included as one of the potentially significant parameters influencing crack growth behavior.  

Thus, part of the analytical effort involved computation of the stress intensity factor for 

mixed-mode cracks.  Companion experiments involved the determination of the fatigue crack 

growth threshold as a function of stress state and crystal orientation, using an asymmetric 

four point bend (AFPB) test technique.  The influence of mode-mixity on the FCG threshold 

was determined at 1100°F as a function of stress state ranging from pure Mode I to pure 
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Mode II.  The results were used to develop a fracture mechanics approach for treating high-

cycle, mixed-mode fatigue crack growth in single crystal blades. 

The applicability of isotropic solutions to stress intensity analysis of anisotropic 

materials was investigated using finite element methods.  For various crack and material 

orientations, the FEM results indicated that errors in using isotropic solutions were generally 

small and, as a consequence, isotropic solutions were used throughout the analyses in this 

section for Mode I calculations.  

While fracture testing was performed primarily on smooth specimens, a fracture 

study from blunt notches was also conducted to simulate the notched behavior typical of the 

edge of contact region of the blade attachment. The objective of this particular effort was to 

determine the methods necessary for analyzing the growth or arrest of HCF cracks in a notch 

stress field at 1900°F.  Since stress concentrations are one of the more common sites for 

crack initiation, it was deemed important to be able to model the growth of cracks from 

notches, particularly under HCF excitation where cracking is expected to proceed very 

rapidly once the driving force for growth exceeds the threshold.  One of the additional 

complicating factors at 1900°F, in addition to the usual complexities of notch analysis, is the 

occurrence of time-dependent stress relaxation around the notch due to creep.  While notched 

specimens were fabricated for testing, experimental verification of the pre-test predictions 

was never performed.  

The possibility of interaction between HCF and LCF loading was also explored to a 

limited extent. 

4.2.1.2 Scope 

A comment that applies to both isotropic and anisotropic materials is that of the 

definition of a mixed-mode threshold.  This is particularly relevant to anisotropic single 

crystal alloys where the extension of a crack depends not only on the loading conditions (the 

mode mixity), but also on the crystal orientation with respect to the crack.  If a crack extends 

in a non-self similar manner (it kinks, for example), then it cannot be considered to be a true 

mixed mode crack growth threshold.  For engineering purposes, however, we consider this to 

be the mixed mode threshold.  This threshold, however, may not be an inherent material 

property and may depend on crack length. 
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In this section, the threshold for crack propagation is determined for PWA 1484 

alloy using different specimen geometries, analyses, and test methods as used by GEAE and 

PWA.  The application of linear elastic fracture mechanics (LEFM) and the stress intensity 

factor, K, to characterize crack growth behavior, has been described in the final report for 

Phase [1].  Methods for representing crack growth data, fitting data to different growth laws, 

and test methods for obtaining data are all described there.  The applicability of LEFM to 

small cracks, the extension of crack growth modeling to a second material, and the use of 

other crack geometries was subsequently investigated and is reported in the titanium section 

of this final report.  In particular, the prediction of threshold stress under HCF to notched 

components, including those subjected to FOD, was investigated and is documented in this 

report.  Notch analysis was used to develop a method to predict the threshold stresses for 

FOD and fretting fatigue where steep stress gradients are encountered.  Comparisons of 

model predictions with results of simulated FOD and machined notch experiments as well as 

fretting fatigue experiments were encouraging.  The method used, termed the “Worst Case 

Notch” (WCN) model, enables the boundaries between crack initiation, crack growth 

followed by arrest, and crack growth to failure to be delineated.   

The parameters particularly relevant to single crystal alloys were examined to some 

degree in the program, but only two temperatures were evaluated—1100°F, representing a 

typical operating temperature in the blade attachment region, and 1900°F, representing a 

typical operating temperature on the blade surface.  Models were developed for each 

temperature, with no interpolation between them.  Most of the lower temperature work was 

performed at Pratt & Whitney, with the higher temperature work taking place predominantly 

at GEAE.  Mixed mode testing was performed at Southwest Research Institute.  HCF/LCF 

interaction testing was performed at Pratt & Whitney. 

4.2.2 Mode I; Smooth 

4.2.2.1 K-Calculations 

Single crystal superalloys possess elastic anisotropy, which, in principle, can affect 

the computation of the stress intensity factor for cracks.  In order to determine the extent of 

the effect of anisotropy, and whether it was satisfactory to use existing isotropic K-solutions 

in this program, an investigation of the effect of the anisotropy of PWA 1484 was 
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undertaken.  Two-dimensional, plane stress analyses were conducted by both PWA and 

GEAE using slightly different methods on different illustrative problems.  PWA used 

FRANK2D and the associated J-integral calculations.  GEAE used the ANSYS code with 

COD and stresses approaching the crack tip for their calculations. 

 A.  Review of Anisotropic Elasticity  

The K solutions for a single crystal (anisotropic) alloy require an understanding 

of anisotropic elasticity for their development and application.  Details and a background 

tutorial in anisotropic elasticity are presented in Appendix P for completeness in this report. 

 B.  Calculation of the Stress Intensity Factor in Anisotropic Media 

  For a crack in an infinite anisotropic plate subject to a far field stress, Sih et al 

[32] showed that the stress intensity solution is identical to the isotropic case  
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Chan and Cruse [33] demonstrated that in many situations, isotropic stress intensity solutions 

for test specimen geometries adequately approximate the anisotropic solutions for single 

crystal materials.  In structural analyses, however, it is not clear that this will generally be 

true.  Often, it may be desirable to calculate stress intensity factors directly from strain 

energy release rates, gI and gII, obtained from finite-element solutions.  For mixed mode 

loading involving Modes I and II (excluding Mode III for now), Sih gave the following 

relationships for gI and gII 
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Equations (4.2) and (4.3) can be solved in terms of the stress intensity factors KI and KII as 

 
III

I
I KKBA

g
K

+
=          (4.4) 



182 

 
I

II
III K

K
KK =           (4.5) 

where,  

 
2

2

22

22222
⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
±+

−
=

C
D

C
BD

C
A

g
g

C
B

g
g

C
B

g
g

C
D

K
K

I

II

I

II

I

II

I

II  

 

[ ]

[ ]21
11

21
11

21

22

21

2122

Im
2

Im
2

1Im
2

Im
2

µµ

µµ

µµ

µµ
µµ

AD

AC

AB

AA

=

+=

⎥
⎦

⎤
⎢
⎣

⎡
−=

⎥
⎦

⎤
⎢
⎣

⎡ +
−=

       (4.6) 

 

The sign of the Mode II stress intensity must be determined from the sign of 

the displacements, as illustrated in Figure 4.2. 

 

 

KI KII
 

Figure 4.2. Illustration of crack tip loading modes 
 (shown with positive sense). 
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 While the above Equations (4.2- 4.6) are true for 2D cracks propagating in a 

principal plane (the crack faces normal to the principal plane), cracks of more general 

orientation involve interaction between Modes I, II, and III.  The involvement of Mode III is 

treated in [34], but is beyond the scope of the current investigation.  

 For the more restricted case of single crystal materials for which E1=E2 (crack 

propagating within principal 1-2 plane1), we have A11=A22 and Im ( ) 1
21

±µµ  vanishes, 

eliminating the coupling terms in (4.4) and (4.5).  Furthermore, the remaining terms in the 

Im[ ] operator become equal in magnitude, but opposite in sign, leaving 

 [ ]21

1

Im
2

µµ +
=

Eg
K i

i         (4.7) 

and the mode mixity relation 

           

           (4.8) 

 

 

C.   Single Edge Notched (SEN) Specimen Analysis (Pin-Loaded PW Specimen)  

A pin-loaded, single edged notched specimen of aspect ratio h/w=6 was 

analyzed using the FRANC2D fracture code (see www.cfg.cornell.edu) with specially 

orthotropic properties representative of PWA 1484 material at 1100°F and 1900°F.  The 

stress intensity factors were determined based on plane stress assumptions, using J-integral 

calculations provided by FRANC2D2.  The values are believed to be well within 1 percent 

accuracy, based on comparable studies with isotropic solutions.  As illustrated in Figure 4.3, 

the effect of orthotropy on the stress intensity factors of <001/010> crack orientation is 

within six percent of the isotropic solution up to a/w=0.8.   
                                                 
1 Note that the anisotropic formulation is singular when E1=E2.  To obtain numerical results it is suggested that in this case 

E1 and E2 be specified as slightly different. 

 
2 A special purpose version of FRANC2D was used that has the calculation of strain energy release rates enabled for 

anisotropic materials by way of the J-integral. 
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Figure 4.3.  FRANC2D analysis of single-crystal SEN specimen. 

 

The deviation from the equation used to calculate mode I SIFs for isotropic SEN 

specimens was developed for various orientations (all of which exhibit the symmetry implied 

by Equation P2 of Appendix P), and is summarized in Figure 4.4 as a smoothed fit of 

correction factors to account for anisotropy. (Note that the isotropic analysis showed the 

isotropic SIF equation to be within about 0.5 percent accuracy over the range studied).  The 

deviations due to anisotropy were not very large, but might not always be considered 

negligible.    
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Figure 4.4.   2D anisotropic correction factors for pin-loaded SEN 
  specimens at 1100°F and 1900°F. 
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The SEN specimens used were nominally 0.05 inches thick, and 0.5 inches wide 

in the gage section, with pin loaded ends three inches apart center to center.  Threshold crack 

growth data was taken at a/w values ranging from about 0.27 to 0.62.  Thus, the correction 

factor at a/w = 0.45 was used for all specimens, resulting in corrected stress intensity factor 

error estimated at 0.5 percent or less.  The correction factors obtained in this manner are 

tabulated in Table 4.1, and were used to correct the threshold data for anisotropy for creation 

of the PW threshold model, as will be explained in a later section. 

Table 4.1.   Anisotropic Correction Factors KI ortho/KI iso for  
  Pin-Loaded SEN Specimen with a/w = 0.45 

Temperature (F) Orientation KI ortho/KI iso 
1100 <001/010> 1.0345 
1100 <001/010>+15° 1.0507 
1100 <0-11/011> 0.9874 
1100 <001/110> 1.0348 
1100 <-1-11/112> 1.0030 
1900 <001/010> 1.0398 
1900 <001/010>+15° 1.0645 
1900 <0-11/011> 0.9861 
1900 <001/110> 1.0423 
1900 <-1-11/112> 1.0052 

  

 D. Four Point Bend Specimen Analysis (SwRI Specimen) 

  A similar analysis was performed for the SwRI 4-Point Bend Specimen to 

obtain anisotropic corrections to the isotopic solution, but was only evaluated for the 

symmetric loading scenario, with a/w=0.45.  The results are given in Table 4.2. 

 E. Single Edge Notched (SEN) Specimen Analysis (Fixed End GEAE Specimen)  

  Pratt & Whitney also performed an anisotropic solution for a fixed end SEN 

specimen in the <001/010> orientation only, at a/w=0.45, with the results given in Table 4.3.  

Comparisons can be made with the results of calculations provided by GEAE in Section 

4.2.2.1.F. 
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Table 4.2.  Anisotropic Correction Factors KI ortho/KI iso for Symmetrically  
Loaded 4-Point Bend Specimens with a/w = 0.45 
 

Temperature (F) Orientation KI ortho/KI iso 
1100 <001/010>  1.0363 
1100 <001/010>+15° 1.0481 
1100 <0-11/011> 0.9814 
1100 <001/110> .8860 
1100 <-1-11/112> 1.093 
1900 <001/010>  1.0426 
1900 <001/010>+15° 1.0616 
1900 <0-11/011> 0.9799 
1900 <001/110> .8749 
1900 <-1-11/112> 1.118 

 
 
 

Table 4.3.   Anisotropic Correction Factors KI ortho/KI iso for GEAE Fixed  
  End SEN Specimen 

 
Temperature (F) Orientation KI ortho/KI iso 

1100 <001/010>  1.062 
1900 <001/010>  1.070 

 
 
F.   K – Calculations for Edge Crack Specimen by GEAE 
 

A 2D plane stress finite element analysis (using ANSYS) of an edge crack 

(Figure 4.5) was conducted by GEAE for four different material orientations rotated with 

respect to the stress axis (0, 20, 30, and 45 degrees) and four values of a/t (0.125, 0.250, 

0.375, 0.5).  Anisotropic elastic properties for PWA 1484 were used as supplied by Pratt & 

Whitney.  The elastic properties have cubic symmetry, so three independent constants were 

needed, effectively, a Young’s modulus, E, a Poisson’s Ratio, ν, and a shear modulus, G, all 

in the material coordinate system.  Figure 4.5 shows the definition of material orientation and 

a/t for the edge crack model.  In these analyses, highly refined models were used to calculate 

stress intensity values for an edge crack subjected to a 1-ksi remote stress.  The stress 

intensity calculations were performed using both the crack opening displacements and the 

stresses approaching the crack tip.  
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Figure 4.5.  Edge crack geometry for single crystal stress intensity calculations. 

For all cases, the two methods gave results that were in close agreement with 

each other and with the isotropic handbook solution by Tada [35].  Figure 4.6 shows the 

effect of misorientation from the specimen axis on the KI value obtained, at fixed values of 

a/t.  The deviation of isotropic KI from the ANSYS anisotropic solution was relatively small, 

in all cases less than or equal to 3%.  The Tada isotropic solution gave values about 3% 

lower than the anisotropic solution for a 0° misorientation.  As the misorientation angle 

increased to about 25°, the difference dropped to near zero; with further increase in 

misorientation to 45° the isotropic Tada solution overestimated the anisotropic one by about 

3%.   

Figure 4.7 shows the K solution for a range of a/t at a material orientation of 30 

degrees.  The deviations between anisotropic and isotropic solutions were negligible and 

essentially independent of a/t ratio. 

A second study was undertaken to examine the effect of rotation of the material 

about a common stress axis on the anisotropic K.  A 3D edge crack model was created as 

shown in Figure 4.8.  The figure also shows a close up of the crack tip region.  In this 

particular problem, the model was fixed to simulate a plane strain condition and stress 

intensities were calculated from the stresses approaching the crack tip.  One material axis 

was assumed to be in the direction of load.  The other material axes were rotated through a 

range of angles (θ) as shown in Figure 4.8.  Figure 4.9 shows the orthotropic stress intensity 

values as a function of angle.  The isotropic edge crack solution from Tada is also plotted in 

Figure 4.9.  The largest difference between the two solutions is less than 3%. 
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Figure 4.6.   Dependence of anisotropic K (using stress) on rotation of PWA1484  

material about an axis perpendicular to the plane of Figure 4.5,  
compared with Tada [35]. 
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Figure 4.7.   Comparison of stress intensities calculated by anisotropic finite 
element mModel (using crack opening and stress) and Tada’s [35] 
isotropic solution at a material orientation of 30°. 

 

Anisotropic vs Isotropic K-Solution (Edge Crack) 

-3.0%

-2.0%

-1.0%

0.0%

1.0%

2.0%

3.0%

4.0%

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
a/t

Dif
fer
en
ce 
(%
) 

0 Degrees 
20 Degrees 
30 Degrees 
45 Degrees 



189 

 

Θ

LOAD

 

Figure 4.8.  Model used to investigate effect of material orientation 
about loading <001> axis. 
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Figure 4.9.  Stress intensity as a function of angle of rotation about the <001>axis. 
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Based on these analyses, it was judged that the effect of anisotropy on the K-

value was not significant, and all K values reported in this document by GEAE were obtained 

from isotropic solutions. 

4.2.2.2 Threshold Testing: Fracture Mechanics Test Method & Specimen Geometry 

A pin loaded single edge notch specimen with dimensions of width of 0.50 inches 

and a thickness of 0.050 inches was chosen for the majority of the crack growth testing 

described in this report. The sample geometry is shown in Figure 4.10.  

This specimen design was selected because it permits the analysis of a through 

thickness crack in thin sections and is efficient from a material availability standpoint. The 

gripping scheme for this geometry allowed for maximum freedom of rotation. Initial testing 

incorporated knurled bushings clamped to either side of the sample with a threaded bolt. The 

bushings were attached to the load train with a clevis, which allowed the bushing to rotate 

but not the sample. 

 

 
 

Figure 4.10.  PW pin-loaded single edge notched fatigue crack growth. 
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This created a situation that resulted in out of plane global octahedral crack growth.  

The gripping scheme was changed to a strictly pin loaded arrangement where the pin 

diameter was 75% of the specimen loading hole. This dramatically reduced the friction 

between the loading pin and the sample pinhole and changed the fracture mode to a 

macroscopically planer crack. This also produced better confidence that the stress intensity 

solution for a pin loaded SEN specimen would be valid, since it assumes free rotation at the 

loading pins. Figure 4.11 shows the difference in crack path as a result of the adjustment in 

gripping schemes. 

The stress intensity for a Single Edge Notch specimen also assumes the material is 

isotropic and that the crack is progressing though five or more randomly oriented crystals. 

Single crystal materials do not fit this constraint of the K solution. A 2 dimensional 

orthotropic analysis of KI was determined from a FRANC2D J-integral, for the <001/010> 

orientation. 

 

    
 

 
Figure 4.11.   Photographs of the result from the gripping scheme adjustments and 

sharper EDM starter notch. Left-hand side is global octahedral mixed 
mode fracture. The right hand side in mono-planer mode I fracture. 

 
 
The results show that β, the geometry factor in the stress intensity solution, remains 

equivalent through a normalized crack length (a/w crack length divided by specimen width) 

of a/W 0.6, then begins to deviate slightly. The results of the analysis are shown in Figure 

4.12. 
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Figure 4.12.  Anisotropic versus isotropic stress intensity geometry factor analysis. 
 
 

A computerized system developed by Fracture Technology Associate (FTA) was 

used to monitor the crack growth and control an MTS servo-hydraulic test frame. The crack 

length was monitored continuously using the reversing Direct Current Electrical Potential 

Drop (DCEPD) measurement technique, enabling stress intensity to be controlled as a 

function of crack length. A single analytical relation converted the normalized electrical 

potential drop into the corresponding crack length, namely Johnson’s equation [36].  The 

computer continuously recorded the test data, and in real time calculated the crack length, the 

stress intensity factor, and the linear regression analysis of crack growth rate. The test mode 

could then be automatically changed when the crack reached a predetermined value. 

Computer monitoring and control is an intricate part of threshold testing.  

A. K-Gradient Determination 

Fatigue crack growth threshold data generation is typically begun by cycling at a 

∆K level, which is at, or slightly above the precrack level. Subsequent loading is then 

decreased incrementally as the crack propagates. This process is repeated throughout the test 

until crack arrest is achieved. Threshold testing done in this study, was generally started at 

growth rates at or below 1 x 10-6 in / cycle to avoid influencing the threshold result from 

prior loading history of the precrack procedure.  
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The Kgradient or rate of load shedding is another important factor in generating 

fatigue crack growth rate threshold values. The normalized K-gradient is defined as C = 

(1/K)*(dK/da). ASTM recommends values of (-2 in-1) or less but states that higher values of 

C for certain materials have been found to be acceptable. The purpose of this experiment is to 

find the highest value of C that would allow threshold material property data generation 

without the undesirable effect of loading history on PWA 1484 at 1100°F at three different 

stress ratios (R = 0.1, 0.5 and 0.8).  Experiments were performed at C = -6, -10, -20 and –30. 

All but two of the near threshold tests were conducted at a cyclic frequency of 10-20 Hz. 

Comparison of this data was aided by generating two or more threshold tests on a single 

sample, which eliminated specimen-to-specimen variations from the comparison of different 

values of C. This was made possible because the higher shed rates utilized less specimen 

ligament for each data set. Typically three to four threshold tests were performed on each 

sample; Table 4.4 summarizes the results. The data clearly shows that shed rates as high as 

30 in-1 could be used without compromising the test results.  

It is also noteworthy to mention the abruptness at which ∆K threshold occurs in 

this material. Crack arrest takes place, at or below 2E-7 in/cycle independent of stress ratio 

and shed rate, suggesting a well-defined crack growth limit. This behavior was also noted by 

Cunningham, et al, [37] and was given the demarcation ∆Klim to describe this phenomenon.  

B.  Methods  

Methods and capability to perform threshold crack growth testing on single 

crystal superalloys have been demonstrated for some time, at least since the 1980’s [38,39]. 

The method demonstrated followed ASTM E647 for the most part, although specific test 

specimens and K-shed rates, C (C = 1/K [dK/da]), have deviated from the ASTM 

recommendations.  In these early efforts, temperatures as high as 2000°F and K-shed rates up 

to 20 in-1 were used, and the applicability of electrical potential drop (PD) methods for crack 

monitoring and test control were demonstrated.  More recently, similar procedures were 

demonstrated in [40,41].  These test methods were for the most part used in the present 

investigation.  Some testing was performed at each test temperature to confirm that the shed 

rates selected were low enough to not influence the threshold results. 
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Table 4.4.   Summary of Test Conditions for Single Crystal Alloy Shed Rate Study 
Frequency =20Hz Orientation=001/010 (A2LR7, A2LKR, A2LLK, A2LRN) 

 
Test ID Stress Ratio Temperature K-Gradient Frequency ∆Kth 
  (deg F) (1/in) Hz (ksi√in) 
9301A (A2LR7-5) 0.50 1,100 -20.0 10 Hz 3.87 
9301B (A2LR7-5) 0.50 1,100 -20.0 10 Hz 3.86 
9302A (A2LR7-6) 0.80 1,100 -20.0 10 Hz 2.80 
9302B (A2LR7-6) 0.80 1,100 -20.0 10 Hz 2.86 
9336A (A2LKR-9) 0.80 1,100 -10.0 20 Hz 2.84 
9336B (A2LKR-9) 0.80 1,100 -20.0 20 Hz 2.81 
9336C (A2LKR-9) 0.80 1,100 -30.0 20 Hz 2.93 
9336D (A2LKR-9) 0.80 1,100 -30.0 20 Hz 3.08 
9337A (A2LLK-1) 0.80 1,100 -6.0 20 Hz  2.98 
9337B (A2LLK-1) 0.80 1,100 -30.0 20 Hz 3.32* 
9337C (A2LLK-1) 0.80 1,100 -30.0 20 Hz 2.96 
9337D (A2LLK-1) 0.80 1,100 -30.0 20 Hz  3.08 
9338A (A2LRN-1) 0.10 1,100 -6.0 20 Hz 5.67 
9338B (A2LRN-1) 0.10 1,100 -30.0 20 Hz 5.59 
9338C (A2LRN-1) 0.10 1,100 -30.0 20 Hz 5.49 
9339A (A2LRN-2) 0.10 1,100 -10.0 20 Hz 6.09 
9339B (A2LRN-2) 0.10 1,100 -20.0 20 Hz 6.15 
9339C (A2LRN-2) 0.10 1,100 -30.0 20 Hz 6.36 
9340A (A2LRN-3) 0.10 1,100 -6.0 20 Hz 5.65 
9340B (A2LRN-3) 0.10 1,100 -30.0 20 Hz 6.19 
9340C (A2LRN-3) 0.10 1,100 -30.0 20 Hz 6.21 
9341A (A2LRN-4) 0.10 1,100 -10.0 20 Hz 5.61 
9341B (A2LRN-4) 0.10 1,100 -20.0 20 Hz 5.51 
9341C (A2LRN-4) 0.10 1,100 -30.0 20 Hz 5.75 
9342A (A2LRN-5) 0.10 1,100 -20.0 1 Hz 7.30 
9342B (A2LRN-5) 0.10 1,100 -20.0 10 CPM 7.01 
9343A (A2LRN-6) 0.76(12.0) 1,100 -20.0 20 Hz 2.89 
9343B (A2LRN-6) 0.80(18.0) 1,100 -20.0 20 Hz 2.48 
9343C (A2LRN-6) 0.80(27.0) 1,100 -20.0 20 Hz 2.69** 
*   False threshold due to test interruption. 
** Not a true threshold since crack continued to grow at 2-3 x 10-9 inches/cycle. 

 
In the current program, several specimen geometries were used according to the 

purpose required.  The bulk of the testing was performed on pin-loaded single edge notched 

specimens.  The PW version of this specimen is shown in Figure 4.10 and the GEAE version 

in Figure 4.13. 
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Figure 4.13.  GEAE pin-loaded single edge notched fatigue crack growth specimen. 

Figure 4.14.  Shed rate effects in PWA1484 at 1100°F, R = 0.1. 
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At 1100°F a K-shed rate investigation was performed using the pin-loaded SEN 

specimen of Figure 4.13.  Stress-ratios of both 0.1 and 0.8 were examined, using material 

with <001>/<010> crack orientation.  Shed rates, C, of -6, -10, -20, and -30 in-1 were 

examined, and as shown in Figures 4.14 and 4.15 and Table 4.5, all thresholds were similar.  

To be slightly conservative, all subsequent shed rates were performed at a rate of  

C = -20 in-1. 
 
 
Table 4.5.   Threshold Measurements in PWA1484 as a Function of Stress  

Ratio and Shed Rate at 1100°F.  Orientation  =  <001>/<010> 
 
         Test ID         Stress Ratio         Temperature            K-Gradient        Frequency         ∆Kth           
                  (deg F)                      (1/in)           (Hz)      (ksi√in) 
9301A (A2LR7-5) 0.50    1100         -20.0            10             3.87 
9301B (A2LR7-5) 0.50    1100         -20.0            10             3.86 
9302A (A2LR7-6) 0.80    1100          20.0            10             2.80 
9302B (A2LR7-6) 0.80    1100         -20.0            10             2.86 
336A (A2LKR-9) 0.80    1100         -10.0            20             2.84 
9336B (A2LKR-9) 0.80    1100          20.0            20             2.81 
9336C (A2LKR-9) 0.80    1100         -30.0            20             2.93 
9336D (A2LKR-9) 0.80    1100         -30.0            20             3.08 
9337A (A2LLK-1) 0.80    1100         -6.0            20              2.98  
9337B (A2LLK-1) 0.80    1100         -30.0            20                     3.32* 
9337C (A2LLK-1) 0.80    1100         -30.0            20             2.96 
9337D (A2LLK-1) 0.80    1100               -30.0                   20              3.08 
9338A (A2LRN-1) 0.10    1100         -6.0            20             5.67 
9338B (A2LRN-1) 0.10    1100         -30.0            20             5.59 
9338C (A2LRN-1) 0.10    1100         -30.0            20             5.49 
9339A (A2LRN-2) 0.10    1100         -10.0            20             6.09 
9339B (A2LRN-2) 0.10    1100         -20.0            20             6.15 
9339C (A2LRN-2) 0.10    1100         -30.0            20             6.36 
9340A (A2LRN-3) 0.10    1100         -6.0            20             5.65 
9340B (A2LRN-3) 0.10    1100         -30.0            20             6.19 
9340C (A2LRN-3) 0.10    1100         -30.0            20             6.21 
9341A (A2LRN-4) 0.10    1100         -10.0            20             5.61 
9341B (A2LRN-4) 0.10    1100         -20.0            20             5.51 
9341C (A2LRN-4) 0.10    1100         -30.0            20             5.75 
9342A (A2LRN-5) 0.10    1100         -20.0              1             7.30 
9342B (A2LRN-5) 0.10    1100         -20.0              0.17            7.01 
          (Kmax) 
9343A (A2LRN-6) 0.76(12.0)   1100         -20.0            20             2.89 
9343B (A2LRN-6) 0.80(18.0)   1100         -20.0            20             2.48 
9343C (A2LRN-6) 0.80(27.0)   1100         -20.0            20         2.69** 
*   False threshold due to test interruption. 
** Not a true threshold since crack continued to grow at 2-3 x 10-9 inches/cycle. 
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Figure 4.15.  Shed rate effects in PWA 1484 at 1100°F, R = 0.8. 

 
At 1900°F, the yield strength of PWA 1484 is significantly lower than at 

1100°F, and there was some concern that the high shed rates possible at 1100°F might lead to 

artificial elevation of the threshold when used at 1900°F.  In addition, there was concern that 

creep during testing might increase the inelastic zone and thus contribute to threshold 

elevation.  Early in the program, before PWA 1484 material was received, shed tests with C 

= -10 and -20 in-1 were performed at 1900°F on a similar single crystal alloy, Rene N5.  

These tests showed similar da/dN behavior between the sheds with different C’s.  To 

evaluate this on PWA 1484, several tests were performed at 1900°F with C = -20, -30, and -

60 in-1.  The results, shown in Figure 4.16, indicate that the threshold behavior is independent 

of C up to and including C = -30 in-1. At C =  -60 there was a noticeable elevation of 

threshold.  For the remainder of the shed testing, C = -20 in-1 was used at 1900°F. 
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Figure 4.16.  Shed rate effects in PWA 1484 at 1900°F, R = 0.5. 

 
At 1900°F, several other threshold test methods were investigated during the 

effort to determine the effect of high frequency on threshold at 1900°F.  These will be 

described in Section 4.2.2.2.C, in association with the high frequency tests. 

The crack growth rate and threshold response of several different types of 

specimens used at GEAE was compared to demonstrate confidence in the test method and 

analysis.  In addition to the pin end SEN geometry shown in Figure 4.13, GEAE investigated 

a fixed end SEN specimen, Figure 4.17, and a surface flawed specimen, Figure 4.18.  These 

were examined for three reasons: first, it is quite possible for some portions of a turbine blade 

airfoil (the region represented by the 1900°F efforts) to sustain compressive stresses created 

by thermal gradients.  In order to be able to test cycles with compression a specimen with 

greater compression stability than a pin-loaded SEN is required.  Both the fixed end SEN 
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specimen and the surface flaw specimen provide significant compressive stability.  Second, 

based on limited experience at lower temperatures, there was a concern for the introduction 

of loading pin sticking due to its oxidation and seizing against the mating surface.  This 

might have the effect of diminishing the ability of the pin to rotate freely in the specimen or 

fixture, and thus change the loading boundary conditions and hence the stress intensity.  In 

the limit a fully seized pin would act like a fixed end specimen.  Finally, the ability to 

compare data from different crack geometries and loading types would provide a good test of 

the validity of our experimental and analytical methods at 1900°F. 

Figure 4.17.  GEAE fixed end SEN crack growth specimen. 

 

The fixed end SEN specimen design shown in Figure 4.17 was chosen as 

meeting the requirement of sustaining compressive loads during cycling based on GEAE 

experience with similar specimens.  Since the K-solution for such a fixed end specimen 

depends on its geometry (the fixed end allows a bending moment which resists the crack 

opening to a variable extent), an analytical study was performed to develop the K-solution 

for this specimen, and to check it experimentally.  

The initial step before using this specimen was to calculate the stress intensity 

(K) vs. crack size for an edge crack.  This calculation was performed for both fixed and 

pinned end conditions using room temperature isotropic (Inconel 718) material properties.   
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Figure 4.18.  Surface flaw crack growth specimen. 

 
 

Figure 4.19 shows a typical ANSYS finite element model used to calculate stress 

intensity.  The crack tip was modeled with parabolic quarter-point elements.  The K values 

were calculated from the crack opening displacements using the KCALC command in the 

ANSYS program.  Details of this procedure are available in ANSYS Structural Analysis 

Guide [42].  Figure 4.20 shows the results of the stress intensity calculations.  These results 

are normalized to a 1000 lb. axial load in the specimen. 

EDM notch
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Figure 4.19.  FEM model of fixed end crack growth specimen. 

 

Since any test machine will have some degree of load train compliance that 

could cause deviation from the fully fixed end solution shown in Figure 4.20, calibration 

experiments were conducted to determine how closely the actual test machines at GEAE 

simulated a fixed end condition.  Isotropic IN718 specimens were fabricated to the design of 

Figure 4.17 and a sharp EDM notch was machined across the edge to simulate an edge crack.  

A 0.5” gage length extensometer was placed across the EDM notch to measure the opening 

displacement during loading.  The measured displacements were then compared with 

analytically predicted deflections produced during the previously discussed K calculations. 

Figure 4.21 shows the results of this experiment, normalized to a 1000 lb. applied 

load.  The curves labeled “Fixed” and “Pinned” are the analytical predictions.  Since the 

finite element model used a plane of symmetry at the center of the specimen the predicted 

deflections (and the values shown in Figure 4.21) are half of the total crack opening 

deflections.  The goal of this experiment was to match the analytical predictions within 5% of 

the fixed condition.  The “95% Fixed – 5% Pinned” curve represents this goal.  The “best  
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Figure 4.20.  Stress intensity factor (isotropic) for fixed end specimen of Figure 4.18 

under 1000 lb. axial load.  Pinned-end solution is given for comparison. 
 

 

case” measurement resolution for the extensometer is about ±.0001” for the total crack 

opening displacement, or ±.00005” for the half displacement.  This measurement uncertainty 

is shown on Figure 4.21 as “Fixed + .05 mil”.  At a crack depth of about 0.22” the “95% 

Fixed – 5% Pinned” curve crosses the “Fixed + .05 mil” curve.  This means that at this crack 

size and above it should be experimentally possible to distinguish differences in crack 

opening displacement of 5% or more above the fully fixed case with a 1000 lb. applied load.  

Therefore, an EDM notch of 0.250” was introduced and the specimen was loaded to 1000 lb.  

A second experimental case was also considered, this time with a 0.150” deep EDM notch 

and a 2500 lb. load.  Those deflections were then scaled by the load ratio 1000/2500 and 

plotted on Figure 4.21.  At the 0.250” crack size, both the GEAE and GE CRD measurements 

were close to the target value.  For the 0.150” crack size, the CRD deflection was slightly 

high, but could still be a measurement accuracy issue.  Based on this data, it was concluded 

that the fixed end solution was valid for the test setup used. 
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Figure 4.21.  Dependence of edge crack mouth half-opening displacement on crack 
depth, a, and end constraint for (isotropic) IN718. 

 
 

Unfortunately, it was erroneously assumed that the K-solution for the present 

fixed end SEN specimen (Figure 4.17) was the same as the K-solution imbedded in existing 

fatigue crack growth data reduction programs at GEAE, and all K calculations were 

performed using that procedure.  It was not until the end of the program, after comparison of 

GEAE and PW generated FCG data showed a difference between the two, that it was finally 

discovered that the K-solution for the specimen of Figure 4.17 was significantly different 

than that of the standard GEAE fixed end SEN specimen.  Specifically, the K’s for present 

specimen were higher than for the standard GEAE specimen, with the difference increasing 

as the crack length increased.  This was due to the greater gage length of the specimen used 

in the present program.  The original ANSYS K-solutions for the specimen of Figure 4.17 

were compared to the GEAE in-house K-solution and a crack length-dependent polynomial 

expression was developed to correct the K-solution used to the actual (ANSYS) one.  Based 

on fitting the ANSYS analysis points with a polynomial, the actual K-solution for this 

specimen can be approximated to within 1% (up to a/W = 0.7) by: 

K = Fσ√πa,  where: F = 13.889a2 + 1.8378a + 1.1176  (4.9) 
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As stated, the error in the K values for the fixed end specimen were not 

discovered until the end of the program, so the K’s for the data shown in the quarterly and 

annual reports are incorrect.  They have been corrected here. 

The K-solution used for the pin-end SEN specimen was based on the Tada 

solution [35] and that for the surface flaw specimen was based on Newman-Raju.  The large 

surface flaw specimen shown in Figure 4.18 was specially designed for this program to allow 

load shedding to threshold for a surface flaw while keeping the stress below 25 ksi to reduce 

potential creep effects.   

When the corrected da/dN-∆K data for the three different GEAE specimens were 

compared for a given test condition, no significant difference in behavior could be seen.  

Figure 4.22 shows a comparison of the fixed end SEN, the surface flaw, and the pin end SEN 

specimens (all tested at GEAE) at 1900°F, R = 0.05.  The threshold K’s for each specimen 

are listed in Table 4.6 and show a consistent average with small scatter. This, along with 

further comparisons shown below, show that crack growth behavior was specimen-geometry 

independent, even though the number of tests was not sufficient to perform statistical tests 

for differences. 

 

 

Table 4.6.  Thresholds for Different Geometry Specimens at 1900°F, R = 0.05 

 

Test ID Type Orientation Stress 

Ratio 

Freq. 

(hz) 

K-Grad 

(in-1) 

∆Kth  

(ksi√ in)

A2LPF-10 pin SEN <001>/<010> 0.05 10 -20 7.65 

A2LPF-1 fixed SEN <001>/<010> 0.05 10 -20 7.54 

A2LPE-1 fixed SEN <001>/<010> 0.05 10 -20 7.17 

T20W4-1 surface flaw <001>/<010> 0.05 10 -20 7.03 

T20W4-2 surface flaw <001>/<010> 0.05 10 -20 7.27 
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Figure 4.22.  Comparison of fixed end SEN, surface flaw, and pin end SEN  
(all tested at GEAE) at 1900°F, R = 0.05. 

 
Inter-laboratory comparisons of fatigue crack growth and threshold were also 

performed.  Comparisons between P&W and GEAE results at 1100°F, R = 0.1 and 1900°F, R 

= 0.5 were obtained.  Data at 1100°F from both laboratories for the <001>/<100> crack 

orientation0* are shown in Figure 4.23.  Here PW data using the specimen of Figure 4.10 at R 

= 0.1, 20 Hz, is compared with GEAE data using the specimen of Figure 4.13 at R = 0.1, 10 

Hz.  Both laboratories used PD to monitor crack growth and control the rate of K-shedding at 

-20 in-1.  Both P&W and GEAE specimens were taken from the 6 inch x 3 inch x 5/8 inch.  
                                                 
* the first orientation is the crack plane normal, the second orientation is the crack growth direction 
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The results were quite similar within the scatter usually observed for cast materials.  The 

average GEAE ∆Kth value was 5.28 ksi√in with a standard deviation of 0.29, while the 

average PW ∆Kth was 5.90 ksi√in with a standard deviation of 0.36.  A t-test comparison of 

these two data sets suggests that although the difference is small (0.6 ksi√in), it is statistically 

different.  In addition, the GEAE results show faster growth rates (about 2X) once the crack 

is above threshold.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.23.  Comparison of P&W and GEAE measurements of crack growth 

and threshold of PWA 1484 <001>/<100> at 1100°F, R = 0.1. 
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A similar comparison of test laboratory differences was undertaken at 1900°F.  

At 1900°F, R = 0.5, Figure 4.24 shows pin end SEN data from P&W and pin end and fixed 

end SEN data from GEAE.   
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Figure 4.24.  Pin end SEN data from PW and pin end and fixed end 

SEN data from GEAE at 1900°F, R = 0.5. 
 

Here there appears to be a tendency for the P&W data to lie below the GEAE 

data, by a factor of about 3 to 10.  There is a frequency difference between the two 

laboratories (GEAE used 10 Hz, P&W used 20 Hz), which may contribute to this difference.  

Frequency effects will be discussed further in Section 4.2.2.2.C.  The ∆Kth results for the two 

laboratories were also slightly different, as shown in Table 4.7.  The P&W values were about 

0.4 ksi√in higher on average than the GEAE values.  A t-test comparison of these data 

showed that the difference was probably statistically significant, even though quite small.  
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Unlike the sharp crack arrest behavior seen at 1100°F or at 1900°F, R = 0.05, there was no 

distinct crack arrest seen in the 1900°F, R = 0.5 data (Figure 4.24).  Therefore the threshold 

was taken as the K at which a crack growth rate of approximately 2 to 6 x 10-9 in/cy was 

obtained.  The specific threshold growth rates for all specimens are listed in Table 4.7.  

 

Table 4.7.  Fatigue Crack Growth Thresholds for PWA 1484 at 1900°F, R = 0.5 

Test ID Type Orientation Freq. 

(hz) 

K-Grad 

(in-1) 

∆Kth  

(ksi√ in) 

da/dN at ∆Kth 

(in/cy) 

9419A pin end SEN <001+15°>/<010> 20 -20 5.49 2 x10-9 

9419B pin end SEN <001+15°>/<010> 20 -20 6.10 2 x10-9 

9423A pin end SEN <001>/<110> 20 -20 6.00 2 x10-9 

9423B pin end SEN <001>/<110> 20 -20 6.08 2 x10-9 

9423BB pin end SEN <001>/<110> 20 -20 5.53 2 x10-9 

9423BC pin end SEN <001>/<110> 20 -20 6.17 2 x10-9 

                                                                                        PW combined = 5.97 ± 0.27           

T20WF-4A pin end SEN <001>/<010> 10 -20 5.56 6 x10-9 

T20WF-4B pin end SEN <001>/<010> 10 -20 5.50 4 x10-9 

A2LRX-4 fixed end SEN <001>/<010> 10 -20 5.64 6 x10-9 

T20VW-3A fixed end SEN <001>/<010> 10 -30 5.11 3 x10-9 

T20VW-3B fixed end SEN <001>/<010> 10 -60 5.97 6 x10-9 

GEAE combined = 5.56 ± 0.31                                                                          Overall = 5.76 ± 0.35 

 

 
The error in K for the fixed end SEN specimen mentioned above also caused us 

to investigate the differences (when using the incorrect K-solution) between the pin-end 

specimen and the fixed end specimen as possibly due to a difference in response to creep at 

1900°F.  This effort was stimulated by approximate calculations of the amount of creep 

possible in either test specimen at 1900°F.  The general practice used was to keep the gross 

section stress (ignoring the notch) below 25 ksi.  This kept the expected time to rupture well 

beyond the anticipated test time.  Because of the presence of the EDM notch, net section 

stresses at the start of a test were often greater than 25 ksi.  Due to load shedding, the net 
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section stresses during most of the test, however, were lower, typically about 15 ksi.  

However, constitutive data at 1900°F suggested that approximately 0.1% creep could occur 

in the test times at the net section stresses in the gage section of these specimens.  This level 

of creep, while not large, could alter the macroscopic stress distribution in the specimen, and 

hence its stress intensity.  One test each on a fixed end and pin end SEN were performed at 

1900°F under a steady maximum load of 25 ksi, with unloading every hour to monitor the 

elastic response.  Both these tests showed measurable creep deformation (from an 

extensometer mounted on the gage section) during the test, and the pin end SEN specimen 

fractured. 

In summary, the test specimens and methods used gave consistent results.  

Within each laboratory (GEAE or P&W) the results appeared to be highly consistent and 

repeatable as illustrated by the good agreement of different specimen types and the small 

variation in ∆Kth in, for example, Figures 4.14 and 4.22.  Inter-laboratory differences, shown 

in Figures 4.23 and 4.24 were greater, but not large.  At 1100°F, PW and GEAE results were 

statistically different, but similar from an engineering point of view.  Various K-shed rates 

were used and results were found to be comparable up to and including C = -20 in-1.  At 

1900°F, PW crack growth rates were slower than GEAE’s at the same condition (R = 0.5) 

but the crack growth thresholds measured were identical.  Threshold values were found to be 

independent of shed rates up to C = -30 in-1. 

The K-solutions determined for the various specimen geometries appeared to be 

appropriate even at 1900°F.  While it is still a concern, no meaningful conclusions about the 

role of creep on the fatigue crack growth behavior could be made.  In view of the good 

agreement of the different specimen types at 1900°F, it seems likely that creep does not have 

a strong effect on the applicability of K as a crack driving parameter, at least for the cycles 

investigated, at this temperature.  

 C.  Frequency Effects (1900°F)  

Since single crystal superalloys show time dependent mechanical behavior at 

1900°F (as evidenced by the creep behavior described in Section 4.3.1.6, and the oxidation 

seen on the surfaces of specimens tested throughout this program) it was thought that it was 

likely that the fatigue crack growth threshold would depend on cycle time or frequency at 
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1900°F.  The effort described in this section was undertaken to try to define to what extent 

the threshold and HCF crack growth behavior was frequency dependent. 

The major hurdle to be overcome in this effort was the limited frequency 

capability of EPD systems.  Most EPD systems require a finite amount of time to acquire and 

process the electrical signals, and as the test frequency is increased, the number of cycles that 

elapse during that time increase, allowing more crack growth to occur while the signal is 

being processed.  Thus the system becomes less and less stable, since the feedback to shed 

the load as the crack advances arrives later and after larger increments of crack advance.  

Eventually, at high enough frequency, the crack can grow all the way across the specimen 

before the feedback signal can reduce the load.  It is not known precisely at what frequency 

this effect would take over, but from the speed of our EPD systems, it was felt that it would 

be unlikely that we could control a test at 1000 Hz.  Therefore, we adopted two alternate 

approaches: 

1) Acquire conventional EPD K-shed data as a function of frequency at lower 

frequencies up to where we felt the test would remain under control.  Most of these tests were 

performed at R = 0.05 at 10 and 30 Hz.  Similar tests were also performed at R = 0.5 at 0.33, 

10 and 20 Hz. 

2) Explore alternate methods of measuring threshold.  These involved a variety 

of uploading methods that did not require EPD. 

Use of alternate specimens that might have a decreasing K with increasing crack 

length was also considered, but most of these required constant displacement control of the 

load points, and it was not possible to do that confidently on the high frequency MTS (1000 

Hz) machine. 

The results from Method 1, conventional EPD controlled K-shedding (C = -20 

in-1), are shown in Figure 4.25 and Table 8.  The specimens were a mixture of pin-loaded and 

fixed end SEN specimens, as described in Section 4.2.2.2.B.  All specimen orientations were 

<001>/<010>.  The 10 Hz tests were performed in GEAE’s Evendale, OH laboratory and the 

30 Hz tests were performed at GEAE’s Global Research Laboratory in Schenectady.  At 10 

Hz, a threshold of 7.46 ± 0.24 was obtained; at 30 Hz the threshold averaged 8.12 ± 1.35 or 
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9% higher.  A t-test comparison of these groups suggested the difference was not statistically 

significant (the scatter at 30 Hz was quite large). 

 

Effect of Frequency on FCG of PWA1484 at 
1900F, R = .05
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Figure 4.25.  Comparison of 10 Hz and 30 Hz tests conducted with EPD  

controlled K-shedding at 1900°F, R = 0.05. 
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Table 4.8.  Test Conditions and Results for the Effect of  
Frequency on Threshold at 1900°F 

 
S/N 

 
Type 

 
Method 

 
R-ratio 

Frequency 
(hz) 

Kth* 
(ksi√in) 

K1724 pin end SEN EPD Kshed 0.05 30 6.59 
K1726d fixed SEN EPD Kshed 0.05 30 8.64 
K1726f fixed SEN EPD Kshed 0.05 30 9.14 

Average = 8.12 
A2LPN-5 pin end SEN EPD Kshed 0.05 10  
A2LPF-10 pin end SEN EPD Kshed 0.05 10 7.65 
A2LPF-1 fixed SEN EPD Kshed 0.05 10 7.54 
A2LPE-1 fixed SEN EPD Kshed 0.05 10 7.19 

Average = 7.46 
A2LRW-1 fixed SEN step load w EDP 0.05 10 8.96 
A2LRW-2 fixed SEN step load w EDP 0.05 10 7.90 

Average = 8.43 
A2LRY-3 fixed SEN step load w replicas 0.05 870 9.2 
A2LYH-1 fixed SEN step load w replicas 0.05 900 8.2 

Average = 8.70 
A2LYH-2 fixed SEN step load w replicas 0.05 10 5.4 
T20WS-1 fixed SEN step load w replicas 0.05 10 4.5 

Average = 4.97 
A2LRY-4 fixed SEN EPD Kshed 0.5 0.33 5.00 

Average = 5.00
T20WF-4A fixed SEN EPD Kshed 0.5 10 5.56 
T20WF-4B fixed SEN EPD Kshed 0.5 10 5.5 
A2LRX-4 fixed SEN EPD Kshed 0.5 10 5.64 

T20VW-3A fixed SEN EPD Kshed 0.5 10 5.97 
T20VW-3B fixed SEN EPD Kshed 0.5 10 5.11 

Average = 5.56 ± 0.31
9419A pinned SEN EPD Kshed 0.5 20 5.49 
9419B pinned SEN EPD Kshed 0.5 20 6.10 
9423A pinned SEN EPD Kshed 0.5 20 6.00 
9423B pinned SEN EPD Kshed 0.5 20 6.08 

9423BB pinned SEN EPD Kshed 0.5 20 5.53 
9423BC pinned SEN EPD Kshed 0.5 20 6.17 

Average = 5.90 ± 0.30
*K at a growth rate of 1 – 2 x 10-9 in/cy 

 

For Method 2, three methods variations were employed; two with EPD crack 

monitoring and one without.  The first method, used on specimen A2LRW-1, involved pre-

cracking at 1900°F, unloading and heating at 1900°F for 24 hours, and then performing a 
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series of constant load steps starting at 3 ksi√in and increasing in 1 ksi√in steps every 106 

cycles if no crack advance was detected.  The purpose of the 24 hr heat treatment at 1900°F 

was to try to relieve out any crack tip residual stresses induced by the precracking, thus 

hopefully eliminating crack growth retardation effects that might artificially raise the 

threshold.  The process was only partially successful, since as can be seen in Table 4.8 and 

Figure 4.26, the threshold of this test was somewhat elevated (8.96 ksi√in) compared to the 

standard 10 Hz K-shed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.26.  Fatigue crack growth behavior of EPD monitored specimens with 
step loading compared to K-shedding at 1900°F, R = 0.05. 
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The second variation attempted, specimen A2LRW-2, was similar to the first, 

except that after the precracking and 24 hour 1900°F heat treatment, a one hour hold was 

conducted at 1900°F at approximately 10 ksi compression.  Then the sequence of 106 cycles 

constant load steps was performed.  Between each load step, the 1900°F 1-hour hold at 10-

ksi compression was repeated.  The step loading sequence was begun at 5 ksi√in and 

continued in 0.5 ksi√in steps.  As can be seen in Table 4.8 and Figure 4.26, the threshold by 

this procedure (7.90 ksi√in) was less than that of method one, but still somewhat elevated 

over that obtained by K-shedding with EPD control. 

The final method used was to step load without any intervening heat treatments.  

Since the EPD monitoring would not be useful at 900 Hz, the crack advance was monitored 

by cooling the specimen to room temperature after each step and making an acetate tape 

replica of both sides of the specimen at the EDM notch root under a modest tensile load.  An 

example of the cracking seen is shown in Figure 4.27.  When it was clear that a crack was 

present and growing the specimen was fractured in tension at room temperature and the 

beachmarks that accompanied the end of each load step were used as the actual measure of 

crack advance.  As seen in Figure 4.28, these beachmarks were quite evident and could be 

related to the load increments by counting back from the final fracture. 

.002”

 
 

Figure.4.27.   Cracking detected by acetate tape replication at  
1900°F.S/N A2LYH-2, 1900°F, R = 0.05, 10 Hz. 
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Figure 4.28.   Beachmarks on the fracture surface of a step loaded 
specimen.  S/N:A2LRY-3 1900°F, R = 0.05, 900 Hz. 

 
 

As shown in Table 4.8, two specimens were tested in this fashion at 10 Hz, and 

two others at 900 Hz.  The threshold reported in the table is the lowest K for which 

measurable growth (usually about 1 - 2 x 10-9 in/cy) was obtained.  The crack growth rates 

were determined by taking the average crack advance in the loading interval divided by the 

number of cycles (106 at 10 Hz and 107 at 900 Hz).  The K’s were calculated using the stress 

and the average crack length in the interval.  The fixed end SEN bar K solution, described in 

Section 4.2.2.2.B, was used.  The resolution of this method was significantly poorer than that 

obtained by using EPD, but it did permit a back-to-back comparison of 10 and 900 Hz. 

The results are shown in Table 4.8 and Figure 4.29.  Taking the K’s for growth 

rates in the 1 – 2 x 10-9 in/cy range as threshold shows that at 900hz the threshold is 

significantly higher (average of 8.7 ksi√in) than at 10 Hz.  It is also noteworthy, and 

surprising, that the 10 Hz threshold obtained in this way (average of 5.0 ksi√in) was 

significantly lower than that obtained by step loading under EPD monitoring (average of 8.4 

ksi√in).  This difference seems larger than the likely error in measurement of crack growth 

rate. The reason for this is unknown; perhaps there are resistivity changes due to cyclic 

plasticity at the notch root masking the resistance change due to crack advance in the EPD 

method.   
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Figure 4.29.  The frequency dependence of crack growth rate for all methods at 

1900°F, R = 0.05. 
 

The frequency dependence of threshold for all methods at R = 0.05 is presented 

in Figure 4.30.  The two different methods of measurement, K-shedding with EPD and step 

loading with beachmark measurement, give different values of Kth, but both trends with 

frequency are quite similar.  Expressed as a function of log(frequency), the best fit equations 

for these two methods are: 

 

Effect of Frequency on FCG of PWA1484 at 
1900F, R = .05

1.E-10

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1 10 100

∆K (ksi√in)

da
/d

N 
(in

/c
y)

10 hz (A2LPN-5) 10 hz (A2LPF-10)
10 hz (A2LPE-1) 10 hz (A2LPF-1)
10 hz stepload (A2LRW-2) 10 hz stepload (A2LRW-1)
10 hz repl (A2LYH-2) 10 hz repl (T20WS-1)
30 hz (K1724) 30 hz (K1726d)
30 hz (K1726f) 870 hz (A2LRY-3)
900 hz (A2LYH-1)



217 

K-shed with EPD: Kth (ksi√in) = 0.606 ln(f) + 6.06    (4.10) 
 
Step loading with beachmark measurement: Kth (ksi√in) 
 = 0.803 ln(f) + 3.05  (4.11) 

 
where, f is the frequency in Hz.  The slopes of the two equations are similar, with an average 

of 0.705, or about 1.6 ksi√in per decade of frequency change.  Using this average slope and 

extrapolating the K-shed with EPD line gives a projected Kth at 900 Hz of 10.9 ksi√in. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.30.  The frequency dependence of threshold for all methods at 1900°F, R = 0.05. 
 
 

Test data with different frequencies were also available at 1900°F, R = 0.5, all 

using K-shedding with EPD control.  Results from tests at 0.33, 10, and 20 Hz are shown in 

Table 4.8 and Figure 4.31, and show a similar trend of increasing threshold with increasing 

frequency.  However, the dependence of Kth on frequency, shown in Figure 4.32 is 

significantly less than observed at R= 0.05.  At R = 0.5, the frequency dependence can be 

represented by: 

Kth = 0.222 ln(f) + 5.15 (4.12) 

so the change in Kth per decade in frequency is about 0.5 ksi√in or 30% of that seen at R = 

0.5. 
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Figure 4.31.  Dependence of fatigue crack with rate on frequency at 1900°F, R = 0.5.  
 

Effect of Frequency on Crack Growth at 1900F, 
R = .5

1.E-10

1.E-09

1.E-08

1.E-07

1.E-06

1 10

∆K (ksi√in)

G
ro

w
th

 ra
te

 (i
n/

cy
)

10 hz (T20WF-4A)
10 hz (T20WF-4B)
10 hz (A2LRX-4)
10 hz (T20VW-3A)
10 hz (T20VW-3B)
0.33 hz (A2LRY-4)



219 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.32.  Dependence of crack growth threshold on frequency at 1900°F, R = 0.5. 
 

 

In summary, this subtask demonstrated that single crystal superalloys, as 

exemplified by PWA 1484, show a frequency-dependent threshold and crack growth rate 

behavior at 1900°F.  While the dependence of Kth is not large (0.5 to 0.8 ksi√in increase per 

factor of ten increase in frequency) it is consistent and is statistically significant.  This 

behavior is similar to that seen at lower temperatures in fine-grained wrought superalloys, 

where increasing frequency decreases crack growth rate.  The source of the frequency effect 

is unknown; it could be from either changes in inelastic deformation related to strain rate or 

to changes in environmental contributions or both.  
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D.  Orientation Effects 

Having established an acceptable Kgradient for this material, crack growth rates 

as a function of crystallographic orientation could then be studied.  Fatigue crack growth rate 

threshold testing was performed on the following orientations, <001/010>, <001+15/010>, 

<001/110> and <011/0-11>. The results of this testing are shown below in Figure 4.33. 

 

Orientation Effect FCGR Response 
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Figure 4.33.  Results of fatigue crack testing. 
 

 

E.  Stress Ratio  

At 1900°F, threshold tests were performed at several different stress-ratios: R =  

-1, 0.05, 0.5, 0.7, and 0.8, using a combination of fixed end SEN (GE) and pin end SEN (PW 

and GEAE) specimens.  GEAE testing was performed at 10 Hz and P&W testing at 20 Hz.  

Both laboratories used a K-shed rate, C = -20 in–1.  The crystallographic orientations of the 

specimens used by GEAE and P&W were different as noted in Table 4.9, but the orientation 
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study, reported in Section 4.2.2.2.D, showed that there was not a significant effect of 

orientation on fatigue crack growth and threshold at 1900°F, so this variable was ignored for 

the mean stress modeling.  The test matrix and the thresholds measured are shown in Table 

4.9.  The fatigue crack growth behavior at three of the stress-ratios studied (R = 0.05 and R = 

0.5 data have been shown in Section 4.2.2.2.B and are shown separately in Figures 4.34 

through 4.36).  The complete set of results for all R-ratios is shown in Figure 4.37. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
Figure 4.34.  Fatigue crack growth rate behavior at 1900°F at R = -1. 
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Table 4.9.  1900°F Stress Ratio Effect Test Matrix and Results 
Test ID Type Orientation Stress 

Ratio 
Freq. 
(Hz) 

C 
 (in-1) 

∆Kth  

(ksi√ in)
Keq* 

(ksi√ in)
A2LRX-1C fixed end SEN <001>/<010> -1 10 -20 15.6 7.80 
A2LRX-3 fixed end SEN <001>/<010> -1 10 -20 - - 
T20VW-1 fixed end SEN <001>/<010> -1 10 -20 - - 

R = -1 average ∆Kth = 7.80 
A2LPF-10 pin SEN <001>/<010> 0.05 10 -20 7.65 7.90 
A2LPF-1 fixed SEN <001>/<010> 0.05 10 -20 7.54 7.79 
A2LPE-1 fixed SEN <001>/<010> 0.05 10 -20 7.17 7.40 
T20W4-1 surface flaw <001>/<010> 0.05 10 -20 7.03 7.26 
T20W4-2 surface flaw <001>/<010> 0.05 10 -20 7.27 7.51 

R = 0.05 average ∆Kth = 7.33 ± .26
9419A pin end SEN <001+15°>/<010> 0.5 20 -20 5.49 8.50 
9419B pin end SEN <001+15°>/<010> 0.5 20 -20 6.10 9.44 
9423A pin end SEN <001>/<110> 0.5 20 -20 6.00 9.28 
9423B pin end SEN <001>/<110> 0.5 20 -20 6.08 9.41 

9423BB pin end SEN <001>/<110> 0.5 20 -20 5.53 8.56 
9423BC pin end SEN <001>/<110> 0.5 20 -20 6.17 9.55 

T20WF-4A pin end SEN <001>/<010> 0.5 10 -20 5.56 8.60 
T20WF-4B pin end SEN <001>/<010> 0.5 10 -20 5.50 8.51 
A2LRX-4 fixed end SEN <001>/<010> 0.5 10 -20 5.64 8.73 

T20VW-3A fixed end SEN <001>/<010> 0.5 10 -30 5.11 7.91 
T20VW-3B fixed end SEN <001>/<010> 0.5 10 -60 5.97 9.24 

R = 0.5 average ∆Kth = 5.76 ± 0.35
9432A pin end SEN <001>/<110> 0.7 20 -20 3.87 8.27 
9432B pin end SEN <001>/<110> 0.7 20 -20 4.24 9.06 
9432C pin end SEN <001>/<110> 0.7 20 -20 - - 
9428A pin end SEN <001+15>/<010> 0.7 20 -20 3.52 7.52 
9428B pin end SEN <001+15>/<010> 0.7 20 -20 3.93 8.39 
9428B pin end SEN <001+15>/<010> 0.7 20 -20 - - 

T20VW-2 fixed end SEN <001>/<010> 0.7 10 -20 - - 
R = 0.7 average ∆Kth = 3.75 ± 0.38

9431A pin end SEN <001>/<110> 0.8 20 -20 2.68 7.39 
9431B pin end SEN <001>/<110> 0.8 20 -20 2.89 7.97 
9431C pin end SEN <001>/<110> 0.8 20 -20 - - 
9427A pin end SEN <001+15>/<010> 0.8 20 -20 2.66 7.34 
9427B pin end SEN <001+15>/<010> 0.8 20 -20 2.86 7.89 
9427C pin end SEN <001+15>/<010> 0.8 20 -20 - - 

A2LRX-2 fixed end SEN <001>/<010> 0.8 10 -20 - - 
R = 0.8 average ∆Kth = 2.77 ± 0.12
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Figure 4.35.  Fatigue crack growth rate behavior at 1900°F at R = 0.7. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 4.36.  Fatigue crack growth rate behavior at 1900°F at R = 0.8. 
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As seen in Table 4.9 and Figure 4.37, the crack growth rate increases and the 

threshold decreases with increasing R-ratio.  In addition to that trend, there are a few other 

items of note.  At R = -1, test A2LRX-3 clearly appears to be out of line with the other two 

tests at this stress-ratio.  No defect in the specimen or testing was noted, but this test was 

omitted from further modeling.  At R = 0.7 and 0.8, the GEAE tests (T20VW-2 and A2LRX-

2) tend to have higher growth rate, particularly at the beginning of the sheds.  This is 

probably associated with the details of the test method, although specific reasons could not 

be determined.  Both tests tended to merge into or close to the P&W data at the same stress-

ratio as the shed proceeded.  Finally, in contrast to the behavior at lower mean stress (R = 

0.05 and below) no crack arrest was seen for the higher stress-ratio’s tested, 0.5, 0.7 and 0.8.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.37.  Fatigue crack growth rate behavior at 1900°F as a function 

of stress ratio, plotted using ∆K.  

Effect of R-ratio on FCG of PWA 1484 at 1900F

1.E-10

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1 10 100

∆K (ksi√in)

G
ro

w
th

 ra
te

 (i
n/

cy
)

R = -1 (A2LRX-1C) R = -1 (A2LRX-3) R = -1 (T20VW-1)
R = .05 (A2LPF-10) R = .05 (A2LPN-5) R = .05 (A2LPF-1)
R = .05 (A2LPE-1) R = 0.5 (T20WF-4A) R = 0.5 (T20WF-4B)
R = 0.5 (A2LRX-4) R = 0.5 (T20VW-3A) R = 0.7 (T20VW-2)
R = 0.7 (9432A) R = 0.7 (9432B) R = 0.7 (9432C)
R = 0.7 (9428A) R = 0.7 (9428B) R = 0.7 (9428C)
R = 0.8 (A2LRX-2) R = 0.8 (9431A) R = 0.8 (9431B)
R = 0.8 (9431C) R = 0.8 (9427A) R = 0.8 (9427B)
R = 0.8 (9427C)



225 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 4.38.   Fatigue crack growth rate behavior at 1900°F plotted using  
Keq and the two-parameter Walker model. 

 

At these stress-ratios the crack growth rate continuously decreased with decreasing 

∆K without ever ceasing growth altogether.  Whether this is due to creep or environmental 

effects isn’t clear, although the presence of an arrest at the lower stress-ratios where the same 

environment is present suggests that is more likely due to creep. 

To put these data into a more convenient form from which Kth can be determined for 

any stress-ratio, the data shown above were modeled using the Walker equivalent stress 

intensity model: 

 Keq = ∆K(1-R)(m-1)    (4.13) 

where m is an empirical parameter fit from the data.  Using all the data from specimens listed 

in Table 4.9, the best-fit m value is 0.366.  When the ∆K of Figure 4.34 is adjusted to Keq 

using Equation 4.13 and m = 0.366, the data group closer together.  However, the R = -1 data 
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still tend to lie to the right of rest of the data.  A further refinement of the model was made to 

assume that a different m applied for conditions with R < 0 than with R > 0.  Using this 

approach, the best-fit m for R ≥ 0 is m+ = 0.370 and the best-fit m for R ≤ 0 is m- = 0.000.  

(m = 0 implies that the crack growth behavior is controlled by the maximum stress intensity 

in the cycle.)  The crack growth results plotted using this two-parameter mean stress model 

are shown in Figure 4.36. Most of the results are collapsed onto one master da/dN-Keq curve 

using this approach.  The average Keq threshold for this model is 8.20 ksi√in with a standard 

deviation of 0.59 ksi√in.   

(a) Fractography 

The fracture surfaces of representative specimens tested at 1900°F at R = -1, 

0.05, 0.5, and 0.8 were examined to determine if any trends in fracture appearance could be 

discerned.  The fracture surfaces for the four values of R are shown in Figures 4.39 through 

4.42.  In each of these specimens, the test sequence was: Pre-crack, K-shed to threshold, and 

fracture at room temperature.  The photographs are oriented so that the crack growth 

direction is right-to-left, so that the threshold growth region is on the right of the crack arrest 

marking, with the room temperature fracture on the left of the marking.  An optical 

photograph of each specimen is included because the fracture surface beachmarks (oxide 

colors) are much more visible than on SEM images.  Three SEM images are shown for each 

specimen, in ascending order of magnification, centering on the crack arrest or threshold area 

at the middle of the specimen. 

All of the 1900°F crack growth fracture surfaces examined had similar 

appearances, regardless of stress-ratio.  In general, the fracture surfaces were highly oxidized, 

with a combination of gray and silvery oxides either separated into bands or co-existing in 

the same band.  There was a tendency for silvery oxides to be more prevalent on the slower 

growth rate surfaces and the gray ones to be on the higher growth rate surfaces, but this trend 

was not always followed.  On all fracture surfaces there were thicker and thin regions of 

oxide, evidence of oxide scale spalling during testing.  

All fracture surfaces were quite flat and perpendicular to the stress axis, i.e., 

pure Mode I.  This is in contrast to HCF specimens without precracks.  Note that nearly all 
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the crack growth specimens were tested in a shed mode, so that K’s (and growth rates) 

tended to be low, thus avoiding a transition to crystallographic cracking. 

Two unusual features were seen at the crack arrest region.   

1.) On some samples, ahead of the main crack front there were small, very 

smooth, semicircular crack segments, which appear not to be fully connected with the main 

crack.  Examples can be seen in Figures 4.40 and 4.41.  Since these segments are oxidized, it 

is clear that they were at least partially connected to the main crack prior to final fracture, 

possibly on a different plane than the final fracture plane.  Since some crack growth tests 

showed fluctuating voltage signals near threshold (the crack would appear to arrest, then 

restart, then re-arrest), it may be that the intermittent initiation of this crack segments ahead 

the main crack and subsequent link up caused this phenomenon.  Similar features were seen 

near the origins of unprecracked HCF specimens tested at 1900°F. 

2) On the side of the arrest mark where the room temperature fracture begins, 

on most specimens there are regions of an unusual “feathery” structure that can extend as far 

as .008” (more typically .002”) from the arrest point.  Good examples are shown in Figures 

4.39 and 4.41.  They consist of regularly spaced bands about .001” wide perpendicular to the 

main crack front, and each consisting of a chevron-like pattern with the “V” pointing back to 

the arrest mark.  These could be either features associated with the crack tip plastic 

deformation at room temperature involved in starting the fracture process, or they could be 

from the effect of thermal exposure at the crack tip (oxidation and stress) on the room 

temperature fracture process. 

4.2.2.3 Threshold Model Development 

 A. Fracture Resistance Orthotropy 

New developments in the characterization of fracture resistance as a function of 

crack orientation in two and three dimensions are described in some detail in Appendix Q.  

While the emphasis is on single crystal PWA 1484 alloy because of the pronounced 

directionality observed in the fracture resistance of this material, the concepts are also 

applicable to other symmetrically processed materials where the processing results in  
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 a) Optical  b) Low magnification SEM  
  
 

 

 

 

 

 

 

 

 
  
 c) Magnification of crack arrest area in b)  d) Magnification of crack arrest area in c) 

 
 
Figure 4.39.   Fracture morphology of PWA 1484 crack growth S/N A2LRX-1: 

1900°F, R = -1, 10 Hz. 
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a) Optical b) Low magnification SEM   

 

 
 
c) Magnification of crack arrest area in b) d) Magnification of crack arrest area in c)  

 
 
Figure 4.40.   Fracture morphology of PWA 1484 crack growth S/N A2LPE-1:  

1900°F, R = 0.05, 10 Hz. 
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a) Optical b) Low magnification SEM   
 

 

d 

 
c) Magnification of crack arrest area in b) d) Magnification of crack arrest area in c)
  

 
 

Figure 4.41.  Fracture morphology of PWA 1484 crack growth S/N T20WF-4:  
1900°F, R = 0.5, 10 Hz. 
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 a) Optical b) Low magnification SEM   
 

 
c) Magnification of crack arrest area in b) d) Magnification of crack arrest area in c)
  

 
Figure 4.42.   Fracture morphology of PWA 1484 crack growth S/N A2LRX-2: 

1900°F, R = 0.8, 10 Hz. 
 
 
 

c

d
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directional fracture properties.  A threshold model is then developed based on experimental 

data obtained in this program. 

 B. Fitting of Test Results for Threshold Crack Growth in Single-Crystal PWA 
1484 Nickel Alloy at 1100°F 

Single crystal data was gathered from P&W, GEAE, and SwRI efforts under 

this program to develop a PWA 1484 threshold model at 1100°F.  At this temperature, it was 

observed that frequency, load ratio, and crack orientation were all significant parameters with 

regard to the crack growth threshold, thus all of these parameters were taken into account in 

the threshold model.  For modeling purposes, the lowest ∆K at which crack growth was 

observed was used as the threshold.  Optimization of the curve fit was accomplished using 

the Solver tool in Microsoft Excel spreadsheet application to minimize the square of the error 

in the fit by iterating the model coefficients.  Stress intensity factors were corrected for 

crystalline anisotropy for the orientations for which solutions have been given previously.  

Threshold data for other orientations were not corrected for anisotropy.  

The frequency effect was accomplished using a nonlinear fit of data taken at 

different frequencies in the <001/010> orientation at R=0.1, and R=0.8.  The data was 

normalized to the threshold at 20 Hz, and is plotted against the fit in Figure 4.43. 

 )2323.0exp(2822.09973.0
20

f
K

K

Hzth

th +=  (4.14) 

where, f is the frequency in Hertz.  It was assumed that the effect of higher frequencies than 

20 Hz was negligible.   Clearly, additional data would be beneficial to give more credibility 

to the model.   

 A separate fit was then created to model the 20 Hz threshold as a function of 

load ratio and orientation.  In the absence of test data from a sufficient variety of orientations 

to distinguish the three unique principal fracture threshold values described in Equation Q13, 

(Appendix Q), these values were all presumed equal in the model, reducing Equations Q11 

and Q12 (Appendix Q) to: 
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Figure 4.43.  Frequency effect model. 
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The principal value of the threshold, and the fitting exponents m and n were obtained from 

the curve fit as functions of the load ratio R=Kmin/Kmax. 

 
R

K principal 862.05.0
456.3

+
=  (4.16) 

 Rm 491.1926.1 −=  (4.17) 
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 Rn 0431.08687.0 +=  (4.18) 

A correlation plot of actual vs. predicted values of the 1100°F threshold for the 

orientations available, load-ratios of 0.1, 0.5, and 0.8, and frequencies ranging from 10 CPM 

(cycles per minute) to 20 Hz is presented in Figure 4.44.  
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Figure 4.44.  Correlation plot for 1100°F threshold model. 

 

Unfortunately, the fracture resistance relationships for crack orientation are 

scalar functions of two vectors in 3D, and there is no way to plot the function over the entire 

domain, showing fit to test data.  However, plots can be produced for severely restricted 

domains, such as the range of fracture resistance values as one rotates from one crack 

orientation to another orientation orthogonal to the first.   
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Selected data are plotted against the model prediction in Figure 4.45.  Each data 

point shown is an average of available test data in the (nominal) orientations indicated.  Only 

10 and 20 Hz data is shown, the 10 Hz data being (very slightly) adjusted to a 20 Hz basis by 

way of Equation (4.45).  Not all the data available are on the plots, because only some of the 

data are oriented conveniently for representation in the graphical manner shown.  The SwRI 

mixed mode data in particular are excluded, and will be discussed in a separate section. 

It was proposed that additional specimens be planned to improve confidence in 

the three-dimensional fit, as described in Table 4.10, along with orientations completed under 

the Pratt & Whitney effort.  The table also gives source material casting numbers for the 

specimens tested, as well as proposed samples. Sample cutout diagrams are presented in 

Figures 4.47 and 4.48 for illustration purposes (not intended to represent a specimen-by-

specimen cutout record).  The proposed test orientations were not completed under the 

program, but are left as a recommendation for follow-on work. 

4.2.3 Mode I; Notch Effects 

The objective of this effort was to determine the methods necessary for analyzing 

the growth or arrest of HCF cracks in a notch stress field at 1900°F.  Turbine airfoils at 

elevated temperatures (e.g., 1900°F) have many geometric complexities such as cooling 

holes and transitions from the airfoil skin to the internal ribs or blade platform that lead to 

stress concentrations.  Since stress concentrations are one of the more common sites for crack 

initiation, it is important to be able to model the growth of cracks from notches, particularly 

under HCF excitation where once the driving force for growth exceeds the threshold, 

cracking is expected to proceed very rapidly.  One of the additional complicating factors at 

1900°F, in addition to the usual complexities of notch analysis, is the occurrence of time-

dependent stress relaxation around the notch due to creep.  The inclusion of such creep or 

stress relaxation effects was intended to be a significant part of the study, but the full study 

was not accomplished.  A pre-test analytical study was performed, as will be described 

below, and notched specimens were fabricated for testing, but experimental verification (or 

not) of the pre-test predictions was never performed.  Calculations were performed by GEAE 

for an assumed 2D edge notch geometry and by PWA for a 3D geometry. 
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Figure 4.45.  Fracture threshold model compared with test data, various crack orientations, 

1100°F, 20 Hz Basis.  Note: “N” in schematic refers to crack planes and 
direction passing through the origin and normal to curve indicated. “IP” refers 
to crack planes in plane with the curve indicated, and direction normal to the 
curve indicated.  Some data points shown were corrected from 10 Hz to 20 Hz 
based on Equation (4.14). 
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Table 4.10.   Summary of Current and Proposed Test Orientations for 
PWA 1484 SEN Threshold Testing at 1100°F 

 
  C = completed 

P = proposed 
 

R Value 

 
Config. 

 
Crack Orient. 

 
Casting Type 

 
Casting 

Serial No. 

.1 .5 .8 
1 <001/010> PAP601225-A A2LR7, A2LKR, 

A2LLK, A2LRN
C C C 

2 <001/010>+15° PAP601225-A A2LPK C C - 
3 <011/0-11> PAP601225-A A2LRM C C C 
4a 
4b 

<001/110> PAP601225-B 
PAP601227-A 

T20VY 
A2V12 

C C  
P 

5 <010/001> PAP601225-A* T20XJ P P P 
6 <010/100> PAP601227-A* A2V12 P P P 
7 <110/001> PAP601225-B* T20XC - - P 
8 <-1-11/112> PAP601225-B* T20VY - - P 
9 <011/100> Slanted-B Z1LBN - - P 
10 <010/101> Slanted-B* Z1LBN - - P 
11 <-110/110> Not Available N/A (Shown for 

reference) 
12 <-110/112> Not Available N/A (Shown for 

reference) 
*Specimen longer than casting in orientation specified, requires weld extension on end grips. 
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Figure 4.46.  Sample cutout diagrams for various specimen configurations 
(proposed specimen configurations shown in dashed lines). 



239 

 
 

<-101>

<010>
<101>

45°

<001>

<010>

Weld Tab

Casting Type:
SLANTED-B
6x3x0.625 in.

<(-)101/010>

<010/(-)101>

<010/100>

Weld Tab

<001/110> Casting Type:
PAP601227-A
6x3x1.75 in.

<100>
 

 
 
 

Figure 4.47.  Sample cutout diagrams for various specimen configurations 
(continued, new specimen configurations shown in dashed lines). 
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4.2.3.1 2D Analysis of Crack Growth Specimen by GEAE 

The notch geometry selected for study by GEAE is shown in Figure 4.48.  This 

specimen was a modification of the fixed-end SEN crack growth specimen with the addition 

of two opposing semi-circular edge notches 0.065 inch in radius in the center of the gage 

section.  While this notch is larger in size than many (but not all) turbine blade notches, it 

represented a compromise choice in that smaller notches would have been more difficult to 

reproducibly machine and to obtain crack growth measurements from.  Developing precracks 

in a small notch would be particularly difficult, since a small amount of excess growth could 

take the crack beyond the main part of the notch stress field.  With a 0.065-inch radius notch 

we felt we could introduce 0.015 inch to 0.030-inch precracks and still keep the crack within 

a significant fraction of the notch gradient.  The location selected for the starter notch was at 

the root of one of the notches, as indicated in Figure 4.48.  In all cases a 2D or through-crack 

geometry was assumed. 

Using ANSYS and GEAE’s internal crack propagation code, PROPLIFE, an 

analytical study of the possible behavior of a through crack in this notched specimen 

at1900°F was performed, with the intent of identifying useful test conditions with  

 

EDM notch location

 
Figure 4.48.  Double edge notched specimen selected for notch effects crack growth study. 
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which to test our capability to model the crack behavior.  The first step was to perform an 

anisotropic elastic stress analysis of the specimen to extract the stress gradient away from the 

notch.  This gradient is shown in Figure 4.49, for an applied average net section stress of 

27.32 ksi (concentrated notch root stress of 50 ksi).  The notch stress field extends 

approximately 0.05 inches in from the notch root on both sides.  The minimum stress for an 

R = 0.05 cycle is also shown for comparison.  This stress gradient was used in the prediction 

of crack growth for all cases in which creep was assumed to be absent.  To approximate the 

effects of creep relaxation in the specimen at 1900°F, the maximum stress in the cycle was 

assumed to have relaxed to a value equal to the average net section stress (27.32 ksi).  This 

represents a fully relaxed condition; in reality as time proceeds the stress gradient will 

gradually shift from the fully elastic one to the relaxed one.  However, for the purposes of 

pre-test analysis, taking the fully relaxed gradient seemed useful for bounding the expected 

results.  Notice in Figure 4.49 that the minimum cyclic stress for the fully relaxed condition  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.49. Notch stress gradients in specimen of Figure 4.48 for applied net-
section stress of 27.32 ksi, R = 0.05, without and with full creep 
relaxation. 
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is now highly compressive at the notches, instead of simply near zero.  Thus the mean stress 

has changed, and this was reflected in the crack growth analyses through the use of the 

Walker mean stress model described in Section 4.2.2.2.E (see Equation 4.13). 

Crack propagation analyses of various cases were evaluated using PROPLIFE and 

the crack growth parameters for PWA1484 developed in Section 4.2.2.2.E.  A Paris Law 

model for crack growth was used:  

 da/dN = CKeq
n  (4.19) 

where, C = 9.88 x 10-13 in/cy and n = 4.847 with m+ = 0.267 and m- = 0.000 (see Section 

4.2.2.2.E, Equation 4.13).  These values are slightly different than those reported in Sections 

4.2.2.2.B and 4. 2.2.2.E because these studies were performed before the K-solution error 

discussed in Section 4.2.2.2.B was discovered.  Although the absolute lives predicted would 

change, the trends reported here would be unaffected by these differences.  Calculations were 

performed for both pinned (free) and fixed end conditions, but for the present specimen the 

fixed end condition is the relevant one. 

Figure 4.50 shows the predicted crack size vs. cycles for a 0.015 inch pre-crack at a 

nominal net section maximum stress of 27.32 ksi (R = 0.05).  The effect of creep, as 

modeled, is very significant.  For the fixed end condition the predicted residual life jumps 

from 146,600 to 869,800 cycles when the notch stress gradient is assumed to be fully relaxed.  

The amount of relaxation that would be expected to occur would be a function of the time at 

maximum stress, so experimentally, it was planned to perform notched crack growth tests 

with and without a dwell at peak stress.  The dwell would accelerate the stress relaxation 

relative to the crack growth rate and drive the test condition nearer to the fully relaxed 

condition modeled.  However, the crack growth rate itself is likely to accelerate due to the 

dwell, so an analytical variation was performed assuming that the dwell crack growth rate 

was four times as fast as without a dwell.  (There was no data to base this on, simply an 

assumption.)  As shown in Figure 4.51, adding the dwell acceleration to the crack growth rate 

can almost entirely negate the life benefit resulting from the stress relaxation.  The crack size 

vs. cycles for a case with creep relaxation and a 4x dwell growth rate acceleration is quite 

similar to that for no creep relaxation and no dwell acceleration! 
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Figure 4.50. Predicted 1900°F notch crack growth from a .015 inch pre-crack at 
a nominal net section maximum stress of 27.32 ksi (R = 0.05). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.51. Effect of assumed 4X dwell crack growth rate acceleration on  
residual notch life. 
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Crack arrest was not predicted to occur as the crack grew out of the notch stress 

field in any of the cases examined.  The nature of the stress gradient and specimen constraint 

studied here was such that the stress intensities always increased with increasing crack size.  

If notch crack arrest can occur, it probably will be seen only in much smaller notches of 

higher Kt. 

The proposed test matrix (Table 4.11) included the following tests intending to 

examine the effect of the notch stress gradient and its relaxation with time due to creep at 

1900°F. 

 

Table 4.11.  Proposed Test Matrix for Notched Crack Growth at 1900°F 
(Notch R = 0.065”, Precrack = 0.015”) 

 
Test No. Cycle Type Nominal Stress 

(ksi) 
Expected Life (cy) Expected life (hr) 

1 10 hz 27.3 146,000 4.1
2 10 hz 21.8 432,000 12 
3 10 hz 16.4 1,800,000 51 
4 Creep + 10 hz 27.3 870,000 24 
5 dwell (unnotched) - - - 
6 dwell (notched) 27.3 85,000 – 870,000 70+
 

 

The strategy would be to start with 10 Hz cyclic conditions (Tests 1 – 3) and lower 

the stress for each successive test.  This would prolong the test and increase the time 

available for creep relaxation to occur, presumably slowing down the crack growth rate even 

more than expected from the simple reduction in stress (∆K) level alone.  Test 4 would take a 

different approach, applying a static creep exposure prior to HCF cycling.  The creep 

exposure would be for 24 to 48 hr at a nominal stress at which about 0.5% creep is expected 

in that time.  Tests 5 and 6 are intended to examine the effect of a dwell during fatigue 

cycling.  Test 5 would be performed on a standard, unnotched crack growth specimen to 

obtain the crack growth rate in the presence of a short dwell.  The dwell should be kept as 

short as possible so as to keep the test time for Test 6 to a reasonable length.  A dwell of 1-2 

seconds is suggested.  Test 6 would then be performed using that same dwell cycle and the 

effect of the combined fatigue and stress relaxation during the dwell cycle would be 
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evaluated.  Multiple tests of each type would need to be performed to determine their 

repeatability. 

In summary, a pre-test analytical study was performed on the crack growth 

behavior in a notched specimen of PWA 1484, including the potential effects of creep 

relaxation.  It appears likely that creep relaxation will significantly slow, but not arrest, crack 

growth out of notches.  The amount of the slow down will be governed by the balance 

between the relaxation rate of the stresses and the rate of crack advance.  A test matrix was 

planned but not executed to evaluate these effects. 

4.2.3.2 3D Notch K Calculations by PWA 

As part of the analytical study of crack growth behavior from a notch, it was hoped 

to specify a stress concentration high enough that the (elastic) stress intensity factor would 

reach a local minimum as the crack began to grow, potentially resulting in a situation where 

the crack might initiate, but then arrest at some small length.   

To this end, an analysis of a Double Edge Notched (DEN) specimen geometry was 

performed.  The DEN specimen (PW FML 102520) is initiated from a surface flaw 

emanating from one of the side notches, as illustrated in Figure 4.52.  A three-dimensional 

analysis is thus required to obtain the stress intensity solution.  The results are based on an 

isotropic FRANC3D/BES analysis, and are presented in Figure 4.53.  

The polynomial fit describing the isotropic solution is  
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 (4.20) 

The formula is valid in the range 0.016<a/w<0.6. 

While the normalized curve shown in Figure 4.53 does pass through a minimum, 

Equation 4.20, which provides the absolute value of K, has no minimum.  Thus, a crack that 

initiates would be expected to continue growing under constant amplitude loading.  No 

testing of this specimen geometry was performed under the present program. 
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Figure 4.52.  Geometry of FRANC3D model of double edge notched 

(DEN) fracture specimen. 
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Figure 4.53.   Results of isotropic FRANC3D analysis of double edge 

notched (DEN) fracture specimen. 
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4.2.4 Mixed-Mode Fatigue Crack Growth Thresholds 

The objective of this work was to develop a methodology for treating the effects of 

stress state, frequency, crystal orientation, and temperature on the threshold and near-

threshold fatigue crack growth (FCG) response of PWA 1484 single crystals subjected to 

high cycle fatigue.  An integrated analytical and experimental approach was used to achieve 

this objective.  The analytical efforts included stress intensity factor computation for mixed-

mode cracks in single crystal alloy PWA 1484, mapping of fracture transition conditions, and 

model development.  The analytical efforts were linked to an experimental study to 

determine the fatigue crack growth threshold of PWA 1484 as a function of stress state and 

crystal orientation, using an asymmetric four-point bend (AFPB) test technique.  The 

influence of mode-mixity on the FCG threshold was determined at 1100°F as a function of 

stress state ranging from pure Mode I to pure Mode II.  Both the analytical and experimental 

results were used to develop a fracture mechanics approach for treating high-cycle, mixed-

mode fatigue crack growth in single crystal blades. 

4.2.4.1 Crack Paths of Mixed-Mode Fatigue Cracks 

It is well known that fatigue cracks in single crystal Ni-based Superalloys can 

proceed on crystallographic or non-crystallographic planes, depending on temperature, 

frequency, stress states, and environment [40,41,43-48].  Mixed-mode fatigue cracks in PWA 

1484 propagated either as self-similar cracks on a (111) plane or as a deflected crack on a 

transprecipitate noncrystallographic (TPNC) plane at 1100°F.  The former was observed in 

the <111> oriented crystals, while the latter was observed in <001> oriented crystals.  The 

crack path in the <111>/<01 1 > crystal orientation is illustrated in Figure 4.54.  In this 

<hkj>/<uvw> notation, <hkj> indicates the crack plane normal, while <uvw> shows the 

crack growth direction. The crack was fairly straight under Mode I fatigue.  Under mixed 

Mode I and II loading, the crack continued to propagate in a self-similar manner initially, but 

then kinked and deflected to propagate along a curvilinear path, Figure 4.54.  In contrast, 

mixed-mode cracks in the <001> orientation deflected immediately without exhibiting self-

similar crack growth at 1100°F.  The complex crack path dictated that individual crack 

specimens had to be analyzed to obtain the appropriate stress intensity factor ranges along the 

actual crack path. 
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Figure 4.54.  Fatigue crack path of [111]/[01 1 ] oriented PWA 1484 during Mode I 

loading and mixed Mode I and II loading at a 45° phase angle.  At 1100°F, 
Mode I fatigue occurred on the (111) plane.  The mixed-mode crack propagate 
self-similarly on (111) under mixed Mode I and II initially, but it subsequently 
deflected on a TPNC plane (Specimen SC-13). 

 
 

4.2.4.2 Stress Intensity Factor Computation 

Two different procedures were used to compute the stress intensity factors of 

mixed-mode cracks in PWA 1484:  (1) for straight self-similar cracks, and (2) for deflected 

or kinked cracks.  The first procedure was based on the K solutions generated for anisotropic 

materials using an anisotropic fracture mechanics code (BIECRX [49]).  The anisotropic K 

solutions, which are summarized in Appendix R, are in agreement with He and Hutchison’s 

analytical solutions for isotropic materials [50].  Thus, isotropic K solutions are adequate for 

single crystal Ni-alloys exhibiting self-similar crack growth.  The second procedure was 

applied to deflected cracks in post-test data analysis after the crack deflection angle had been 

determined.  This procedure was based on K solutions of deflected cracks computed using 

the FRANC2D/L finite-element code [51]. 

The stress intensity factors of individual deflected cracks in PWA 1484 

mixed-mode specimens were computed using FRANC2D/L and assuming a crack path 

normal to the maximum principal tensile stress, which corresponds to the local Mode I 

direction [52].  A comparison of calculated and experimental crack paths indicated that the 
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observed crack path did not precisely follow the maximum tensile stress path.  The largest 

deviation was observed in a single-crystal crack specimen (SC-16) that was tested under pure 

Mode II loading.  The crack deflection angle was 48°, compared to a theoretical angle of 

70.5° for deflection of a pure Mode II crack to the local Mode I path [52].  Consequently, in 

selected cases, K calculations along the actual crack path were also performed.   

The K solutions for the actual crack path showed predominantly KI with a small KII 

at the tip of the deflected crack.  The normalized KI and KII are plotted as a function of the 

actual crack length in Figure 4.55, which also compares the K solutions for the actual path 

against those for the maximum tensile stress (MTS) path.  The comparison indicates that the 

deflected crack was essentially a local Mode I crack despite the deviation from the MTS 

direction.  Detailed descriptions of the K solutions for self-similar and deflected cracks in 

PWA 1484 are presented in Appendix R. 
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Figure 4.55.  FRAN2D/L KI and KII solutions obtained using the actual deflected 
crack path for Specimen SC-16-90 tested under pure Mode II loading 
(K normalized as shown in the insert). 
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4.2.4.3 Fatigue Crack Growth Threshold Testing 

The fatigue crack growth thresholds of PWA 1484 were determined at 1100°F, R= 

0.5, and 20 Hz as a function of mode-mixity ranging from pure Mode I to pure Mode II using 

the decreasing-K approach, with a shed rate of -20 in-1.  Mode I threshold was determined 

during fatigue pre-cracking using symmetric four-point bending.  After the Mode I threshold 

was obtained, mixed-mode thresholds were determined by asymmetric four-point bending by 

varying the mode-mixity phase angle, defined as φ = arctan (∆KII/∆KI), through the 

placement of the loading pins and the offset distance of the crack from the symmetry line of 

the load fixture.  Fatigue crack growth rate data in the near-threshold regime were generated 

for mode-mixity phase angles that include 0° (pure Mode I), 22.5°, 45°, 60°, 80°, and 90° 

(pure Mode II).  Stress intensity factors were then computed from the load and actual crack 

length data using appropriate K solutions.  For deflected cracks, the K solutions generated by 

FRANC2D/L were used.  The da/dN data were then used to assess the effects of mode-mixity 

and crystallographic orientation on the FCG threshold response of PWA 1484.  Table 4.12 

presents a summary of the crack orientation, thresholds, crack deflection angle, crack growth 

plane and direction in individual PWA 1484 specimens. 

The FCG threshold obtained under Mode I loading generally differs from those 

obtained under mixed-mode loading.  Figure 4.56 shows a comparison of the Mode I and the 

mixed-mode FCG threshold data for the <001>/<110> orientation.  Both the da/dN and the 

∆KI values have been corrected for crack deflection and they are the actual values at the 

crack tip of the deflected crack.  For comparison purposes, the K results computed based on 

the projected crack length without a correction for crack deflection are also presented.  A 

lower value (2.07 ksi√in) of the FCG threshold was obtained when crack deflection was not 

taken into account in the K computation.  The actual value of the threshold was increased to 

2.74 ksi√in after the actual length of the deflected crack was used to compute the stress 

intensity factor ranges at the crack tip.  Despite correction for the deflected crack path, the 

local Mode I threshold obtained under mixed-mode loading was still lower than the FCG 

threshold (4.51 ksi√in) determined under pure Mode I loading.  A two-surface fracture plane 

analysis revealed that the deflected crack had the < 2 11>+4 /<111>+4 orientation, which is 

different from the <001>/<010> orientation for the Mode I crack.  Thus, the discrepancy in 
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the FCG thresholds can be attributed to a difference in the crystallographic orientation 

encountered by the Mode I and the deflected cracks. 

There is good agreement between the Mode I threshold and the thresholds of 

deflected mixed-mode cracks when the crystallographic orientations at the crack tip are 

equivalent.  A detailed examination of the initial and final crack orientations shown for all 

PWA 1484 test specimens indicated that the crack orientations for Specimens SC-5, SC-6, 

SC-7, and SC-8 under pure Mode I are <001>/<110>, which are close to (within 6°) those for 

the deflected cracks in SC-9 and SC-11. 

Figure 4.57 compares the da/dN curves for <001>/<110> obtained under pure 

Mode I against those of deflected cracks that propagated under local Mode I.  There is 

reasonably good agreement between the da/dN curves for the deflected (local Mode I) cracks 

and the pure Mode I cracks.  Similarly, the crack orientations for SC-9, SC-10, and SC-11 

are<111>/<11 2 > under pure Mode I.  These crack orientations are comparable to the self-

similar crack in SC-11 and to the deflected (local Mode I) cracks observed in SC-5, SC-6, 

SC-7, and SC-8.  A comparison of the da/dN data of these specimens is shown in Figure 

4.58.  The negative slope exhibited by several specimens at ∆KI = 5-7 ksi√in is believed to be 

due to the fact that the transition from the initial to final crack planes was gradual, as opposed 

to the abrupt transition assumed in the FRANC2D/L analysis.  Eliminating these data results 

in a scatter band on rates of 2X to 3X that is typical of most da/dN (∆K) behavior.  The 

corresponding values of ∆Kth are also reasonably consistent (within ±17%) for similar 

crystallographic orientations.  

4.2.4.4 Fatigue Crack Growth Threshold Model Development 

 Analytical efforts in this task included modeling the:  (1) dependence of FCG 

threshold on crystallographic orientation, (2) crack deflection path, and (3) transition of 

fracture morphologies from crystallographic to noncrystallographic cracking. 

 



 

Table 4.12.  Summary of Mode I & Mixed Mode Thresholds for PWA 1484 Single Crystals Tested at 1100°F, R = 0.5, & 20Hz. 
Mixed Mode Thresholds 

+ corrected for crack deflection 
 

Final Orientation 
Specimen Initial 

Orientation 

Precracking 
Mode I 

Threshold 
∆KI,th, ksi√in 

Phase 
Angle, φ° 

∆Keq,th 
(ksi√in) 

∆KI,th + 
(ksi√in) 

∆KII,th + 

(ksi,√in) 

Crack 
Deflection 

Angle, (ave) 
Remarks  

Fatigue 
Crack Plane 

 
Fatigue Crack 

Directions 
SC-1 <001>/<010> 2.83 32 4.19 4.19 0 40 TPNC crack 5° off ( 101 ) 5° off [100] 
SC-2 <001>/<010> 3.66 46 3.05 3.05 0 40, 62 (51) TPNC crack 5° off ( 302 ) 5° off [320] 

90 5.94 0 5.94 No growth TPNC crack ⎯ ⎯ 
SC-3 <001>/<010> 3.23 

80 3.26 3.26 0 50, 58 (54) TPNC crack ( 302 ) [320] 
34 4.77 4.77 0 45 TPNC crack ( 101 ) [110] 

SC-4 <001>/<010> 3.22 
60 3.74 3.74 0 60 TPNC crack 3° off ( 201 ) 3° off [210] 

SC-5 <001>/<110> 4.51 45 2.74 2.74 0 44, 36 (40) TPNC crack 4° off ( 112 ) 4° off [ 111 ] 
SC-6 <001>/<110> 5.25 48 3.02 3.02 0 30, 45 (37.5) TPNC crack ( 111 ) [ 121 ] 
SC-7 <001>/<110> 4.63 80 3.30 3.30 0 48, 50 TPNC crack 6° off ( 111 ) 6° off [ 121 ] 

   90 7.6 ⎯ ⎯ ⎯ No growth ⎯ ⎯ 
SC-8 <001>/<110> 4.45 60 3.35 3.35 0 58 TPNC crack 5° off ( 111 ) 5° off [ 121 ] 
SC-9 <111>/< 211 > 3.63 45 3.87 3.87 0 43 TPNC crack 6° off (100) 6° off [011] 

SC-10 <111>/< 211 > 3.46 60 5.72 2.81 4.99 0 (111) self-similar crack (111) [ 211 ] 
90 3.41 0 3.41 0 (111) self-similar crack (111) [ 211 ] SC-11 <111>/< 211 > 3.40 
90 4.14 4.14 0 53 TPNC crack (100) [011] 

SC-13 <111>/< 101 > 3.46 45 5.13 3.63 3.63 0 (111) self-similar crack (111) [ 101 ] 
   45 4.03 4.03 0 40, 66 (53) TPNC crack 4° off ( 021 ) 7° off [ 021 ] 

SC-14 <111>/< 101 > 3.48 80 5.51 0.96 5.43 0 (111) self-similar crack (111) [ 101 ] 
   22.5 4.05 4.05 0 20, 40 (30) TPNC crack 7° off ( 132 ) [ 311 ] 

SC-15 <111>/< 101 > 3.68 ⎯ ⎯ ⎯ ⎯ 
⎯ Test specimen 

overloaded during cool-
down 

⎯ ⎯ 

SC-16 <111>/< 101 > 3.84 90 4.55 0 4.55 0 (111) self-similar crack (111) [ 101 ] 
   90 2.67 2.67 0 47, 48 (48) TPNC crack 10° off ( 021 ) [ 021 ] 

SC-17 <111>/< 101 > 3.74 22.5 9.10 8.41 3.48 
0 (111) self-similar crack, 

high starting ∆Keq (11 
ksi√in) 

(111) [ 101 ] 

SC-19 10° off <001>/ 
10° off <110> 

3.99 45 ⎯ ⎯ ⎯ 
⎯ Test specimen initiated 

a second crack ⎯ ⎯ 

SC-20 10° off <001>/ 
10° off <110>  

3.69 60 5.50 2.71 4.79 
0 

Self-similar crack 8° off (100) 8° off [ 101 ] 
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Figure 4.56. A summary of da/dN data vs. ∆KI or ∆Keq for <001>/<011> oriented 
PWA 1484 (SC-5) tested under Mode I or mixed Mode I and II loading 
at φ=45°. 
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Figure 4.57. A comparison of da/dN curves for pure Mode I cracks (SC-5, SC-6, SC-
7, and SC-8) against local Mode I deflection cracks (SC-9 and SC-11) 
with the same <001>/<110> crack orientation. 
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Figure 4.58. A comparison of da/dN curves for pure Mode I cracks, a Mode II 
self-similar crack, and local Mode I deflected cracks with the 
approximately same <111>/<11 2 > crack orientation. 
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 A.  Modeling Threshold Anisotropy 

Threshold anisotropy in PWA 1484 is illustrated in Figures 4.59 and 4.60, 

which present the Mode I thresholds of PWA 1484 as a function of the angle β between the 

crack plane normal and a reference crystallographic axis for the initial <001>/<010> and 

<001>/<110> orientations, respectively.  Both the angle β and the reference crystallographic 

orientation are defined in the figure inserts.  In these figures, the values of the Mode I 

threshold, ∆KI,th, at β = 0 correspond to those measured under Mode I conditions, while those 

for β > 0 were the local ∆KI,th values determined from deflected cracks during the remote 

mixed-mode loading.  The highest Mode I threshold occurs in the <001>/<110> orientation, 

Figure 4.61.  Lower values of ∆KI,th occur in off-axis orientations that are about 40-60° from 

the <001> plane in the <001>/<110> system.  These orientations are located near the central 

region of a standard stereographic triangle for cubic materials. 

The anisotropic threshold model [53] developed at P&W was used to correlate 

the Mode I threshold data obtained under remote mixed-mode loading and pure Mode I loading 

conditions.  According to this model [53], the fracture resistance, Kp(n,a), at an arbitrary 

location (n,a) of the crack front, where n and a are unit vectors representing the crack plane 

normal and crack growth direction, can be obtained by projecting the principal values onto the 

current crack orientation through a transformation process.  The P&W model, which contains 

two fitting parameters, n and m, was applied to treat the Mode I fatigue thresholds of PWA 

1484.  The empirical constants n and m were evaluated by fitting the model to the Mode I 

threshold data of <100>/<010> and <100>/<110> oriented single crystal specimens.  The 

former set of data was used to obtain a value of 5 for m, as shown in Figure 4.59.  The latter set 

of threshold data was used to obtain an n value of 0.6-0.8, as shown in Figure 4.60.  Note that 

in Figure 4.59, both the solid line (n = 0.6) and the dashed line (n = 0.8) lie on top of  each 

other.  Although the agreement is not perfect, the model, nonetheless, demonstrates that it is 

capable of capturing the general characteristics of the anisotropy of the fatigue crack growth 

thresholds exhibited by PWA 1484. 
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Figure 4.59. Fitting of P&W threshold model to FCG threshold data of PWA 1484 for the 

<001>/<010> orientation.  The angle β corresponds to the crack deflection angle 
or the secondary orientation. 
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Figure 4.60. Fitting of the P&W threshold model to FCG threshold data of PWA 1484 

for the <001>/<110> orientation. 
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B. Modeling of Crack Deflection Path 

Fatigue crack growth in PWA 1484 can proceed on either (111) or TPNC planes.  

The FCG curve for continuum crack growth on the TPNC plane is compared against that for 

crystallographic crack growth on the (111) plane in Figure 4.61.  For the TPNC crack, the 

Mode I threshold is lower and the slope of the da/dN curve is lower than comparable 

properties for crystallographic growth on the (111) plane.  The two da/dN curves intersect at 

∆Kt.  Above ∆Kt, da/dN is higher for the (111) crack, but the TPNC crack grows faster at a 

given ∆Keq (= [ ] 2122
III KK ∆+∆ ) at ∆K < ∆Kt.  The transition point, ∆Kt, depends on 

frequency, temperature, and environment and its values can be represented in terms of a map  

 

Figure 4.61. FCG data of a TPNC crack compared against that of crystallographic (111) 
crack in <111>/<01 1 > oriented PWA 1484.  At ∆KI > ∆Kt, the crystallo-
graphic (111) crack propagates at a high FCG rate than a TPNC crack at 
identical ∆Keq values.  The reverse is true for ∆KI <∆Kt.∆Keq = [ ] 2122

III KK ∆+∆ . 
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depicting the various fracture morphologies.  During load shedding, a crystallographic (111) 

crack would arrest when ∆Keq drops below the threshold value, ∆Keq,th.  Since ∆Keq for the 

crystallographic (111) crack is still higher than ∆KI,th for a Mode I crack on a TPNC plane, a 

driving force exists for the (111) crack to kink and deflect to a TPNC crack plane with a 

lower Mode I threshold, ∆KI,th.  It should be noted that the crossover of the FCG curves for 

(111) and (001) cracks has also been observed in PWA 1480 at ambient temperature [54].  In 

addition, self-similar mixed-mode (111) crack growth has been reported to occur at 

significantly higher rates than a Mode I, TPNC crack in PWA 1422 at ∆K > ∆Kt [55]. 

 The influence of an orientation-dependent ∆KI,th on the deflection of a 

generalized mixed-mode crack in PWA 1484 was modeled on the basis of a maximum crack 

growth rate criterion.  The fatigue crack growth (FCG) response can be represented as 

 ( )ηtheqeq KKA
dN
da

,∆−∆=  (4.21) 

with 

 [ ] 2/122
IIIeq KKK ∆+∆=∆  (4.22) 

where, da/dN is the crack growth rate; ∆Keq is the equivalent stress intensity range, and 

∆Keq,th is the corresponding equivalent mixed-mode threshold; A and η are empirical 

constants.  Both ∆Keq and ∆Keq,th are taken to be a function of the crack deflection angle, θ.  

For simplicity, A and η are taken to be independent of θ.  According to this analysis, a 

mixed-mode crack deflects in the direction of the maximum crack growth rate when the 

inequality given by 

 [ ] 0, ≥∆−∆
∂
∂

theqeq KK
θ

 (4.23) 

is satisfied.  Equation (4.23) becomes 

 [ ] 0, ≥∆−∆
∂
∂

thII KK
θ

  (4.24) 

when crack growth occurs under Mode I conditions.  Equations (4.23) and (4.24) indicate 

that crack deflection occurs in the direction where the difference between the crack driving 

force (∆Keq or ∆KI) and the crack resistance (∆Keq,th or ∆KI,th) is maximum.  For isotropic 
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materials, 0/, =∂∆∂ θthIK  and Equation (4.24) is reduced to the classical maximum tensile 

stress  (MTS) criterion [52].  Furthermore, Equation (4.24) indicates that deviation from the 

MTS criterion is expected when 0/, ≠∂∆∂ θthIK .  The amount of deviation would depend on 

the threshold anisotropy.  According to this model, crack deflection is expected to occur 

when a change in the crack path increases the difference between the crack driving force and 

the fatigue crack growth threshold.  Conversely, no crack deflection is predicted when 

Equation (4.23) and (4.24) are not met. 

Equation (4.24) has been further developed into a model for computing the 

crack deflection angle in PWA 1484.  Details of the model are described in Appendix R.  The 

calculated and measured crack deflection angles are compared in Figure 4.62, which also 

shows the calculations based on the MTS (local Mode I) [52], the maximum energy 
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Figure 4.62. Calculated and measured crack deflection angles as a function of 90-φ, where φ 
= arctan (∆KII/∆KI) is the mode-mixity phase angle. Deviation of experimental 
data from the MTS criterion is caused by an orientation dependence of the 
Mode I threshold.  The current model treats threshold anisotropy and shows  
how a small threshold anisotropy can cause a relatively large deviation in the 
crack deflection angle. 
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release rate (Gmax) [ 56], and the minimum strain density (Smin) [57] criteria, as well as the 

FRANC2D/L results.  For a given mode-mixity angle of φ, where φ = arctan (∆KII/∆KI), the 

predicted crack deflection angles are similar for the MTS, Gmax, and Smin criteria.  The 

FRANC2D/L results are in agreement with those of the MTS criterion since it was the crack 

growth direction criterion chosen in the computations.  About 1/3 of the experimental data 

agreed with the MTS criterion and the FRANC2D/L criterion results, while the remaining 2/3 

showed negative deviation (smaller crack deflection angles) from the MTS criterion.  These 

deviations of the crack deflection angle are accounted for in the current model, which 

incorporates threshold anisotropy into a local Mode I crack growth criterion. 

C.  Modeling of Fracture Morphology Transition 

A fatigue crack transition model was developed based on thermally activated slip 

in the crack-tip cyclic process zone that correlates fatigue crack growth morphologies to test 

parameters such as temperature, frequency, and stress intensity range.  Derivation of the 

model is presented in Appendix R.  The model predicts that the transition of macroscopic 

(111) mixed-mode fracture to TPNC (i.e., TPNC and ancillary (TPNC) Mode I fracture can 

be described by the relation 

 ⎟
⎠
⎞

⎜
⎝
⎛ −′=∆

RT
QAKf exp  (4.25) 

where f is the cyclic frequency, ∆K is the stress intensity factor range, Q is the apparent 

activation energy, T is the absolute temperature, R is the universal gas constant, and A′ is a 

pre-exponent coefficient.  Equation (4.25) provides the basis for the construction of the 

fatigue crack growth mode map shown in Figure 4.63, which shows a plot of f∆K versusT.  

The solid line is the macroscopic (111) to TPNC fracture transition boundary predicted 

by Equation (4.25).  Macroscopic  (111) fracture is prevalent at high f∆K values and low 

temperature, while TPNC fracture is dominant at lower f∆K values and high temperature.  

The PWA 1484 data from the literature [40,41,46] are divided into two fracture regimes, 

Macroscopic (111) and TPNC, separated by the calculated transition boundary.  Two of the 

data points generated in this study fall on the wrong side of the transition boundary.  This  
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suggests that the transition boundary may be improved by refitting to the experimental data.  

A recalibration of the model, however, requires additional experimental data since there are 

gaps in the fatigue crack growth mode map at high frequency and high temperatures that 

make a precise determination of the transition boundary uncertain at this time.  
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Figure 4.63.   A fatigue crack growth morphology map for <001>/<010> PWA 1484  single 
crystals in air shows two fracture regimes:  (1) mixed-mode macroscopic 
(111) fracture, and (2) Mode I transprecipitate non-crystallographic 
(TPNC) fracture.  The solid line is the fatigue crack growth morphology 
transition boundary calculated based on the proposed thermal activation 
model.  Experimental data are from Cunningham et al., [40, 41], and 
Milligan [58], as well as the present study.  Mixed-mode macroscopic 
(111) fracture is favored at high frequency, high ∆K and low temperature, 
while TPNC fracture is favored at low frequency, low ∆K, and high 
temperature. 
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The transition of the fracture morphology appears to be influenced by the 

deformation shearing and by-pass of the γΝ precipitates by (111) slip, as well as by the 

activation of cube slip.  Figure 4.64 shows the deformation mechanism map based on 

experimental data in the literature for PWA 1480 [59].   The transition boundaries were 

calculated on the basis of the experimentally determined activated energies and the 

appropriate Arrhenius equations for cube cross slip and γΝ by-pass.  For PWA 1480, the 

activation energies are 12 and 120 kcal/mol [59] for cross slip on the cube plane and γ' by-

pass, respectively.  The activation energy for fatigue crack growth mode transition is 11.7 for 

PWA 1484, which is expected to be similar to that for PWA 1480.  This comparison of 

apparent activation energies suggests that fatigue crack growth mode transition in PWA 1484 

may be controlled by the activation of cross slip on the cube plane. 
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Figure 4.64.   Deformation mechanism map for PWA 1480 shows three distinct 

regimes: (1) the formation of faulted dislocation loops in γΝ, (2) 
activation of cube slip in γΝ, and (3) γΝ by-pass by the Orowan 
mechanism.  Experimental data are from Milligan and Antolovich 
[59]. 
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4.2.4.5 Conclusions and Recommendations 

(1) During mixed-mode decreasing-K crack growth threshold testing, (111) cracks 

in PWA 1484 initially propagated in a straight, self-similar manner but tended to deflect out 

of plane as transprecipitate non-crystallographic (TPNC) cracks.  For TPNC cracks, the 

transition occurred immediately on changing the loading from the Mode I precracking to 

mixed-mode testing. 

 (2) The threshold stress intensities for (111) cracks under mixed Mode I and II and 

pure Mode II are higher than those for Mode I (111), as well as for TPNC cracks.  Because of 

this, initially crystallographic (111) cracks can propagate below their threshold stress  

intensities by deflecting to TPNC cracks.  Consequently, it is recommended that Mode I 

threshold stress intensity factors for TPNC cracks be employed in HCF assessments. 

 (3) Following deflection, mixed-mode TPNC cracks in PWA 1484 propagate on or 

near the maximum principal stress plane where ∆KII = 0.  Thus, for engineering purposes, 

TPNC cracks subjected to mixed-mode loading can be treated as local Mode I cracks 

governed by a Mode I threshold.  In so doing, crack deflection needs to be accounted for in 

computing the local stress intensity factors for deflected cracks. 

 (4) The Mode I threshold in PWA 1484 is a function of crystallographic 

orientation, and thus depends on the orientation of the crack plane (n) and the crack growth 

direction (a).  The orientation dependence of ∆KI,th (n, a) can be predicted reasonably well on 

the basis of the threshold values for the principal (<001>) axes through a transformation 

procedure using the 3-D model developed by P&W. 

 (5) Current data indicate that the minimum value of ∆KI,th at R=0.5 is 2.67 ksi√in 

and occurs for a local Mode I deflected TPNC crack with a <1 2 0> + 10 /< 1 02> orientation.  

The use of a minimum ∆KI,th appears to be a tractable approach for HCF assessments of 

single crystal material.  However, additional testing is warranted to verify that this minimum 

∆KI,th(n, a) value is valid for all orientations, as well as to define the dependence of the 

minimum ∆KI,th(n, a) on load ratio (R). 

 (6) Mode I TPNC crack growth and crystallographic (111) crack growth are 

competing processes that exhibit different da/dN characteristics including different 
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thresholds and Paris slopes.  The dominance of one crack growth morphology over another is 

dictated by the da/dN response of individual crack morphologies at a given ∆K and the local 

∆K when the crack alters its path. 

 (7) The transition boundary between crystallographic (111) and TPNC fatigue 

crack growth depends on temperature, cyclic frequency, and applied stress intensity factor.  

An engineering model to describe this transition has been developed (Equation 4.56) on the 

basis of thermal activation of (111) and cube slip in the cyclic plastic zone of the crack tip. 

 (8) The asymmetric-four-point-bend (AFPB) test technique is a viable technique 

for studying fatigue crack growth mode transition and determining the mixed-mode fatigue 

crack growth thresholds of PWA 1484 at elevated temperatures. 

4.2.5 HCF/LCF Interaction 

This section focuses on fracture mechanics of a nickel based single crystal alloy, and 

the effect of high cycle fatigue HCF (high stress ratio) high frequency cycles, combined with 

low cycle fatigue LCF (low stress ratio) low frequency based cycle interaction loading.  

4.2.5.1 HCF / LCF Interaction Testing Approach 

The HCF / LCF test approach was based on the previous threshold data generated at 

1100° F, for R=0.1 and 0.8 in the <001/010> orientation.  The HCF / LCF testing started by 

precracking the sample from the starter notch to a specified crack length ao. From the 

precrack the specimen was run at a stress ratio of 0.1 at a frequency of 10 CPM until a crack 

length of ai is achieved. The target for ai was selected to be well below the Kmax threshold 

value for the R=0.8 test data. A block of 1000 cycles of R=0.8 at 60 Hz was then performed 

between each R = 0.1 LCF cycle. This block loading was continued until the calculated value 

for R = 0.8 threshold was superseded at crack length af. After growing beyond the calculated 

value of the R = 0.8 threshold, the loading was returned LFC loading only at R = 0.1. The 

test scheme was designed so that all loading blocks could be performed on a single sample so 

that specimen-to-specimen variation differences would not be included in the results. A 

schematic of the test approach is shown in Figure 4.65.  
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Figure 4.65.  HCF / LCF testing approach and prediction. 
 

A. HCF / LCF Testing 

Specimen numbers 8906 and 8908 were tested under constant amplitude load 

control maintaining a σmax = 12.15 ksi nominal net section stress to allow stress intensity K 

to increase with increasing crack length to detect the onset of region II behavior of the R = 

0.8 cycles. For the HCF portion of the combined 10 CPM and 60 Hz cycles, the 60 Hz test 

frequency could not be obtained instantaneously after the slower cycle LCF. Instead, the 

frequency was gradually raised from 10 Hz to 60 Hz over 50 cycles. The reverse of this 

practice was repeated on completion of the HCF block leading into the LCF cycle. 

 B. Initial HCF / LCF Test Results 

The test results were dramatic. A sharp increase in crack growth rate occurred 

at crack length ai corresponding to the change in waveform from LCF to LCF+HCF 

indicating that the R = 0.8 cycles did affect the crack growth rate. This was in direct 

contradiction to the anticipated response based on the earlier R = 0.8 threshold result. A 

return to pure LCF loading resulted in the anticipated return to the R = 0.1 region II trend. A 

second specimen was then run to confirm that the data were repeatable and the same result 

was achieved.  The results are shown in Figure 4.66.  
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Figure 4.66.  HCF/LCF interaction test results. 
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 C.  HCF / LCF Test Plan 2 

A new test plan was developed to explore the possible cause of the unexpected 

crack growth rate acceleration. Five loading schemes were devised and performed at a 

constant ∆KLCF of 10 ksi√ in. The frequency for the LCF portion of each case was 10 CPM, 

and 60 Hz for the HCF portion. The loading schemes are shown in Figure 4.67 as Case (a) 

through Case (f). A single SEN sample was again used to perform all six cases in succession 

with each case consuming 0.015 – 0.020 inches of specimen ligament before proceeding to 

the next case. 
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Figure 4.67.   Test plan 2, constant K testing to identify crack growth rate 
acceleration drivers. 

 

 Comparison of the various case loading blocks suggest the higher mean stress or 

dwell is the significant contributor to the accelerated crack growth behavior as opposed to the 

quantity of HCF cycles. As shown in Figure 4.68, the application of dwell (Case (b)) resulted 

in nearly the same acceleration as adding 1000 R = 0.8 cycles or Case (c). The similarity 

between case (c) and (d) (1000 vs. 500 HCF cycles) suggests that the sensitivity to time 

dependant behavior is inclusive of very small differences in hold times and or cyclic 

frequency. In fact threshold testing done previously in this program shows clearly a 

pronounced frequency effect between 20 Hz, 1Hz and 10 CPM.  
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D. Conclusions 

An initial plan was designed such that the ∆K for the LCF loading was well 

into region II. After a specific amount of crack growth, the loading scheme was to be 

changed so that 1000 HCF cycles were imposed in between single LCF cycles. For both 

cases the maximum stress (σmax) was held constant. It was predicted that the LCF portion of 

the HCF / LCF interaction cycle would dominate thereby following the LCF region II crack 

growth rate trend until the ∆Κ for the R = 0.8 threshold had been superseded. Once this 

occurs the prediction was a steady but quick crack growth rate increase. The final portion the 

test plan was to return to pure LCF loading and verify that it returned to the LCF, R = 0.1 

region II trend. The data generated from this experiment showed a dramatic crack growth 

rate increase at the onset of the HCF cyclic loading contrary to the prediction. A second 

sample confirmed the results of the initial testing. 

 A second test plan was devised which held another variable constant. This 

second test plan investigated the effects of several loading blocks by holding K-max 

constant. By holding K-max constant and plotting da/dN as a function of crack length (a) a 

direct comparison of the different waveform spectrum could be achieved. This method 

confirmed that the higher mean stress caused the acceleration in crack growth rate and not 

the HCF / LCF interaction effects. In fact, the results indicate that there is a dwell effect 

present in a temperature regime well below what has typically been called the creep regime. 

The significance of this finding is that very small decreases in frequency i.e. 10 CPM and 10 

CPM with as little as an 8 second dwell at maximum load, cause up to a 2X to 3X 

acceleration in crack growth rate. 

4.2.5.2 Fractographic Analysis 

A fractographic analysis of the fracture features specific to the locations of each of 

the different loading blocks showed that they were mono-planer TPNC to varying amounts of 

ancillary TPNC fractures. This was consistent with Cunningham et al. findings for these 

temperature and frequency sets. What was evident however was that the LCF only fracture 

features were significantly more mono-planer than the complex waveform fracture features. 

Another observation is that even though ancillary cracking requires more energy to generate 

the secondary fracture surfaces it does not necessarily translate to faster crack growth rates. 
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 One final observation in this experiment is the apparent frequency dependence in 

region I crack growth rate. The limited data produced under this program seem to indicate 

that different thresholds can be obtained based entirely on frequency changes. It has 

previously been assumed that frequency dependence diminishes with decreasing growth rate 

and is typically modeled this way. One possible explanation for both the HCF / LCF 

interaction effects and the region I frequency effects could be oxidation at the crack tip. This 

was also presented by Telesman as a possible cause stating that da/dN for the environmental 

mode to be in effect it is the requirement that the depth of oxygen penetration has to be on 

the same magnitude, or greater, than the crack growth increment per cycle. One possible 

method to explore this possibility would be to run the same experiments in an inert 

atmosphere. 
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Figure 4.68  Test plan 2 results. Legend refers to loading blocks shown in Fig. 4.67. 
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4.3 HCF BASELINE ENDURANCE LIMIT MODELING 
 
4.3.1 Testing 
 
4.3.1.1 Test Methods (Data Comparison)  

Eleven specimens were consumed to produce 24 data points using the step-test 

method.  For the sake of clarity, step testing (in this report) is defined as fatiguing a sample 

until 1E7 cycles, then uploading 5% to 10% after each run-out until the specimen fails.  

Figure 4.69 shows the data plotted as σmax verses cycles to failure. The blue squares represent 

non-step test data and the red triangles represent specimens that have run-out at least once 

then uploaded 5% – 10%. This process is repeated until the sample fails.  
 

Figure 4.69.  Step testing results. 

 
 Fractography was completed on five of the samples (Figures 4.70-4.74) in an effort 

to locate the failure mechanisms for both step-tested samples and non-step-tested samples. 
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The fractographic examination captured several failure mechanisms at the individual fatigue 

locations.  

 

 
 
Figure 4.70.   Specimen A296Y-1 Step test, σmax at failure = 133.4 ksi, R = 0.1, 

1100° F, Nf = 2.64E4. Failure origin is at a sub-surface carbide.  
Subsequent propagation exhibits crystallographic crack propagation in 
the (111) plane, accelerated in the <110> direction. 

 
 
 
 

 
 
Figure 4.71.   Specimen A297D-2 Non-step test, σmax at failure = 140 ksi, R = 0.1, 

1100° F, Nf = 1.91E5. Failure is very near the surface, originating at 
a carbide. 



 273

 

 
 
Figure 4.72.   Specimen A297D-1 Step test, σmax at failure = 138.6 ksi, R = 0.1,  

1100° F, Nf = 2.49E4. Failure is from a non-crystallographic surface 
initiation. 

 
 
Figure 4.73.   Specimen K1L1H-1 Non-step test, σmax at failure = 130 ksi, R = 0.1, 

1100° F, Nf = 9.86E4. Failure origin initiated at a carbide. 
 

28 µ

 
 
Figure 4.74.   Specimen A297E-1 Non-step test, σmax at failure = 120 ksi, R = 0.1, 

1100° F, Nf = 2.29E6. Failure origin initiated at a γ – γ’ eutectic. 
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A. 1100°F  

GEAE, P&W, and Honeywell all performed HCF tests in their own laboratories at 

1100°F, R = 0.1, 60 Hz to establish a basis of comparison between the laboratories.  Metcut 

Research was also used for 1100°F testing by both P&W and Honeywell.  A comparison of 

these results is shown in Figure 4.75.  As can be seen, there is considerable variation among 

the data sets, with GEAE producing the highest results and Honeywell the lowest.  To help 

compare results, both P&W and Honeywell sent specimens to Metcut Research for additional 

testing.  Results at Metcut from the two participants, while closer, were still not identical.  

Some possible reasons for the difference in results obtained are: 

1. Differences in material from using different casting types.  Microstructure and 

defect state could both vary somewhat with casting size or geometry. 

2. Specimen geometry and size differences.  Smaller sizes or stressed volumes 

should lead to increased HCF strength, since the probability of finding a defect is 

less.   

3. Differences in machining of specimens.  Surface residual stress or cold work is 

known to affect fatigue capability in superalloys.  Unfortunately, the standard X-

ray diffraction techniques for characterizing residual stress and cold work are not 

applicable to single crystal superalloys, so these differences could not be checked. 

4. Differences in test methods, such as temperature measurement and control, 

specimen alignment, or loading method. 

 It is interesting to note that the differences between test sources with the same 

participant (e.g., P&W specimens tested at P&W vs. P&W specimens tested at Metcut) tend 

to be less than the differences between participants at one test source (Metcut).  This suggests 

that test methods are not the primary contributor to the differences seen.  

 One further experiment is suggested that could help evaluate whether specimen 

machining was a major factor.  Existing specimens from different participants (machined at 

different sources) could be re-heat-treated to relieve most of the residual stress induced by 

the machining process.   
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Figure 4.75.   Comparison of PWA 1484 HCF data from different sources, 1100°F, R = 0.1, 

60 Hz.  (Honeywell data points at 107 cycles are runouts.) 
 

Testing of these specimens should then eliminate much of the machining 

variability and would demonstrate the effect of the machining process by comparison with 

the data obtained on specimens machined after heat treatment.  The similarity in results at 

1900°F between GEAE tests at GEAE and Honeywell tests at Metcut as reported in Section 

4.3.1.1.B supports the idea that the differences seen at 1100°F are related to specimen 

preparation and not testing.  All 1900°F specimens were coated after machining, so the 

combination of the coating and the thermal cycle could have removed any differences in 

surface condition set up by machining. 

B.  1900°F 

Specimens for 1900°F total life testing were machined by Low Stress Grind of 

Cincinnati, from 6 inch x 3 inch x 5/8 inch cast slabs (GEAE), or from 6 inch long x 5/8 inch 

diameter cast bars (Honeywell) using conventional low stress grinding methods for 

superalloy materials.  All castings were in the fully heat treated condition prior to machining.   
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Several different specimen geometries were used at 1900°F:  

a) A 0.2-inch diameter cylindrical specimen with threaded ends, Figure 4.76.  

This specimen was used by GEAE primarily at 60 Hz (at Metcut) and at frequencies up to 

200 Hz (at GEAE). 

b) A 0.16-inch diameter cylindrical specimen with threaded ends, Figure 4.77.  

This specimen was used by GEAE at 900 Hz (at GEAE), since the larger specimen of Figure 

4.76 could not be driven at this high a frequency.  It was also used occasionally at lower 

frequencies.  

c) A shorter 0.2-inch diameter cylindrical specimen with threaded ends, Figure 

4.78, tested by Honeywell at Metcut. 

 Notched specimen geometries will be presented later, in Section 4.4.2. 

As described in Section 4.1.2, all specimens (except for a few as noted) for 

1900°F testing were coated with Howmet Thermatec’s MDC150L, a commercial PtAl 

diffusion coating.  These specimens were re-heat treated with the final two steps of the PWA 

1484 heat treatment process after coating.  1900°F HCF testing was performed in two 

laboratories: GEAE and Metcut Research of Cincinnati.  (Both GEAE and Honeywell used 

Metcut as a 1900°F testing source.)  Most tests were performed using furnace heating of the 

specimen.  Because of concern about history effects at high temperature, no step load testing 

was performed.  All tests were conducted to failure and run-outs were not re-tested except for 

special multi-step tests described in Section 4.3.1.6.  

 

Figure 4.76.  0.2-inch diameter cylindrical GEAE HCF specimen with threaded ends. 
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Figure 4.77.  0.16-inch diameter cylindrical GEAE HCF specimen with threaded ends. 

 
 

 
 

Figure 4.78.  0.2-inch diameter Honeywell HCF specimen. 
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A comparison between the GEAE and Metcut laboratories was performed at 

1900°F, R = -1, 60 Hz with the results shown in Table 4.13. 

 

Table 4.13.   Comparison of Test Laboratories at 1900°F, 
R = -1, 60 Hz on PtAl Coated PWA 1484 

 
S/N Specimen 

source 
Test Lab Alternating 

stress (ksi) 
Cycles Result 

A2LLT-4 GEAE GEAE 45.0 7,928,152 failed 

A2LLT-5 GEAE GEAE 48.0 3,353,378 failed 

A2KLU-1 GEAE Metcut 40.0 16,314,137 failed 

A2KLU-3 GEAE Metcut 42.5 12,688,845 failed 

KIL56B Honeywell Metcut 54.0 205,482 failed 

KIL3WB Honeywell Metcut 50.0 4,245,370 failed 

KIL6VB Honeywell Metcut 46.0 8,941,513 failed 

KIL2BT Honeywell Metcut 42.0 10,009,524 no failure 

KIL7WT Honeywell Metcut 46.0 5,679,517 failed 

KIL5LB Honeywell Metcut 42.0 10,187,190 no failure 

KIL9FT Honeywell Metcut 50.0 1,264,133 failed 

 

 

As can be seen in Figure 4.79, the results from the two organizations and 

laboratories were quite comparable, giving confidence to the interchangeable use of data 

from both sources. 
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Figure 4.79.  Comparison of 1900°F HCF results from different sources.  R = -1, 60 Hz.  
 
 
4.3.1.2 Frequency 

A.  1100°F Results 

Limited testing was performed at two different frequencies at 1100°F to 

identify frequency effects and determine the applicability of standard low frequency test 

results to higher frequency turbine blade shank HCF conditions.  All specimens were <001> 

oriented, uncoated PWA 1484, tested at R = 0.1. Tests were performed at 60 and 900 Hz in 

GEAE’s high frequency MTS machine using 0.16-inch diameter cylindrical specimens 

(Figure 4.77). 

The results are shown in Table 4.14 and Figure 4.80.  There is clearly not a big 

effect of frequency at 1100°F.  There may be a slight (1-2 ksi) decrease in the HCF capability 

at 900 Hz, but given the small number of samples tested and the level of scatter in the data, 

any difference is not statistically significant.  Recall that in Section 4.3.1.1.A, the baseline 60 
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Hz results from several sources had much more variation than seen here between the 60 and 

900 Hz tests. 

 

Table 4.14.  Effect of Frequency on 1100°F HCF of PWA 1484.  R = 0.1, Uncoated 

S/N Frequency 
(Hz)  

Alt. Stress 
(ksi) 

Cycles to fail Comment 

T20VM 60 56.25 2.72E+06 failed 
T20W3 60 51.75 3.06E+07 run out 
T20W4 60 49.50 5.32E+06 run out 

A2LPZ-1 885 48.4 4.38E+07 failed 
A2LPZ-2 890 49.5 2.63E+06 failed 
A2LPZ-4 890 47.3 5.14E+08 run out 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 4.80.  Effect of frequency on HCF of uncoated PWA 1484 at 1100°F, R = 0.1. 
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Fracture surfaces of specimens were highly crystallographic at both 

frequencies.  Failures typically initiated internally and grew on one or more intersecting 

(111) type planes. 

In summary, it appears from limited testing that frequency effects do not need 

to be considered at 1100°F for applying relatively low frequency laboratory results to higher 

frequencies seen in turbine blades. 

B.  1900°F Results 

Testing was performed at several different frequencies at 1900°F to identify 

frequency effects and determine the applicability of standard low frequency test results to 

higher frequency turbine blade airfoil HCF conditions.  All specimens were <001> oriented 

PWA 1484, using a combination of 0.2 inch and 0.16 inch diameter cylindrical specimens, 

Figures 4.76 and 4.77.  Tests were performed at 60, 200, and 900 Hz in GEAE’s high 

frequency MTS machine and at 0.6 and 60 Hz in standard fatigue machines at Metcut.  

Behavior at several stress ratios was examined. 

At 1900°F, both PtAl coated (MDC150) and uncoated specimens were tested at a 

variety of frequencies and stress ratios.  For the uncoated results, see Appendix O.  Only the 

coated behavior will be discussed here.  The coated test matrix and results are shown in 

Table 4.15. 

At R = -1, there was no detectable effect of frequency on HCF capability.  

Specimens tested at 60, 180, and 870 Hz all fell along a single S-N curve, as shown in Figure 

4.81.  One specimen tested at 0.6 Hz failed in significantly fewer cycles, suggesting a 

possible transition to frequency-dependent behavior at very low frequencies.  The frequency 

independent behavior was surprising in view of the expectation that properties of PWA 1484 

would be time or rate sensitive at 1900°F.  Apparently HCF is purely cycle-dependent in this 

case of low mean stress fatigue. 

Note also, in Figure 4.81 that there is no evidence of an endurance limit at 

1900°F, R = -1 out to the highest number of cycles investigated (8 x 107).  Thus at higher 

numbers of cycles the alternating stress capability should be expected to decrease further. 
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Table 4.15.   Test Matrix for the Effect of Frequency on  
HCF of Coated <001> PWA 1484 at 1900°F 
 

S/N Stress ratio Frequency 
(Hz) 

Alternating 
stress (ksi) 

Cycles to Failure Comment 

A2LLU-5 -1 0.6 50 5,235 failed 
A2LLT-5 -1 60 48 3,353,378 failed 
A2LLT-4 -1 60 45 7,928,152 failed 
A2KLU-3 -1 59 42.5 12,688,845 failed 
A2KLU-1 -1 59 40.0 16,314,137 runout 
A2LLU-1 -1 180 45 1,938,011 failed 
A2LLU-2 -1 180 40 77,067,219 failed 
A2LR1-5 -1 870 50 1,348,353 failed 
A2LRB-2 -1 870 45 26,205,076 failed 
A2LR1-3 -1 870 40 22,605,443 failed 
A2LR2-1 -1 870 39 38,531,462 failed 
A2LKV-1 0.1 0.6 23.4 67,667 failed 
A2LLU-4 0.1 0.6 23.4 59,308 failed 
A2LLF-2 0.1 0.6 22.5 91,820 failed 
A2KLU-4 0.1 59 23.4 5,519,911 failed 
A2LLG-1 0.1 250 23.4 13,858,078 failed 
A2LLP-1 0.1 250 23.4 15,135,243 failed 
A2LLP-5 0.1 370 30.5 4,155,470 failed 
A2LLS-1 0.1 370 26.5 6,014,518 failed 
A2LLF-5 0.1 400 23.4 21,191,046 failed 
A2LLG-5 0.1 400 23.4 12,264,178 failed 
A2LLH-5 0.1 400 20.5 55,686,529 failed 
A2LR2-4 0.1 870 42.1 63,572 failed 
A2LR2-5 0.1 870 23.4 41,399,374 failed 
T20WC-1 0.5 370 12.0 6,987,858 failed 
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Figure 4.81.   Effect of frequency on HCF capability of coated PWA 
1484 <001> at 1900°F, R = -1. 

 
 

The fracture appearance of selected specimens tested at different frequencies is 

shown in Figures 4.82 and.4.83.  Both internal and surface initiated failures were seen, 

sometimes on the same specimen.  There was a trend of internal initiation at higher stress and 

frequency (shorter times) and for surface initiation at lower stress and frequency (longer 

times) but there were exceptions to this trend in many cases.  At longer times, cracking 

developed in the PtAl coating, primarily at the grain boundaries.  An example of this is seen 

in Figure 4.84, which shows a longitudinal section through A2LKU-1, which did not fail in 

over 16 x 106 cycles (Table 4.15) at 59 Hz.  Multiple cracks can be seen in the outer layer of 

the PtAl coating, many of which follow an angular path along the coating grain boundaries.  

Some of these crack have penetrated to the substrate, where dark gray oxides have been 

generated.  A large number of cracks have continued or reinitiated into the substrate, and 

show no evidence of arrest.  The deepest crack seen was about .006 inch deep.  These 
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observations support the notion that if an endurance limit exists, it is well beyond the 

conditions examined in this program. 

 
 
Figure 4.82.   Fracture appearance of A2LLT-5, tested at 1900°F, 

R = -1, 60 Hz, 48 ksi alternating stress (Nf = 3,353,378). 
 

 
 

Figure 4.83.   Fracture appearance of A2LLU-1, tested at 1900°F, R = 
-1, 180 Hz, 45 ksi alternating stress (Nf = 1,938,011). 
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.005”

 
 
Figure 4.84.   Longitudinal section through A2LKU-1 (1900°F, R = -1, 59 Hz) 

showing coating and substrate cracking and oxidation. 
 
 

At R = 0.1, the dependence of HCF on frequency was quite different.  Figure 4.85 

shows S-N response for frequencies of 0.6, 59-60, 250, 370-400, and 870 Hz.  At this stress 

ratio, there is a distinct layering of the data, with higher frequencies giving more cycles to 

failure.  Viewed another way, Figure 4.86 shows these results at a constant alternating stress 

level of 23.4 ksi.  As frequency increased the cycles to failure increased nearly 

proportionately, as indicated by the 45° dashed line.  This dashed line represents a line of 

constant time to failure (27.8 hr).  That this is true can be seen by replotting the time to 

failure vs. frequency as shown in Figure 4.87.  Now the fatigue capability as measured by 

time to failure is nearly independent of frequency.  There is a slight decrease in HCF 

capability as the frequency exceeds 60 Hz.  This suggests that the behavior may be gradually 

transitioning toward cycle-dependent behavior at frequencies higher than 900 Hz. 

Thus the behaviors at R = -1 and R = 0.1 may be all part of a single continuum 

with transition between cycle-dependent and time-dependent behavior, being a strong 

function of stress ratio.  At low mean stress the transition frequency is low, and for practical 
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purposes the behavior is cycle dependent.  As mean stress increases the transition frequency 

increases, so that at R = 0.1, it is greater than 870 Hz and now the behavior is predominantly 

time dependent. 

These aspects of frequency-dependent behavior at 1900°F may require re-thinking 

how we apply conventional (30 to 60 Hz) HCF data to blades.  For example, if a blade 

vibratory frequency is significantly above the frequency from which the data were obtained, 

then the blade HCF capability (alternating stress) would either be the same as (if considered 

on the basis of the total number of cycles) or less than the lab data (if considered on the basis 

of total time).  If one is interested in protecting the blade against HCF for a given mission 

time, then at a higher cyclic frequency more cycles will occur in the same time, so the fatigue 

capability for those greater number of cycles will be less.  This would be true unless an 

endurance limit behavior was observed, where the HCF capability does not decrease with 

further life increase.  At 1900°F, such an endurance limit has not been observed to this point.  

More work is required to rationalize this behavior with generally successful blade HCF 

experience observed in the field. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.85.  Effect of frequency on HCF of coated PWA 1484 <001> at 1900°F, R = 0.1. 

Effect of frequency on HCF at 1900F, R = 0.1

10

100

1.E+04 1.E+05 1.E+06 1.E+07 1.E+08
Cycles to Failure

Al
te

rn
at

in
g 

st
re

ss
 (k

si
)

0.6 hz
59-60 hz
250 hz
370-400 hz
870 hz



 287

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.86.   Frequency dependence of cycles to failure at alternating stress 
level of 23.4 ksi; 1900°F, R = 0.1 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Figure 4.87.   Frequency dependence of time to failure at alternating stress 
level of 23.4 ksi; 1900°F, R = 0.1. 
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Fractures at 1900°F, R = 0.1 appeared to be mostly surface initiated, with multiple 

coating cracks seen below the fracture surface.  There were often indications of multiple 

surface initiations on a single fracture surface.  Fractures were non-crystallographic, except 

for a very small overload region representing the final fracture, and in the early stages the 

fracture surface was quite smooth and featureless.  Illustrations of these features are given in 

Figures 4.88 through 4.90. 

 
Figure 4.88.   Fracture appearance of A2LKV-1 tested at 1900°F, R = 0.1, 

0.6 Hz, 23.4 ksi, alternating stress (Nf = 67,667). 
 

 
Figure 4.89.    Fracture appearance of A2LKU-4 tested at 1900°F, R = 0.1,  

59 Hz, 23.4 ksi alternating stress (Nf = 5,519,911). 
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Figures 4.90.  Fracture appearance of A2LLF-5 tested at 1900°F, R = 0.1, 

400 Hz, 23.4 ksi alternating stress (Nf = 21,191,046). 
 

One high frequency test was performed at R = 0.5, at f = 370 Hz.  As shown in 

Figure 4.91, the cyclic life of this test was nearly identical to those obtained at 59 Hz 

(baseline Stress ratio tests from Section 4.3.1.5).   This is surprising in light of the large body 

of results at R = 0.1 that show increasing cycles to failure with increasing frequency.   

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.91.  Effect of frequency on HCF of coated PWA 1484 <001> at 1900°F, R = 0.5. 
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It seems unlikely that the behavior would be reverting back to frequency 

independence, particularly in light of the model of 1900°F HCF behavior presented in 

Section 4.3.4.  Additional testing is warranted at this condition to understand the role of 

frequency at high R. 

 
4.3.1.3 HCF Orientation Effects testing 

 High cycle fatigue testing was performed on 4 crystallographic orientations. All 

crystallographic orientations are coincident with the loading axis. Two temperatures were 

investigated: 1100°F and 1900°F. The two temperatures were chosen to represent two areas 

of a turbine airfoil in service, the root or attachment location and the blade tip. The blade root 

location is typically exposed to lower temperatures and is loaded predominantly at lower 

stress ratios. The blade tip is exposed to higher temperatures and high mean stress loading. 

Test conditions were selected to mimic these two conditions and compare fatigue lives of the 

following orientations, <001>, <001+15>,  <010> and <011>. A stress ratio of 0.1 was used 

for the 1100°F testing and a stress ratio of 0.8 was used for the 1900°F testing. The specimen 

geometry used in this investigation was a GEAE design and is shown in Figure 4.92. The 

table below lists the specimen number and orientation. Test results are shown in Figures 4.93 

and 4.94. 

 

Table 4.16.  Test Specimen Orientation and Fabrication Description 
 

 

1000H
Z160MO
D

T20VX <001+15>     
A2LLL <001+15>      

A2960 <011>             
A295Z <011>            
A2965 <011>            
A296B <011>            
A2LL6 <010>       

Tall Slab <001+15>       
Round Bar <011>       
Tall Slab 

010

100smooth 

<001+15>,     <011>,      
010

2424<001+15>,     <011>,     
010

3232

orientation 
effects 

smooth orientation 
effects 

T20WX 
001 15A2LLL 
001 15A295W <011>            
A2964 <011>             
A296H <011>            
A295U <011>            
A2LKP <010>       

1000H
Z160MO
D

Tall Slab <001+15>                        
Round Bar <011>                         
Tall Slab 

010

100
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Figure 4.92.  GEAE HCF specimen design. 
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Figure 4.93.  High cycle fatigue orientation effect testing, 1100°F and R=0.1. 
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Figure 4.94.  High cycle fatigue orientation effect testing, 1900°F and R=0.8. 
 
 
4.3.1.4 Multiaxial 

The intents of this portion of the program were to provide multiaxial test results 

under loading scenarios expressly selected to complement the modeling effort.  Accordingly, 

several test conditions were originally in conjunction with the other participants and specified 

to be done using uncoated samples at 1100°F.  Some of the tests that were part of the overall 

multiaxial effort were simple torsional tests.  These latter results are documented in Section 

4.3.1.7.A  and this testing eventually included some coated samples at 1900°F.   

There were a variety of experimental uncertainties associated with this testing and 

the first vendor could not produce repeatable alignment of his system.  Metcut succeeded in 

getting alignment and had a grip system that met the requirements for repeatability.  The 

other experimental unknown was the frequency of loading that might be achieved for this  
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mulitaxial HCF testing.  Metcut’s work with their system produced a frequency of 

approximately 2 Hz for this work.  Based on this frequency it was decided to define a runout 

at 1 million cycles as opposed to the 10 million cycles used for the conventional axial HCF 

work. 

All data are shown in the most straightforward, direct reporting of results, 

essentially as raw test information consistent with Honeywell’s role in this effort.  Any 

utilizations of the data are covered in the respective sections of this report dealing with 

modeling, etc.   

A.  Multiaxial Results at 1100°F  

The conditions examined were in-phase axial-torsion at a shared stress ratio of 

0.1 and one out-of-phase axial-torsion at R = -1.  The in-phase data gathered are presented in 

Table 4.17 and Figure 4.95, while the single out-of-phase data point is provided in Table 

4.18. 

 

Table 4.17.  Multiaxial Results at 1100°F, In-Phase Axial-Torsion, R = 0.1 
 

Test 
Number 

Specimen  
Number 

Diameter  
(in) 

Axial 
Stress 
Max 
(ksi) 

Shear 
Stress 
Max 
(ksi) 

Cycles Results 

       
9-02 ZOK-JC 0.3623 75.0 75.0 1,052,972 Removal 
11-02 ZOK-FH 0.3625 85.0 85.0 889,921 Removal(1) 
12-02 ZOR-XG 0.3625 95.0 95.0 748 Torsional 

Yield 
13-02 ZOK-FH 0.3625 90.0 90.0 80,630 Fracture, GS
14-02 ZOK-JE 0.3620 90.0 90.0 153,338 Fracture, GS
15-02 ZOK-GJ 0.3629 88.0 88.0 118,743 Fracture, AR
16-02 ZOK-G3 0.3625 88.0 88.0 287,942 Fracture, GS
17-02 ZOK-JC 0.3623 85.0 85.0 381,870 Fracture, GS
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Figure 4.95.  Plot of multiaxial results, 1100°F, in-phase axial-torsion, R = 0.1. 

 

 

Table 4.18.  Multiaxial Results at 1100°F, Out-of-Phase Axial-Torsion, R = -1 
 

Test 
Number 

Specimen  
Number 

Diameter   
(in) 

 Axial 
Stress 
Max 
(ksi) 

Shear 
Stress 
Max 
(ksi) 

Cycles Results 

10-02 ZOK-EZ 0.3624 50.0 50.0 1,094,280 Removal 
 

As this work progressed the modeling members of the consortium, particularly 

GEAE and PWA, were monitoring the data.  They did not find good agreement with their 

efforts and this multiaxial work, as well as the related 1100°F torsional work reported in 

Section 4.3.1.7.  Hence, this work was discontinued after evaluating the conditions specified.  

GEAE was interested in conducting some additional tests at 1900°F and those are shown in 

the latter part of Section 4.3.1.7. 

With the difficulty the modeling participants were having in rationalizing the 

multiaxial data, there was some concern about whether the test apparatus was operating 
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correctly.   To examine the fidelity of the apparatus, three tests were run in a strictly axial 

mode at the 1100°F temperature.  The results of these tests are seen in Table 4.19. 

 

Table 4.19.  Multiaxial Results at 1100°F.  Axial Load Only, R = 0.1 
 

Test 
Number 

Specimen  
Number 

Diameter   
(in) 

Axial 
Stress 
Max 
(ksi) 

Shear 
Stress 

Max (ksi)

Cycles Results 

18-02 ZOK-LN 0.3625 110.0 0.0 1,323,201 Removal 
19-02 ZOK-KJ 0.3625 115.0 0.0 1,032,041 Removal* 

19-02A* ZOR-KJ 0.3625 125.0 0.0 963,851 Fracture, GS
* This bar was up-loaded to Smax = 125 ksi level and the test continued. 

 

The axial-only test results that were produced in the multiaxial frame displayed 

superior fatigue strength characteristics to those samples tested in the standard axial portion 

of the program (Section 4.3.1.5, Stress Ratio Effects).  This suggests that there were no 

apparatus-induced difficulties that lead to the multiaxial test results that were of concern to 

the other participants. 

The remainder of the work performed under the general umbrella of the 1100°F 

multiaxial effort was torsion tests reported Section 4.3.1.7, Torsion. 

4.3.1.5 Stress Ratio Effects 

The intent of this portion of the program was to provide uniaxial test results under 

varying stress ratios and to characterize the influence of this variable on the HCF strength at 

1100°F and 1900°F.  All testing was done using uncoated samples at 1100°F, while the 

1900°F testing employed test coupons prepared with an appropriate platinum aluminide 

coating and re-aged accordingly.  A minimum of four stress ratios were explored, R = -1, 0.1, 

0.5, and 0.8 as had been agreed upon with the other team members.  At 1100°F, testing at an 

additional stress ratio of -0.333 was done. 

While initially begun at Honeywell, the results shown here are only those of the 

testing vendor, Metcut.  All tests were axial, with a testing frequency of 59 Hz.  All data are 

shown in the most straightforward, direct reporting of results, essentially as raw test 
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information consistent with Honeywell’s role in this effort.  Any utilizations of the data are 

covered in the respective sections of this report dealing with modeling, etc.   

A.  Uniaxial Stress Ratio Effect Results at 1100°F  

The stress ratios examined for the 1100°F work were R = -1, 0.1, 0.5 and 0.8.  

The data from the tests are presented in Table 4.20.  These data are also presented graphically 

in Figure 4.96 and Figure 4.97, showing Smax vs.N and Sa vs. N response, respectively. 

Table 4.20.  Axial Results at 1100°F, 59 Hz, All R’s 

Test 
Number 

Specimen  
Number 

R 
ratio 

Diameter     
(in) 

Axial 
Stress 

Max (ksi)

Cycles Results 

7-01 K1L67B -1 0.2005 130.0 11,589 Frac/Gage 
8-01 K1LA4T -1 0.1999 115.0 31,778 Frac/Radius 
9-01 K1L21B -1 0.2000 80.0 165,210 Frac/Gage 

10-01 K1L5KT -1 0.2003 65.0 13,283,000 Removal 
12-01 K1L1DB -1 0.2004 75.0 1,612,914 Frac/Gage 
13-01 K1L94T -1 0.2001 70.0 10,374,280 Removal 
14-01 KIL5WT -1 0.1997 70.0 10,000,012 Removal 
15-01 KIL2NT -1 0.2004 75.0 1,384,473 Frac/Gage 
16-01 KIL2AB -1 0.2004 80.0 168,973 Frac/Radius 
2-01 K1L5LT 0.1 0.2002 100.0 10,014,803 Removal 
3-01 K1L2LB 0.1 0.1998 115.0 380,601 Frac/Gage 
4-01 K1L9TB 0.1 0.2005 110.0 161,997 Frac/Gage 
5-01 K1L1MT 0.1 0.2005 105.0 10,047,545 Removal 
6-01 K1L7WB 0.1 0.2003 110.0 531,229 Frac/Radius 

11-01 K1L6JT 0.1 0.2002 105.0 623,075 Frac/Gage 
17-01 KIL3XB 0.1 0.2002 100.0 10,126,244 Removal 
1-03 KIL95-B 0.5 0.2002 128.0 13,239,989 Removal 
3-03 KIL20-B 0.5 0.2003 136.0 20,934 Frac/Gage 
4-03 KILIC-T 0.5 0.2002 132.0 6,707,251 Frac/Gage 
7-03 KIL65-T 0.5 0.2000 128.0 10,000,089 Removal 
8-03 KIL6U-B 0.5 0.2002 132.0 840,234 Frac/Gage 
9-03 KILIN-B 0.5 0.2001 136.0 923,849 Frac/Gage 

10-03 KIL49-T 0.5 0.2001 132.0 940,573 Frac/Gage 
1-01 K1L6TB 0.82 0.2001 100.0 10,074,206 Removal 
2-03 KIL6U-T 0.8 0.2000 140.0 10,809,475 Removal 
5-03 KILIN-T 0.8 0.2002 145.0 10,717,378 Removal 
6-03 KIL49-B 0.8 0.2000 150.0 148.1 ksi 

max. 
Failed on  
Loading 

11-03 KIL20-T 0.8 0.2001 145.0 2,562 Frac/Gage 
12-03 KILIC-B 0.8 0.2003 140.0 10,008,556 Removal 
13-03 KIL95-T 0.8 0.2001 145.0 11,954,025 Removal 
14-03 KIL65-B 0.8 - 147.0 10,353,146 Removal 
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Figure 4.96.  Plot of Smax versus N at 1100°F, axial, all R’s. 

 

Figure 4.97.  Plot of Sa versus N at 1100°F, axial, all R’s. 
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Fractography was performed on some of the samples.  In general, crack initiation 

was observed to be largely of sub-surface origin.  Inclusions, apparently carbides, were 

featured at the crack initiation site.  Crack propagation was crystallographic along what one 

can surmise to be the {111} type slip planes. 

Examples of the fracture surfaces for different values of R are shown in Figures 

4.98 through 4.101. 

 

 
Figure 4.98.  Fracture surface for R = -1; 1100°F; 1,612,914 cycles. 

 
 

 
Figure 4.99.  SEM of fracture surface for R = -1; 1100°F; 165,210 cycles. 
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Figure 4.100.  Fracture surface for R = 0.1; 1100°F; 623,075 cycles. 

 

Figure 4.101.  Fracture surface for R = 0.5; 1100°F; 923,849 cycles. 

 
 

B.  Uniaxial Stress Ratio Effect Results at 1900°F  

The stress ratios examined for the 1900°F work were R = -1, -0.333, 0.1, 0.5 

and 0.8.  The data from the tests are presented in Table 4.21 and Table 4.22.  These data are 

also presented graphically in Figure 4.102 and Figure 4.103, showing Smax vs. N and Sa vs. N 

response, respectively. 
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Table 4.21.  Axial results at 1900°F.  59 Hz.  R = - 1 and  - 0.333. 

Test 
Number 

Specimen  
Number 

R 
ratio 

Diameter     
(in) 

Stress 
Max (ksi)

Cycles Results 

       
2-02 KIL56B -1 0.2005 54.0 205,482 Frac/Gage 
3-02 KIL3WB -1 0.2000 50.0 4,245,370 Frac/Gage 
4-02 KIL6VB -1 0.1998 46.0 8,941,513 Frac/Radius 
8-02 K1L2BT -1 0.2002 42.0 10,009,524 Removal 
9-02 K1L7WT -1 0.2003 46.0 5,679,517 Frac/Gage 
12-02 K1L5LB -1 0.1999 42.0 10,187,190 Removal 
18-02 K1L9FT -1 0.1998 50.0 1,264,133 Frac/Gage 

       
32-02 KIL9GB -0.333 0.2003 50.0 8,448,421 Frac/Gage 
33-02 KILIYT -0.333 0.2001 46.0 4,094,538 Frac/Radius 
34-02 KIL2IT -0.333 0.1997 46.0 4,911,837 Frac/Gage 
35-02 KIL9GT -0.333 0.1998 42.0 10,181,009 Removal 
36-02 KILIPT -0.333 0.2002 42.0 10,092,267 Removal 
37-02 KIL66T -0.333 0.2003 50.0 4,406,742 Frac/Gage 

 

Table 4.22.  Axial Results at 1900°F.  59 Hz.  R = 0.1, 0.5 and 0.8. 

Test 
Number 

Specimen  
Number 

R 
ratio 

Diameter    
(in) 

Stress 
Max (ksi)

Cycles Results 

       
1-02 KIL6GT 0.1 0.1998 64.0 1,348,227 Frac/Gage 
6-02 KIL5VT 0.1 0.1997 60.0 2,948,910 Frac/Gage 
5-02 KIL1BT 0.1 0.2005 68.0 523,034 Frac/Gage 
7-02 K1L9TT 0.1 0.2004 56.0 4,269,687 Frac/Gage 
10-02 K1L6JB 0.1 0.2004 52.0 6,879,073 Frac/Gage 
11-02 K1L2CB 0.1 0.1999 48.0 10,073,210 Removal 
13-02 K1L94B 0.1 0.2000 48.0 4,834,222 Frac/Radius 
14-02 K1L4JT 0.1 0.2003 44.0 10,142,760 Removal 
19-02 K1L5HT 0.1 0.2004 44.0 10,026,092 Removal 

       
15-02 K1L59B 0.5 0.2005 56.0 2,418,868 Frac/Gage 
16-02 K1L6TT 0.5 0.1998 52.0 3,670,069 Frac/Gage 
20-02 K1L3XT 0.5 0.2004 44.0 8,633,021 Frac/Gage 
23-02 K1L96T 0.5 0.2001 40.0 10,026,375 Removal 
24-02 K1L9UT 0.5 0.2002 40.0 10,032,311 Removal 
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Table 4.22.  Axial Results at 1900°F.  59 Hz.  R = 0.1, 0.5 and 0.8 (continued) 

 
Test 

Number 
Specimen  
Number 

R 
ratio 

Diameter    
(in) 

Stress 
Max (ksi)

Cycles Results 

25-02 K1L5XB 0.5 0.2001 44.0 8,618,224 Frac/Gage 
30-02 KIL2NB 0.5 0.1998 60.0 1,194,767 Frac/Gage 
31-02 KILA4B 0.5 0.2003 52.0 3,655,399 Frac/Gage 

       
17-02 K1LA3T 0.8 0.1999 35.0 10,095,230 Removal 
21-02 K1L7JB 0.8 0.2002 50.0 1,944,928 Frac/Gage 
22-02 K1LA2B 0.8 0.2005 45.0 3,462,244 Frac/Gage 
26-02 K1L1MB 0.8 0.2001 40.0 6,322,443 Frac/Gage 
27-02 K1L67T 0.8 0.1998 35.0 10,328,912 Removal 
28-02 KIL5WB 0.8 0.1997 40.0 5,876,726 Frac/Gage 
29-02 KIL57B 0.8 0.2001 45.0 3,422,990 Frac/Gage 
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Figure 4.102.  Plot of results of Smax versus N at 1900°F, Axial, all R’s. 
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Figure 4.103.  Plot of results of Sa versus N at 1900°F, Axial, all R’s. 
 

Fractographic work showed fatigue crack initiation originated at both sub-

surface and surface locations with surface locations being more prevalent for the higher R-

values.  Typically, the sub-surface crack initiation sites were inclusion related.  Figures 4.104 

through 4.108, which are micrographs illustrating the fracture features for the 1900°F axial tests, 

demonstrate this trend.  For the lower R-values, the fatigue induced cracks tend to be a 

significant portion of the overall specimen diameter.  As the R-value is increased the 

classical fatigue crack zone decreases.  At the highest R-value, 0.8, the fracture appearance is 

more indicative of creep rupture than fatigue.  Clearly, at the higher R-values there is a strong 

fatigue-creep interaction taking place during testing. 
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Figure 4.104.  Fracture surface for R = -1; 1900°F; 8,941,513 cycles. 

 

 

Figure 4.105.  Fracture surface for R = -0.33; 1900°F; 4,094,538 cycles. 
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Figure 4.106.  Fracture surface for R = 0.1; 1900°F; 6,879,073 cycles. 

 
 

 
Figure 4.107.  Fracture surface for R = 0.5; 1900°F; 3,670,069 cycles. 
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Figure 4.108.  Fracture surface for R = 0.8; 1900°F; 3,462,244 cycles. 

 
 

In addition to the 1100°F and 1900°F axial tests reported here, some axial-only 

tests were conducted in the tension-torsion rig.  These tests, performed at 1100°F and R = 0.1 

are documented in Table 4.19.  

4.3.1.6 Creep Rupture 

 Because single crystal superalloys are subject to creep rupture damage and failure at 

high temperatures, creep rupture testing was performed on PWA 1484 specimens at 1900°F.  

A mixture of uncoated and coated specimens were tested, all of them of the type shown in 

Figure 4.76, that is, with 0.2 inch diameter cylindrical gage sections.  Two methods were 

used; 1) conventional lever arm dead weight loaded creep stands and extensometry; 2) closed 

loop hydraulic fatigue test frames and side mounted extensometers.  The latter were used 

because high quality creep data were also desired for constitutive modeling purposes.  

Several laboratories performed creep rupture testing: GEAE, Metcut, UDRI, and CTL.   

Tests were performed at constant load at a range of stresses covering those expected 

to give failure in 10 to 200 hr.  The discussion here will be focused on the <001> oriented  
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specimens; other orientations were also tested but these will be covered in the constitutive 

modeling Section 4.3.2.2.  The rupture lives obtained are reported in Table 4.23 and are 

plotted against applied stress in Figure 4.109.  The results showed a surprising amount of 

variation between sources, since it is generally considered that stress rupture behavior is less 

sensitive to test method than is fatigue, and that surface condition (coated or bare) is also 

usually less important in rupture. The most consistent set of results was obtained on coated 

specimens tested in closed loop machines at Metcut, and since this is the same specimen 

condition and test source as used for much of the HCF testing, it was considered to be the 

most likely to give results comparable to the HCF results.  The coated Metcut rupture data 

were not significantly different than the bare Metcut data, lending support to the notion that 

stress rupture is not sensitive to coating.  The coated Metcut data showed a power law 

dependence of time to failure on stress: 

tr = kr σm (4.26) 

where, tr is time to failure in hours, σ is stress in ksi, and kr and m are fitted constants: kr = 

2.19 x 109; m = -5.07 for PWA 1484 at 1900°F. 
 

Table 4.23.  Stress Rupture Lives of <001> PWA 1484 at 1900° 

S/N Surface Source Stress  
(ksi) 

Rupture 
Time (hr) 

A2LKW-1 Bare CTL 35 19.3 
TF1105 Bare GE 35 11.6 
TF1106 Bare GE 30 50.1 
TF1107 Bare GE 25 91.7 

A2LLG-2 Bare Metcut 35 31.1 
A2LLG-3 Bare Metcut 35 33.7 
A2LLG-4 Bare Metcut 35 25.6 
A2LLU-3 Coated Metcut 35 34.4 
A2LL9-2 Coated Metcut 30 70.7 
A2LLE-4 Coated Metcut 33 42.4 
A2LKV-4 Coated Metcut 40 16.2 
A2LKW-4 Bare UDRI 35 17.6 
A2LR3-4 Bare UDRI 23 82.4 
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Figure 4.109.  Dependence of stress rupture life of PWA 1484 on stress at 1900°F. 

 

The typical fracture appearance of the stress rupture tested specimens is shown in 

Figure 4.110.  The fractures were accompanied by extensive local deformation and necking, 

generating multiple surface connected cracks in the coating.   

 

 
 Figure 4.110(a) side view 

 

Figure 4.110(a & b).   Typical fracture surface of 1900°F stress rupture specimen  
showing necking and rough, dimpled surface. 
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Figure 4.110(b) fracture surface 

Figure 4.110(a & b).   Typical fracture surface of 1900°F stress rupture specimen  
showing necking and rough, dimpled surface. 

 

However, metallographic sectioning through the fracture, Figure 4.111, gave the 

distinct impression that fracture initiated internally from multiple deformation-induced voids, 

rather than from the coating cracks.  The growth and link-up of such internal voids is a 

classic ductile fracture process, and evidence of multiple void sites can also be seen on the 

fracture surface, Figure 4.110. 

 

 
Figure 4.111.   Metallographic cross section of stress rupture  

specimen showing necking and internal voids. 
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4.3.1.7 Torsional 

The intent of this portion of the program was to provide multiaxial results under 

select scenarios and to complement the modeling effort.  The torsion-only tests were the first 

coupons tested using the Metcut equipment as documented in Section 4.3.1.4.  Torsional test 

conditions were originally specified in conjunction with the other team members as part of 

the multiaxial activity to be done using uncoated samples at 1100°F.  Eventually, the torsion 

testing evolved to include some work on coated samples at 1900°F per GEAE’s request.   

Metcut’s system produced a frequency of approximately 2 Hz for this work.  Again 

for these tests runout was considered to be at 1 million cycles as opposed to the 10 million 

cycles used for the axial HCF work. 

All data are shown in the most straightforward, direct reporting of results, 

essentially as raw test information consistent with Honeywell’s role in this effort.   Any 

utilization of the data is covered in the respective sections of this report dealing with 

modeling, etc. 

 A.  Torsional Results at 1100°F  

The conditions examined were fully reversed torsion (i.e. R = -1).  The data 

gathered are presented in Table 4.24 and Figure 4.112. 

 

Table 4.24.  Torsional Results at 1100°F, Fully-Reversed Torsion 
 

Test 
Number 

Specimen  
Number 

Diameter  
(in) 

 Axial 
Stress 
Max 
(ksi) 

Shear 
Stress 

Max (ksi)

Cycles Results 

       
1-02 ZOK-HS 0.3631 0.0 60.0 505,419 Removal 
2-02 ZOK-LY 0.3620 0.0 80.0 93,545 Fracture, GS 
3-02 ZOK-FV 0.3628 0.0 78.0 248,084 Fracture, GS 
4-02 ZOK-LM 0.3627 0.0 76.0 300,105 Fracture, GS 
5-02 ZOK-HS 0.3631 0.0 90.0 63,192 Fracture, GS 
6-02 ZOK-G5 0.3619 0.0 72.0 183,080 Fracture, GS 
7-02 ZOK-H5 0.3632 0.0 72.0 207,009 Fracture, GS 
8-02 ZOK-JZ 0.3620 0.0 68.0 1,011,198 Removal 
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Figure 4.112.  Plot of torsional fatigue results at 1100°F; fully reversed torsion. 
 

As noted previously, as this work progressed, the modeling members of the 

consortium (particularly GEAE and PWA) were monitoring the data.  They did not find good 

agreement with their efforts and the work was terminated.  GEAE was interested in 

conducting some additional torsional fatigue tests at a higher temperature and those are 

shown in the following section. 

 B.  Torsional Results at 1900°F  

Tests at this temperature were conducted at the request of GEAE.  To 

accomplish the test it was recognized that the test bars needed to be coated, so this was done 

using a compatible platinum aluminide and the bars re-aged appropriately.  The load 

conditions examined for this part of the testing were only fully reversed torsion.  The results 

of this testing are shown in Table 4.25 and Figure 4.113.  Photographs of the broken 

specimens are shown in Figure 4.114. 
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Table 4.25.  Torsional Results at 1900°F, Fully-Reversed Torsion 

 
Test 

Number 
Specimen  
Number 

Diameter  
(in) 

 Axial 
Stress 
Max 
(ksi) 

Shear 
Stress 

Max (ksi)

Cycles Results 

       
20-02 ZOK-FJ 0.3620 0.0 48.0 1,521 Yielded 
21-02 ZOK-GG 0.3627 0.0 35.0 9,538 Fractured 
22-02 ZOK-FU 0.3630 0.0 25.0 497,773 Fractured 
23-02 ZOK-JN 0.3630 0.0 30.0 297,877 Fractured 

    25.0 1,118,101  
 ZOK-J3 0.3630 0.0 30.0 206,106 Fractured 

26-02 ZOK-H4 0.3620 0.0 35.0 89,512 Fractured 
 

 
 
Figure 4.113.  Plot of torsional fatigue results at 1900°F; fully reversed torsion. 
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In addition to the 1100°F and 1900°F torsional fatigue tests results, other related 

work was performed as part of the multiaxial effort including in-phase and out-of-phase 

axial-torsion tests.  Those results were reported in Section 4.3.1.4, Multiaxial. 

 

 
 

Figure 4.114.  Photos of specimens fatigued in torsion. 
 
 
 

4.3.2 Constitutive Modeling 

4.3.2.1 Walker Model 

 Based on previous experience with modeling single crystal deformation, two 

existing constitutive approaches were selected for the prediction of PWA 1484 deformation, 

macromechanistic and micromechanistic.  The macromechanistic approach is a 

phenomenological model which uses a fourth order tensor to invoke material anisotropy 

through the global stress-strain tensors.   The micromechanistic approach is based on the 
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face-centered cubic microscopic slip theory developed by Dr. Walker for the NASA HOST 

program [60]. 

 A.  Constitutive Model Selection 

Initially the macroscopic approach was favored because of its inherent 

computational speed advantage over the micromechanistic approach.  The micromechanistic 

approach requires stress and strain transformation onto the twelve octahedral and six cube 

slip systems whereas the macroscopic approach works in the global system.  As a result, the 

macroscopic approach is roughly three times faster computationally than the microscopic 

approach.  However, further investigation of the macromechanistic approach indicated a 

significant shortfall in it applicability for combined normal and shear loadings such as occur 

in blade attachments.  The available degrees of freedom afforded by the existing 

macromechanistic approach do not capture the correct anisotropic displacement field for all 

single orientations under shear loadings.  Consultation with Dr. Walker subsequently 

indicated the macroscopic model would require a higher order displacement field capability 

(i.e., require up to a 6th order tensor transformation matrix) to predict the proper shear 

displacements for all single crystal orientations.  This proposed correction to the existing 

macroscopic approach essentially negated its computational benefit over the microscopic 

approach and was considered risky relative to using the existing microscopic approach.  The 

micromechanistic approach was therefore selected as the going-forward method for the 

single crystal constitutive modeling effort. 

 B.  Constitutive Model Enhancement 

The existing micromechanistic approach was available as a research software 

version, which relied upon multiple matrix manipulations and computations.  By re-writing 

the matrix computations as explicit terms, the computational efficiency was significantly 

enhanced (it roughly doubled the computational speed). 

The form of the constitutive model is based on the Walker Viscoplastic 

formulation, shown below.  It is a power law relationship relating inelastic strain rate, dεin, to 

three state variables: deviatoric stress (σ), equilibrium (or back) stress (Ω), and drag stress 

(K).  Written incrementally in one dimension, 
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dt
K

d
n

in ⎟
⎠
⎞

⎜
⎝
⎛ Ω−

=
σε . (4.27) 

Evolutionary equations for Ω and K describe the change in state with inelastic 

deformation. 

 inin dndnd εε Ω−=Ω 32  (4.28) 

 RneKKK 7
21

−+=  (4.29) 

 Ω governs the plastic deformation behavior including kinematic effects (evolution of the 

mean stress), and K defines the yield surface and isotropic characteristics, including 

hardening and softening. 

The model details shown above are generic for one dimension.  It must be 

pointed out that for single crystal modeling, state variable response is specific to each of the 

twelve octahedral and six cubic slip planes.  Specific details on the application of this model 

to the PWA 1484 octahedral and cubic slip planes can be seen in [60], Figures 56-61. 

 C.  Constitutive Model Constant Regression 

The conventional means to obtain slip theory constitutive model constants for 

single crystal materials requires obtaining stress-strain behavior of <001> and <111> primary 

orientation test samples.   Unfortunately, obtaining <111> test samples was not successful for 

the PWA 1484 material lot available.  As such, an alternate constant determination method 

was developed to enable constant determination without obtaining <111> data.  The alternate 

constant determination method uses an existing finite element (FE) code embedded within a 

nonlinear least squares constant regression routine to drive the constitutive model.  By 

embedding the FE into the regression scheme, an alternate combination of two single crystal 

orientations can be used to determine model constants.  The selected single crystal 

orientations should separate octahedral slip from cube slip to enable constant regression.  

One of the orientations should be <001> because a perfectly aligned <001> sample loads the 

octahedral slip systems, but not the cube slip systems.  The second orientation should provide 

significant loading on the cube slip systems, such as <011>.   The small deviations from 

perfectly aligned  
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crystal orientations are accommodated by the FE solution within the regression routine by 

inputting the actual test sample orientation. 

Before attempting to regress constants for PWA 1484 using <001> and <011> 

data, a plan was in place to validate the regression method using existing PWA 1480 data.   

PWA 1480 constants derived from <001> and <011> data were in process when this effort 

was terminated.  The validation strategy involved deriving PWA 1480 constants from <001> 

and <011> data to check the model prediction of <111> data. This was necessary since no 

PWA 1484 <111> data was forthcoming in this program.  The validated method could then 

be applied to the <001> and <011> PWA 1484 data with some level of confidence in the 

model predictive capability for other orientations. 

 D.  Experimental Data 

The Experimental Mechanics group at the United Technologies Research Center 

performed monotonic and cyclic testing of PWA 1484.  The table of completed and untested 

specimens is shown below.   

 

Table 4.26.  Completed and Untested PWA 1484 Specimens 
Purpose Primary 

Orientation 
Degrees from Primary 

Orientation 
Loading # Specimen 

Calibration <001> 2.7 Monotonic tension 1 001K1LAO 
Calibration <001> 6.7 Monotonic compression 1 001A2973 
Calibration <011> 8.6 Monotonic tension 1 011A296F 
Calibration <011>  5.8 Monotonic compression 1 011A295M 
Calibration <111>  Monotonic tension 1 (None) 
Calibration <111>  Monotonic compression 1 (None) 
Calibration <001>  

<001>  
<001>  
<001>  
<001>  

0.5 
0.7 
2.7 

not available 
not available 

Complex cyclic 5 001A297A  
001K1L5R  
001K1L6D  
001K1L9C  
001K1L2U 

Calibration <011>  not available Complex cyclic 1 011A296K 
Calibration <111>  Complex cyclic 1 (None) 
Validation <213>  Monotonic tension 1 (None) 
Validation <001>  Complex cyclic 1 (None) 
Validation <011>  Complex cyclic 1 (None) 
Validation <111>  Complex cyclic 1 (None) 
Validation <213>  Complex cyclic 1 (None) 
Remaining <001>  not available Untested 1 001A2972 
 <011>  

<011>  
<011>  

not available 
not available 
not available 

 3 011A295Y 
011A296D 
011A296N 
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 Buckling and compressive slip seen in the multiple strain end level cyclic test 

001A297A prompted a redesign of the current MT-3 type specimen initially selected for data 

generation.  The new specimen has a shorter gauge length in order to avoid buckling, but 

otherwise retains the same characteristics of the original specimen.   

 The data generated for this program is in Appendix S.  In the <001> and <011> 

orientation, elastic-plastic behavior can be observed, with little monotonic hardening in either 

tension or compression (Figures S2 and S3 of Appendix S).  Kinematic and isotropic 

hardening as well as an increased monotonic hardening slope is observed in the <001> 

complex cyclic tests (Figure S9 of Appendix S).  Little difference is seen between monotonic 

and cyclic deformation behavior. 

 As of this date, monotonic testing for the <001> and <011> orientations is 

complete.  In addition, the complex cyclic testing for these orientations is complete after 

multiple verification testing at the <001> orientation as seen above.  Tensile and compressive 

tests for <111> and <213> were cancelled because available castings did not produce 

sufficient volume of consistently oriented material and other program priorities did not 

permit acquisition of replacement material.  

4.3.2.2 1900°F Stouffer Model 

 A. Objective and Approach 

PWA 1484 is a single crystal material with cubic symmetry for elastic response.  

The inelastic response of single crystal material can show considerable orientation 

dependence as well as tension/compression asymmetry [61].  The initial approach considered 

for constitutive modeling of PWA 1484 was to use the Stouffer-Dame-Sheh model [62].  The 

material test matrix was defined to provide the necessary input information to determine the 

parameters for model (primarily constant strain rate tests in tension and compression at 

several crystallographic orientations).  Initial attempts to fit the parameters for the 

crystallographic unified model gave unsatisfactory results.  A review of the available data 

indicated that the inelastic behavior for PWA 1484 at 1900°F was close to isotropic, so a 

simpler classical (separate plasticity and creep) approach was adopted.  

  



 317

 B.  Test Methods 

Testing was performed at 1900°F on specimens cut from the three major 

crystallographic orientations: <001>, <110>, and <111>.  Most of this testing was performed 

at UDRI, but the <111> tests were conducted at Cincinnati Testing Laboratory.  The 

specimen geometry used for the UDRI test is shown in Figure 4.115. The long gage length 

provided high strain resolution, but did limit compressive strain levels to avoid plastic 

buckling.  All specimens were tested in the uncoated condition.  The absence of a coating 

was not expected to influence the constitutive response of PWA 1484. 

 

Figure 4.115.  Large PWA 1484 specimen for 1900°F tension and creep testing at UDRI. 
 

To prepare the test specimen for testing, two distinct points were identified at 

either end of the gage section.  These markers are used as identifiers so any change in 

specimen length between them can be measured after testing is completed.  The gage section 



 318

markers were made using a Rockwell Hardness Tester (Buehler, Model Macromet 3, S/N 

SUDX3266) set to the “C” scale.  Two indents were made at the outside ends of the gage 

section ~ 2 inches apart.  The specimen was supported using a small V anvil while being 

indented.  After the indents were made, the distance between them was measured to the 

nearest 0.001-inch using a dial caliper (Brown & Sharp, Model 599-579-4, S/N 6P1750).  A 

stereo microscope (Nikon, Model SMA-2T, S/N 314144) was used to check the alignment of 

the caliper jaws to the indents made in the specimen.  The final preparation step was to coat 

the threaded portion of the specimen with boron nitride to ensure separation of the specimen 

and grip adapters after testing.  

 Preparation of the extensometer for testing required that the Instron strain 

controller and capacitive extensometer be calibrated.  The Instron strain controller was 

calibrated by correlating the extensometer output voltages to the full range of the instrument.  

An extensometer extension of 0.0000 and 0.03937 inches (1 mm) was set to 0 V and 10 V, 

respectively.  The extensometer signal conditioner was used to generate the 0 to 10 V signal.  

After the strain controller was calibrated, the extensometer calibration was checked and 

adjusted as needed.  The extensometer calibration check was performed by displacing the 

extensometer, using a calibrating micrometer (Boeckeler Instruments, Model 4-MBR, S/N 

19538), over the strain range of the test and comparing the extension to the strain controller 

output.  The extension was checked every 9.84 x 10-6-inches (0.25 mm).  If the difference 

between the calibrating micrometer and strain controller readout was less than 0.5%, the 

extensometer was considered calibrated.  If more than 0.5% error was noted, the 

extensometer signal conditioner was recalibrated.  The extensometer readings were recorded 

in Excel. 

The Instron Universal Tester (Model 8562, S/N H1004), fitted with Instron 

Corporation’s reverse stress grips, also required pre-test preparation.  The grips must be 

aligned with one another, and the load weighing system must be calibrated.  This calibration 

was done automatically using the load controller.  The grips must be aligned differently for 

tension and compression tests, and these two alignment procedures are described in the 

paragraphs that follow.  In both tests, however, the bottom grip was aligned to the top grip.   
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Specimen A2LKK-1 was instrumented with eight strain gages for use during 

alignment.  Four gages were oriented 90o apart around the center of the gage section.  Two 

gages were oriented 180o apart above the gages at the center.  The last two gages were 

oriented below the center gages 180o apart and 90o from the top gages.  This configuration 

allowed the grips to be aligned both concentrically and angularly.   

For tensile testing, the instrumented specimen was used to align the grips.  The 

instrumented specimen was installed in the grip adapters, mounted in the top grip using 

three-piece copper collets, and allowed to come to thermal equilibrium.  The load weighing 

system on the Instron was calibrated, and the eight strain gages were balanced to 0 µε.  The 

instrumented specimen was then installed in the lower grip using three-piece copper collets.  

The grips were first aligned angularly by pulling a small tensile load and balancing the center 

gages.  The load was slowly increased to 1,750 lbs while keeping the four center gages 

balanced.  The grips were then aligned concentrically by balancing the top and bottom sets of 

gages.  When alignment was complete, the bottom grip was locked in position.  The 

instrumented specimen was unloaded and then reloaded to 1,750 lbs (three times) to ensure 

there was no drifting of the grip alignment.  Bending was kept under 0.5% during this 

procedure.  When complete, the strain gage readings were recorded in Excel and the bending 

was calculated. 

The test system was now ready for tensile testing.  The instrumented specimen 

was removed from the test frame and the grip adapters were removed.  The actual specimen 

to be tested was then installed in the grip adapters and mounted in the top grip using three-

piece copper collets.  The collets were kept in the same orientation they were in during the 

grip alignment procedure with the instrumented specimen.  The Instron was calibrated and 

the test specimen was installed in the lower grip.  The test specimen was loaded to a tensile 

load of 100 lbs.  A pre-loading procedure, whereby the specimen was loaded from 100 to 800 

lbs at a rate of 100 lbs/min, was completed to ensure the copper collets were seated in the 

radius of the grip adapters.   The specimen was held at 800 lbs for 5 min and unloaded to 100 

lbs at 7,000 lbs/min.  The load was reduced to 10 lbs and the specimen was ready for testing.  

A photograph of the test setup is shown in Figure 4.116. 



 320

 

 

Figure 4.116.  Set-up at UDRI for constitutive tests at 1900°F. 

 
A slightly different method was used to align the test specimens for compression 

testing.  The test specimen was put into the adapters and the orientation of the two adapters in 

relation to each other is marked.  The instrumented specimen was then installed in the top 

grip with the two adapters in the same orientation to each other as marked using the actual 

test specimen.  When the instrumented specimen reached thermal equilibrium, the strain 

gages were balanced and the load weighing system on the Instron was calibrated.  The 

compression pistons in grips were actuated, and the specimen was aligned as described for 

tension.  Alignment in tension set the angularity between the two grips.  The instrumented 

specimen was then removed from the grips.  Concentricity was aligned in compression using 

the Applied Test Systems (ATS) alignment fixture and the actual test specimen.  The 

specimen was carefully screwed into the grip adapters and installed in the top grip so that all 

pieces were oriented in the same way as the original set up.  The alignment fixture was then 

installed on the specimen and allowed to reach equilibrium.  The four LVDTs were balanced 
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to 0 using the signal conditioner.  The specimen was then installed in the lower grip.  The 

compression pistons were actuated and the specimen was slowly loaded in compression to 

250 lbs.  The concentricity was adjusted, and the specimen was slowly loaded until further 

adjustment was needed.  This process was continued to a load of 1,750 lbs for specimen 

A2LR3-2 and 2,500 lbs for the other three specimens.  The adapters were changed between 

the first compression test and the three additional compression tests.  The shaft length of the 

adapters was shortened to reduce the chance of buckling.  When the specimen was at peak 

alignment load, the concentricity was adjusted to give 1% or less bending and the grip was 

locked in position.  The specimen was unloaded and reloaded three times without further 

adjustment to check for 1% bending or better.  If no further adjustment was necessary, the 

system was considered aligned.  The specimen was then unloaded to 10 lbs (compression) 

and was ready for testing.   

After preparing the specimen, extensometer, and test frame for testing, the furnace 

was turned on.  A two-zone furnace was used with both zones set to 1900°F (1038°C).  Once 

the furnace reached this temperature, it was left to soak for at least 30 min.  The furnace was 

then opened, pulled around the specimen, and closed.  Insulation was packed at both ends of 

the furnace to keep convection currents to a minimum.  The specimen was held at 10 lbs 

during placement in the furnace and heating.  As soon as the furnace was closed, the 

extensometer was inserted into the furnace, brought into contact with the specimen, and then 

backed off 1 to 2 mm.  After the furnace recovered to 1900°F, it was held at temperature for 

30 min before testing was initiated. 

After the 30-min soak, the extensometer was set to the correct starting extension, 

brought into contact with the specimen, and the arms were released.  The initial loading of 

the constant strain rate tests was controlled using Instron Corporation’s Series IX software.  

The constant load tests were controlled using the function generator on the test frame load 

controller. All specimens tested in load control were loaded at 3,440 lbs/min (~70 ksi/min) to 

the test stress.  Testing done with the Series IX software had the data collected in the 

software and used the data acquisition system.  All testing that did not use Series IX had the 

data collected using the data acquisition system only.  Strain control tests that went beyond 

the range of the extensometer were stopped and continued in position control.  All testing in 

position control was executed using Series IX software.   
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After the test was completed, the furnace was opened and pushed back from the 

test specimen.  The specimen was cooled to room temperature.  The front of the test 

specimen shanks (top and bottom) were marked using a felt tipped marker.  The specimen’s 

front was defined as the point where the extensometer made contact with the test specimen.  

The test specimen was then removed from the grips and the grip adapters were removed.  To 

preserve the fracture surfaces, the test specimen was returned to the original shipping sleeve 

with the threaded ends in contact with each other. 

For <111> oriented specimens, no castings with <111> axes aligned parallel to 

the slab long axis were available.  However, there were rectangular castings available with 

<001> long axes and <110> transverse in-plane axes.  Blanks were cut from these at 54.7° to 

the <001> axis, giving a specimen axis of <111>.  However, the 3-inch width of the castings 

kept the overall specimen length at about 3.5 inch.  This was too small to make specimens of 

the type in Figure 4.115, but it was possible to fabricate slightly shortened cylindrical 

specimens of the type shown in Figure 4.76.  These specimens could not be tested in UDRI’s 

equipment, but were sent to CTL for testing.  A <001> oriented specimen of the same 

geometry was creep tested at CTL and the creep response matched that of UDRI very 

closely, so the CTL results were judged to be comparable to those from UDRI. 

The matrix of tests performed is shown in Table 4.27.  It consisted of constant 

strain rate and constant load (creep) tests in the three major crystallographic directions.  The 

constant strain rate tests were performed both in tension and in compression to check for the 

tension-compression anisotropy seen at lower temperatures.  The constant strain rate tests 

were performed over a range of rates from 1 x 10-3 to 1 x 10-6 sec-1.  Most of these tests were 

performed out to a strain level of about 2% and then stopped and held at constant strain to 

generate stress relaxation information.  The creep tests were usually performed at one stress, 

although in some cases where creep rates were low, the stress was increased after a period of 

time.  Most creep tests were continued to failure. 



 

Table 4.27.  Matrix of Constitutive Property Tests Performed on PWA 1484 at 1900°F  
 
Test 
No. 

Specimen
Axis  

Mode Direction S/N Strain 
rate (sec-1)

Max. stress 
(ksi) 

Source Comments 

1 [001] const e-
rate 

tension A2LKW-3 1.0E-03 54 UDRI pulled to failure, total time = 0.062 hr. 

2 [001] const e-
rate 

tension A2LKK-4 1.0E-04 63 UDRI pulled to 2% strain and held at 2% for 9.9 hr.  
Re-zero'd and reloaded at 1x10-4 to failure.  
Extens. maxed out at 5.1%, time to failure = 
0.72 hr. 

3 [001] const e-
rate 

tension A2LR3-1 1.0E-05 55 UDRI pulled to failure.  Extens. maxed at 5.6% strain.  
Total time = 2.4 hr 

4 [001] const e-
rate 

tension A2LKW-2 1.0E-06 42 UDRI pulled to 2% strain  in 5.56 hr and held for 1.1 
hr.  Total test time = 6.6 hr. 

5 [001] const e-
rate 

compression A2LR3-2 1.0E-04 60 UDRI strained to 2% in 2000 sec and stopped. 

6 [001] const e-
rate 

compression A2LLK-2 1.0E-06 48 UDRI strained to 2% in 20,000 sec, held at 2% for 
11.7 hr.  Total test time = 17.3 hr.  

7 [110] const e-
rate 

tension Z1LBL-5 1.0E-04 71 UDRI strained to failure with interruptions.  No dwell 
at 2%. Total test time = .4 hr. 

8 [110] const e-
rate 

tension Z1LBL-4 1.0E-06 49 UDRI strained to 2%, then held at 2% strain for 12.5 
hr.  Total test time = 18.1 hr. 

9 [110] const e-
rate 

compression Z1LBP-2 1.0E-04 72 UDRI strained to 2%, then held for 10 hr. and 
unloaded. 

10 [110] const e-
rate 

compression Z1LBL-3 1.0E-06 53 UDRI stopped at 1.51% after 4.2 hr.  No strain dwell. 

11 [111] const e-
rate 

tension T20WT-5 1.0E-04 68 UDRI strained to 4.3% in 449 sec.  Slipped out of grip. 
Test stopped after 502 sec. 

12 [111] const e-
rate 

tension A2LPR-1 1.0E-06 39 CTL Tensile test to failure.  

 13 [001] const load tension A2LKW-4 1.1E-07 35 UDRI Ramped to 35 ksi in 30 sec.  Crept at 35 ksi.  
Extensometer reached max travel at 15.8 hr.  
Specimen fractured at 17.6 hr. 
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Table 4.27.  Matrix of Constitutive Property Tests Performed on PWA 1484 at 1900°F  
 
Test 
No. 

Specimen
Axis  

Mode Direction S/N Strain 
rate (sec-1)

Max. stress 
(ksi) 

Source Comments 

14 [001] const load tension A2LR3-3 4.8E-08 30, 23 UDRI Ramped to 30 ksi in 27 sec.  Crept at 30 ksi to 
3.9% at 40.5 hr.  Unloaded at 40.7 hr.  Rezero'd 
time and strain scales.  Reloaded at 23 ksi in 50 
sec.,  Held at 23 ksi  (extens. maxed out at 7.0% 
strain at 107.8 hr).  Test continued at 23 ksi to 
failure at 117.4 hr.   

15 [001] const load tension A2LR3-4 2.1E-08 23 UDRI Ramped to 23 ksi in 20 sec.  Crept at 23 ksi 
(Extens max'd out at 7.5% at 81.5 hr).  
Specimen fractured at 82.4 hr 

19 [110] const load tension Z1LBP-3 6.9E-09 30, 35 UDRI Ramped to 30 ksi in 26 sec.  Held at 30 ksi for 
26.7 hr, unloaded after .24% strain.  Re-zero'd 
and reloaded to 35 ksi in 30 sec.  Extens max'd 
out at 7.0% in 17.1 hr.  Specimen fractured at 
17.5 hr. 

20 [110] const load tension Z1LBP-1 1.2E-06 23, 30 UDRI Ramped to 23 ksi in 20 sec.  Held at 23 ksi.  
Reached 0.86% strain in 308.7 hr.  Unloaded 
and re-zero'd.  Reloaded to 30 ksi in 25 sec.  
Held at 30 ksi 5.3 hr, then unloaded, held at 
temperature until 17.0 hr.  Re-zero'd and 
reloaded to 30 ksi in 30 sec.  Extens. max'd out 
at 7.6% in 3.1 hr.  Specimen fractured in 3.4 hr. 

21 [111] const load tension A2LPR-2 6.0E-06 35 CTL Constant load creep test at 35 ksi. Failed in 28.4 
hr.   

22 [111] const load tension A2LPR-3 4.8E-08 30 CTL Constant load creep test at 30 ksi.  Stopped after 
39.9 hr. 

23 [111] const load tension A2LPR-4 1.8E-09 23 CTL Constant load creep test. Stopped after 23 hr  

(Continued) 
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C. Experimental Observations 
 

The stress response obtained from all the tests is summarized in Figure 4.117.  

This figure shows the maximum stress obtained in each test as a function of the strain rate 

for that test.  For the creep tests, the strain rate used was the minimum creep rate.  Figure 

4.117 suggests that the inelastic anisotropy of PWA 1484 is quite modest at 1900°F, 

since the data for all the orientations and stress directions (tension vs. compression) fall 

close to a single line.  There is a slight tendency for the <110> orientations (blue, 

diamonds) to lie above the average trend line, and a slight tendency for the <111> 

orientations (red, triangles) to lie below it, indicating a small amount of anisotropy, but 

these differences are within the overall scatter of the population.  The observation that the 

<110> direction tends to be the strongest is unusual; in nearly all other studies of strength 

anisotropy in single crystals, it is the weakest orientation. 

 

 

 

 

 

 

 

 

 
 
 
 
 

 
Figure 4.117.   Effect of strain rate on maximum stress in PWA 1484 creep  

and tensile tests at 1900°F showing different orientations and  
loading directions (T= tension, C = compression).  
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 D. Constitutive Model Comparison to Experimental Results 

A comparison of the constitutive model predictions and strain control test 

data is included on the plots on the next several pages.  Figures 4.118 and 4.119 show 

experimental data and constitutive model predictions for PWA 1484 at 1900°F for strain 

control tensile testing in the <100> and <110> orientations.  Figures 4.120 and 4.121 

shows similar comparisons for compressive testing.  Figure 4.122 shows load control 

creep predictions and typical test data.  In general the comparison is very good for the 

range of loadings (compressive and tensile at various strain rates) and the different 

orientations (<100> and <110>) for which test data was available.  The most significant 

error was for the <100> compression test at a strain rate of 1E-4 inches/inch/sec. Note 

that the experimental results for <100> compression testing at a lower strain rate of 1E-6 

inches/inch/sec matched fairly well with the model predictions, so the source of the error 

does not appear to be a general problem for predicting <100> compression behavior (test 

may be an outlier). 

 

 

 
Figure 4.118.   Experimental data and constitutive model predictions for  

<100> tensile tests at 1900°F for PWA 1484. 
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Figure 4.119.   Experimental data and constitutive model predictions for 

<110> tensile tests at 1900°F for PWA 1484. 
 

 

Figure 4.120.   Experimental data and constitutive model predictions for 
<100> compression tests at 1900°F for PWA 1484. 
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Figure 4.121.   Experimental data and constitutive model predictions for 
<110> compression tests at 1900°F for PWA 1484. 

 
 

 
Figure 4.122.   Experimental data and constitutive model predictions for  

typical <100> creep tests at 1900°F for PWA 1484. 
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As a further demonstration of the capability of the constitutive model to 

describe the deformation at 1900°F, the fixed end fatigue crack growth test (T20VS-2) 

described in Section 4.2.2.2.B was analyzed.  This test was performed as part of an effort 

to determine whether specimen creep was significantly affecting the stress intensity at the 

crack tip in the fixed end SEN geometry.  The specimen geometry is shown in Figure 

4.17.  A 0.15-inch deep EDM notch was machined into one side of the gage section to 

simulate a fatigue crack.  For this test a ½ inch gage length extensometer was placed 

across the EDM notch to monitor crack opening during the test.  The specimen was 

loaded to a gross (unnotched) section stress of 15 ksi and held at constant load.  At 

approximately 1-hour intervals the specimen was unloaded and reloaded to the same sress 

to check the elastic compliance to see if static crack growth occurred.  No change in the 

slope of the unloading-loading stiffness curve was observed, but during the constant load 

dwells there was a significant amount of creep observed in the gage section. 

Comparisons of the constitutive model predictions and measured deformation 

of the fatigue crack growth specimen are shown in Figure 4.123.  This plot shows the 

baseline (1900°F) analysis slightly over-predicting the extensometer measurements.  For 

this experiment, the temperature distribution in the gage was not perfectly uniform since 

an induction coil was used to allow the extensometer probes to access the specimen.  

Additional analysis assuming a uniform temperature of 1875°F matched the experimental 

measurements very closely.  Measurement of the distortion of the fixed-end bar was also 

done after testing.  In the notch plane it moved laterally about .005 inch.  It also 

lengthened in the direction of load by about .0025 inch over a gage length of 0.389 inch 

along the bar centerline spanning the notch.  Both of these post-test measurements are 

bounded by the analyses done at 1900°F and 1875°F.  The correlation between the 

specimen analysis using the constitutive model and the experimental measurements 

appears to match within the expected data scatter, validating the constitutive model and 

analysis approach. 
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Figure 4.123.   Experimental results and predictions for 1900°F fixed end SEN 

specimen. 
 
4.3.3 Critical Plane Modeling 

The objective of the critical plane modeling effort was to develop a failure 

mechanism-based approach, which also accounted for the micromechanics of the 

crystallographic slip deformation mechanism in a single crystal alloy.  Several multiaxial 

critical plane fatigue damage parameters were calculated and evaluated based on how 

well they predicted the observed critical planes and also on how well they correlated the 

data for the different orientations.  

4.3.3.1 Single Crystal HCF Failure Characterization 

The fracture surfaces of all the smooth HCF specimens were studied using 

optical and scanning electron microscopy (SEM) to determine the failure mechanism.  In 

all cases, octahedral slip was identified as the mode of failure based on the faceted 

appearance of the failure surface.  The fatigue initiation site and the facet on which it 
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occurred was identified and marked for each specimen using a laser location technique 

together with X-ray diffraction measurements (see Appendix T). Table 4.28 summarizes 

the specimens, their orientations, the maximum cyclic stress levels, and the fatigue lives 

(Nf).  Only the specimens that failed were considered in the present study. 

 

Table 4.28.  Summary of Specimens, Cyclic Stresses, Fatigue Lives, and Laue Angles 
 

Orientation Specimen ID Max. Stress Nf Laue Angles, deg

(ksi) (cycles) δ γ β
<001+15> T20WX-1 125 2.29E+04 -21.1 -13.2 29.2
<001+15> T20WX-2 130 6.72E+04 26.4 2.1 -19.4
<001+15> T20WX-3 120 5.94E+04 25.5 -3.1 -24.7
<001+15> T20WX-4 115 1.69E+05 -22.3 -5.5 27.6
<001+15> T20WX-5 135 1.39E+04 23.8 -9.4 -25.9
<001+15> T20WX-6 125 3.62E+04 -23.1 -4.3 25.6
<001+15> A2LLL-1 115 7.80E+04 11.1 -11.2 -38.5
<001+15> A2LLL-2 112.5 6.97E+04 -9.9 -9.3 39.0

<010> A2LKP-1 140 3.27E+04 0.9 1.8 44.3
<010> A2LKP-2 130 1.77E+05 1.2 -0.6 -43.3
<010> A2LKP-3 120 3.27E+05 -1.6 -1.5 45.4
<010> A2LKP-4 125 6.66E+04 -1.6 -1.5 44.0
<010> A2LKP-5 130 7.05E+04 1.5 1.1 -41.2
<010> A2LKP-6 135 2.99E+04 0.5 2.4 41.4
<010> A2LKP-7 120 6.26E+06 -0.1 -1.3 -36.4
<010> A2LKP-8 117.5 7.54E+06 -1.9 0.1 -43.6
<001> K1L1U-1 140 3.20E+04 1.3 6.3 42.6
<001> K1L16-2 120 2.38E+05 1.6 -0.6 -42.6
<001> K1L1H-1 130 9.86E+04 -2.4 -2.8 41.5
<001> K1L1H-2 110 7.98E+06 2.3 -2.3 -40.7
<001> K1L1V-1 120 1.73E+06 -2.9 6.2 -44.6  

   

4.3.3.2 Critical Plane Analysis 

The three Laue angles δ, γ, and β, measured in the failure characterization of 

each specimen formed the basis of the present analysis.  These three angles provided the 

relationship between the loading axis (Z-axis or specimen axis) and the orientation of the 

single crystal axes in 3-D space.  Using the applied fatigue stresses along the Z-axis, the 

stresses and strains in the crystal coordinate system were determined using 3-D 

transformation equations, which were based on the direction cosines derived from the 

three Laue angles.  The stresses and strains in the crystal coordinate system were then 
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resolved along the octahedral planes and the 12 slip directions using a second set of 

transformation equations.  These transformation equations and the direction cosines used 

in these equations are presented in Appendix U. 

4.3.3.3 Critical Plane Models 

Using these computed stresses and strains in the crystal coordinate system, it is 

possible to calculate multiaxial critical plane parameters to determine the amount of 

fatigue damage under a given set of applied cyclic stresses and strains.  Six different 

critical plane models were evaluated in the present study.  These were the Findley (FIN), 

Walls, Fatemi-Socie-Kurath (FSK), Shear stress range (SSR), Chu-Conle-Bonnen (CCB), 

and McDiarmid (McD) parameters.  The Walls and SSR parameters had shown good 

correlation with single crystal LCF data in earlier studies.  Details of the critical plane 

models and the critical plane search algorithms are given in Appendix V. 

4.3.3.4 Results and Discussion 

The critical planes determined by the different critical plane parameters are 

given in Table 4.29 along with the octahedral plane IDs on which fatigue initiation was 

actually observed.  The four different octahedral planes are identified using the 

convention indicated in Figure 4.124.  Some specimens exhibited fatigue initiations along 

the ridge formed by adjacent octahedral planes (Figure 4.125).  Two or more octahedral 

initiation planes were reported for such specimens. 

The specimens for which the predicted critical plane correlated with the 

observed plane have been highlighted for each different damage parameter in Table 4.30.  

Depending on the resolved stress and strain states on the octahedral planes, sometimes 

the parameters were found to be critical along more than one plane.  The SSR and McD 

parameters had a greater tendency to become critical on multiple planes.  The percent 

correlation for each parameter is indicated at the bottom of the table.  All parameters had 

a correlation of at least 50% with the observed critical planes.  The highest correlation 

was obtained using the CCB parameter, which uses an energy based formulation, 

followed by the Walls parameter, which tries to capture the mode mixity of the normal 

and shear strains on the octahedral planes.  Both the SSR and McD parameters, which 

rely on the shear stress range along the slip directions were equally successful in 
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predicting the critical planes.  Note that the McD parameter calculated using k = 0.1 was 

numerically very similar to the SSR parameter.  The FIN and the FSK parameters, which 

use a combination of the shear stress range or shear strain range and the normal stress to 

determine the critical plane were only 50% successful in correlating with the observed 

critical planes. 

The degree of correlation of the ‘predicted’ and the ‘actual’ critical planes is also 

a function of the statistical distribution of defects and their propensity to initiate fatigue 

damage on a certain octahedral plane.  In the above correlation it is assumed that only 

defects along the ‘predicted’ critical planes lead to fatigue damage initiation.  However, 

this approach neglects the statistical nature of the defect distributions.  In Table 4.30, for 

example, the observed critical planes for three specimens (A2LKP-1, A2LKP-6, and  

K1L1U-1) were not predicted by any of the models.  A combined statistical and 

micromechanical approach might be able to better capture the ‘actual’ phenomenon that 

leads to fatigue initiation in a single crystal material. 

Table 4.29.  Observed and Predicted Critical Octahedral Planes 
 

 Orientation Specimen ID 
Observed FIN WALLS FSK SSR CCB McD

<001+15> T20WX-1 3 3 3 3 2 3 2
<001+15> T20WX-2 1 1 1 1 4 1 4
<001+15> T20WX-3 1 4 1 4 1 1 1
<001+15> T20WX-4 3 3 3 3 2 3 2
<001+15> T20WX-5 1 4 1 4 1 1 1
<001+15> T20WX-6 3 3 3 3 2 3 2
<001+15> A2LLL-1 1, 2 4 4 4 1, 3 1, 4 1, 3
<001+15> A2LLL-2 3 3 3 3 2 3 2

<010> A2LKP-1 4 1 1, 2 1 1, 2 2 1, 2
<010> A2LKP-2 1, 2 4 1, 4 4 1, 4 1 1, 4
<010> A2LKP-3 3, 4 3 3 3 2, 3, 4 3 2, 3, 4
<010> A2LKP-4 3 3 3 3 2, 3, 4 3 2, 3, 4
<010> A2LKP-5 1, 2 1 1 1 1, 2, 4 1 1, 2, 4
<010> A2LKP-6 3, 4 1 1, 2 1, 2 1, 2 2 1, 2
<010> A2LKP-7 1 3, 4 3, 4 3, 4 3, 4 4 3, 4
<010> A2LKP-8 1, 2, 3 2, 3 3 2, 3 2, 3 3 2, 3
<001> K1L1U-1 4 1 2 1 1, 2 2 1, 2
<001> K1L16-2 1 4 1, 4 4 1, 4 1 1, 4
<001> K1L1H-1 3, 4 3 3 3 2, 3, 4 3, 4 2, 3, 4
<001> K1L1H-2 1 4 4 4 1, 3, 4 4 1, 3, 4
<001> K1L1V-1 2 2 2 2 1, 2 2 1, 2

% Correlation: 50.0 68.2 50.0 54.5 68.2 54.6
Curve-fit, R2 0.53 0.52 0.60 0.67 0.48 0.54

Product 26.50 35.45 30.00 36.55 32.73 29.46

Observed and Predicted Critical Octahedral Planes 
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Figure 4.124.  Plan view of octahedral <111> planes and <110> family of slip directions. 

 

 

 
Figure 4.125.   SEM photo showing fatigue initiation along ridge between  

adjacent octahedral planes. 
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The different parameters were also evaluated by determining how well they 

were able to correlate the fatigue data for the different specimen orientations.  Figure 

4.126 graphically shows the HCF data in Table 4.28 as an S-N plot.  Figure 4.126 clearly 

indicates that the traditional S-N approach cannot be used to correlate the fatigue data for 

the different specimen and loading orientations.  It underscores the need for a new 

paradigm for the fatigue analysis of single crystal materials.   

PWA 1484, Max Cyclic Stress versus Life, 1100 F, R =  0.1
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Figure 4.126.  Max cyclic stress versus life for PWA 1484 at 1100oF and R = 0.1. 

 
Figure 4.127 shows a plot of the Walls damage parameter versus life for all 

the specimens using the applied cyclic stresses (from Table 4.28) and the measured 

crystal orientations (Table 4.28) for each specimen.  The details of the analysis are given 

in Appendix W, along with the plots for the other damage parameters. 

From an inspection of the results in Figure 4.127 (and Figures W1 through 

W5 of Appendix W), it appears that the SSR, CCB, McD, FSK and the Walls parameters 

were quite successful in correlating the fatigue data for the different specimen 
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orientations. The product of the correlation coefficient between the calculated and 

observed critical planes and the R2 value of the damage parameter curve-fit to the fatigue 

data (see Table 4.29 and Appendix W) was used as a measure of how well the damage 

parameters performed.  This evaluation indicated that the Walls, SSR, and CCB 

parameters were well suited for the HCF analysis of single crystal materials. 

PWA 1484, Walls Damage Parameter versus Life, 1100 F, R = 0.1
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Fig. 4.127.  Walls damage parameter versus life for PWA 1484 at 1100oF and R = 0.1. 

 
 

4.3.4 Stress Invariant Modeling  

Because single crystal superalloys have anisotropic elastic and inelastic 

properties, their HCF behavior under complex loading conditions such as may exist in 

turbine blades bears examination.  This section will examine one class of models for 

complex conditions, namely, stress invariant models.  These models rely on the 

application of a single scalar quantity to represent the damage state of the material for an 

arbitrary loading, such as a multiaxial state of stress at a given orientation to the 

symmetry axes of the material, or even a uniaxial load applied at some orientation to the 

symmetry axes.  One of the virtues of such models is their relative simplicity, and they 

are widely used for isotropic materials.  However, their application to anisotropic 
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materials such as single crystal superalloys is less well established and will be examined 

here in view of the data generated in this program.  The first section, 4.3.4.1, will 

examine the application of stress invariant models to complex stress states at 1100°F.  

The second section, 4.3.4.2, will be devoted to the application of these models at 1900°F 

and to the development of models for incorporating time dependent behavior into HCF at 

this high temperature. 

4.3.4.1 1100°F 

The most common evaluation of stress invariant models is done using data 

obtained from different stress states.  Data from torsion, axial, and torsion + axial HCF 

tests on PWA 1484 were presented in Sections 4.3.1.7, 4.3.1.5, and 4.3.1.4, respectively.  

These results can be used to evaluate two simple models: effective stress, and maximum 

principal stress.  The effective stress model assumes that at an equal level of effective 

stress the lives are the same, independent of the stress components that produced the 

effective stress.  The effective stress is given by: 

( ) ( ) ( ) ( )[ ] 2/1222222
eff 6

2
2

xyxyxyxzzyyx τττσσσσσσσ +++−+−+−=  (4.30) 

where, the normal stresses σ and shear stresses τ are in the specimen coordinate system 

(may be non-principal values).  This is the most widely used model for isotropic 

materials.  An alternate model is the maximum principal stress: 

 σmax = Maximum (σ1, σ2, σ3) (4.31) 
 
where, σ1,σ2,and σ3 are the three principal stresses derived from the stress state existing 

at the point of interest. 

The stress states examined in Sections 4.3.1.4 and 4.3.1.7 include pure tension, 

pure torsion, in-phase torsion plus tension, and 90° out of phase torsion plus tension.  The 

stress invariant models are evaluated for these as shown in Table 4.30.  The first three 

loading states are straightforward; the last one requires attention because the shear and 

axial stresses are not proportional, but vary differently.  Thus each point in the cycle 

needs to be checked to arrive at the maximum value of each of the models.  
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Table 4.30.   Effective and Maximum Stress Models for Torsion and Axial 
Loading Conditions 

 
Stress State σz τyz Effective stress Maximum stress 

pure axial = σaxial = 0 = σaxial = σaxial 

pure torsion = 0 = τtorsion = √3τtorsion = τtorsion 

torsion + axial, 
(in-phase) 

= σaxial = τtorsion = σaxial = 2 σaxial 
= 

2τtorsion 

= (1 + √5)/2 σaxial 

= (1 + √5)/2 τtorsion 

torsion + axial, 
(90° out of phase) 

= σaxial = τtorsion =√3 τtorsion = σaxial 

 

For the cycle with equal torsion and axial stress applied 90° out of phase, the 

maximum effective stress occurs when the torsion is maximum, but the maximum 

principal stress occurs when the either the torsion or axial loading is maximum.  Also, the 

effective stress never goes to zero in this cycle, since some component of load, axial or 

torsion, is always present, and the effective stress is not sensitive to the sign of the stress.  

However, since there is only one result for this cycle, and that one is a runout, it did not 

seem worthwhile to go into this cycle in great detail.  Therefore only the maximum 

values in this cycle were used for comparison. 

One further complication exists: some of the tests were performed at R = -1, 

while others were at R = 0.1.  The pure axial results presented in Section 4.3.1.5 clearly 

show a stress ratio dependence of HCF at 1100°F.   Therefore the results were segregated 

by stress ratio and compared only within a given R. 

The comparisons of different stress states are shown in Figures 4.128 through 

4.131.  At R = -1, three conditions were available for comparison: axial (at 59 Hz), 

torsional (at 2 Hz), and axial + torsional at 90° out of phase (2 Hz).  When compared on 

the basis of effective stress, Figure 4.128, there is a distinct difference between the axial 

and torsional results, with the torsional loading showing greater capability than the axial 

loading.  The axial + torsional 90° out of phase loading was also above the axial 

capability by an indeterminate amount.  When these same results are compared on the 
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basis of maximum principal stress, Figure 4.129, the grouping is much tighter and if the 

runouts are ignored, the axial and torsional results fall on top of each other, suggesting 

that maximum principal stress governs HCF at this temperature. 
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Figure 4.128.   Effect of stress state on 1100°F, R = -1 HCF of PWA 

1484 using effective stress. 
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Figure 4.129.   Effect of stress state on 1100°F, R = -1 HCF of PWA  

1484 using maximum principal stress. 
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The R = 0.1 results are similarly compared in Figures 4.130 and 4.131.  While 

here neither model fully collapses the data as well as seen at R = -1, again the maximum 

principal stress model does noticeably better.  Evidently the difference in frequency (2 vs. 

59 Hz) between the axial and torsion results is not significant, since axial tests performed 

at 2 Hz on torsional specimens showed similar capability to the baseline 59 Hz results at 

R = 0.1.  Therefore, it appears that maximum principal stress, and not effective stress, is 

the most suitable stress invariant model for evaluating stress state effects at 1100°F. 
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Figure 4.130.   Effect of stress state on 1100°F, R = 0.1 HCF of PWA 1484 

using effective stress. 
 
 

4.3.4.2 1900°F 

A less extensive study of the effect of stress state was performed at 1900F, as 

described in Section 4.3.1.7.B.  Using these torsional and axial data, the effective stress 

and maximum principal stress models were compared as was done at 1100°F.  Figure 

4.132 shows the torsional and axial results compared on an effective stress basis and 

Figure 4.133 shows them on a maximum principal stress basis.  At 1900°F the trend is 
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Figure 4.131.   Effect of stress state on 1100°F, R = 0.1 HCF of PWA 1484 

using maximum principal stress. 
 
 
 

 

 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 

Figure 4.132. Effect of stress state on 1900°F, R = -1 HCF of PWA 1484 
using effective stress. 
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Axial vs Torsion HCF , R = -1, 1900F
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Figure 4.133. Effect of stress state on 1900°F, R = -1 HCF of PWA 1484 

using maximum principal stress. 
 
 

just the opposite of that seen at 1100°F: At 1900°F effective stress collapses the axial and 

torsional results very well and the maximum principal stress model does not.  Perhaps the 

change in behavior from 1100°F to 1900°F has to do with the changes in the nature of the 

deformation at the two temperatures.  At 1100°F slip systems are more limited and slip 

occurs in intense bands on few planes.  At 1900°F, additional (cube) slip systems are 

activated and deformation is more homogeneous.  This is reflected in the constitutive 

behavior, which showed relatively little anisotropy at 1900°F.  This more isotropic 

behavior at 1900°F may make its behavior more like that of polycrystalline isotropic 

metals which usually follow effective stress models. 

4.3.4.3   1900°F HCF – Rupture Interaction  

A. Objective and Approach 

Typical turbine blade applications reach temperatures of 1900°F where time-

dependent mechanisms, particularly creep, become significant.  Creep can cause the 

initial mean stress levels created by a combination of centrifugal and thermal stresses to 

vary with time.  Variable mean stress history and a high temperature environment 
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complicate prediction of the HCF capability of the blade.  The objective of this study was 

to investigate models to predict HCF-rupture capability at 1900°F under such time-

varying loading conditions. 

The physical appearance of the crack surfaces from the baseline 1900°F HCF 

tests (Section 4.3.1.5.B) suggests that there are two distinct mechanisms responsible for 

failure at these test conditions.  Figure 4.134 and 4.135 show typical fracture surfaces for 

a low R HCF test and high R test.   

 

 

 

 

At low mean stress, the failure process appears to be dictated by fatigue whereby 

a single crack initiates and grows to critical size.  A rupture-like failure mechanism 

involving internal voiding and necking appears to dominate at high mean stress 

conditions.  At intermediate stress ratios, failure is probably due to some combination of 

both fatigue and rupture processes.   

Based on these observations, the fatigue and rupture behavior of the material were 

modeled independently.  The two models were then combined linearly to create a mean 

Figure 4.134.   Typical Fracture 
Surface for Low R HCF Test, 
1900°F, 59 Hz 

Figure 4.135.  Typical Fracture 
Surface for High R HCF Test, 
1900°F, 59 Hz 
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stress dependent model for the material applicable to all regimes of the Goodman 

diagram.  The fatigue capability of the material was represented with a Walker model.  

To model the rupture capability of the material, two primary models were considered: 1) 

a mean stress rupture model and 2) a cumulative summation of rupture damage model as 

described below.  The linear combinations were used to back-predict life for all tests that 

were performed.   

Data from the baseline HCF testing at 1900°F (Section 4.3.1.5.B), 1900°F rupture 

tests (Section 4.3.1.6), and 1900°F frequency effect HCF data at R = 0.1 and R = -1 

(Section 4.3.1.2.B) were used in generating the models.  Additional tests with more 

complex load histories were also performed to assess the capability of the models.  

Results for these tests will be given in Section 4.3.4.3.D. 

 B.  1900°F Goodman Diagram and Walker Model 

A Goodman diagram was constructed at a life of ten million cycles based 

on the 1900°F HCF test data presented in Section 4.3.1.5.  The stress-life behavior was 

characterized for each stress ratio using a power law relationship: 

 m
altf kN σ=  (4.32) 

Data was used only from <001> oriented specimens with the exception of 

eight specimens oriented at <001+15> that were tested at a stress ratio of 0.8.  The 

<001+15> oriented data fall on top of the <001> data and consequently were included in 

the data set to characterize the R = 0.8 stress-life behavior.  Values for the constants k 

and m for each tested R are shown in Table 4.31, along with the standard error, Se, in log 

life. 

Table 4.31.  Standard Errors for S-N Empirical Fits at 1900°F 

 R m k Se 
-1 -12.4 2.0E+27 0.290

-0.333 -3.0 1.9E+11 0.173
0.1 -5.9 5.6E+14 0.177
0.5 -4.9 1.0E+12 0.084
0.8 -7.5 1.9E+11 0.144
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The standard error for each fit was determined using the following formula: 
 

( )2

2−

−Σ
=

N
NN

S obspred
e

loglog
 (4.33) 

 
where, N is the number of tests and 2 is the number of constants in the model.   

 Using the empirical S-N relationships, a Goodman Diagram was 

constructed at a life of ten million cycles (Figure 4.136).   
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Figure 4.136.  1900°F Goodman Diagram for PWA 1484, 10 Million Cycles. 

 

The Goodman Diagram shows the HCF capability of PWA 1484 at 1900°F 

for combinations of alternating and mean stress.  The shape of the diagram is fairly 

conventional for single crystal superalloy.  A gradual decrease in alternating stress 

capability is accompanied by an increase in allowable mean stress.  Above a stress ratio 

of 0.5, the alternating stress capability drops off rapidly as the stress rupture capability is 
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approached.  The stress rupture capability can be represented as an asymptote at R = 1 at 

46 hours, the time for 107 cycles at 59 Hz. 

A Walker model was used to represent the fatigue behavior of the material.  

In the Walker model, an equivalent alternating stress is defined to take into account 

different mean stress conditions.  This equivalent alternating stress is then used in the 

stress-life power law relationship as shown below: 

m
altequivalentf kN _σ=  (4.34) 

where, the equivalent alternating stress is given by: 

 ( )11 −−= w
altaltequivalent R)(_ σσ  (4.35) 

 

 
max

min
σ
σ

=R  (4.36) 

 
The Walker exponent, w, was determined by taking data from several stress 

ratios and iterating until the standard error in predicted life was minimized.  The Walker 

model collapsed the S-N response over a range of stress ratios.  Normally, the Walker 

exponent is determined over the full range of stress ratio data that is available, in this case 

R = -1 to R = 0.8.  However, the goal was to capture only those specimens failing in a 

pure fatigue mode.  As evident by the HCF fracture surfaces, failure was dominated by 

fatigue at low stress ratios or low mean stress loading conditions.   

Two approaches were considered for fitting the Walker model.  The first 

(termed Walker Model A in what follows) used 59 Hz HCF data at all R ≤ 0.1.  A second 

approach (Walker Model C) was examined because despite the fatigue based appearance 

of specimens at R = 0.1 tested at 59 Hz, the high frequency HCF results in Section 

4.3.1.2 showed that a time-dependent process is present at this test condition. At a 

constant stress level at R = 0.1, fatigue life in cycles increased as the frequency was 

increased from 59 Hz to 900 Hz (Section 4.3.1.2).  A linear line with a slope of 1:1 

approximated the data fairly well indicating a fully time dependent process up to the 

highest frequency that was tested, 900 Hz.  A transition to time-independent behavior 

with cycles to failure maintaining a constant level may exist just beyond 900 Hz or could 
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occur well beyond that frequency.  As a result, the estimate of the Walker exponent for 

pure HCF may be affected by using the lower 59 Hz data.  Therefore the second approach 

used only high frequency data (370-400 Hz) at R=0.1 in combination with 59 Hz data at 

R = -1 and R = -0.333 to represent time independent behavior.  Walker model constants 

for each subset of HCF data are shown in Table 4.32. 

 

Table 4.32.  Constants for 1900°F Walker Models 

Walker 
Model  

HCF Data 
Subset 

Number 
of Tests 

K m Walker 
exponent, w 

Standard 
Error 

Walker A R ≤ -0.1 @ 59 
Hz 

24 5.83E16 -7.17 0.165 0.27 

Walker C R ≤ -0.333 @ 59 
Hz, R = 0.1 @ 

370-400 Hz 

20 7.63E16 -6.98 0.3817 0.33 

 

 

In Figure 4.137, Walker Model A approximates the 59 Hz HCF data fairly 

well up to an R ratio of 0.1.  Walker Model C shows a benefit in alternating stress 

capability at R = -0.333 and R = 0.1 compared to the other models.  Both Walker Models 

deviate from the 59 Hz Goodman diagram above R = 0.1 as the mean stress increases and 

time dependent failure mechanisms reduce the cyclic capability of the material. 

C. 1900°F Rupture Models  

Two approaches were considered in modeling the rupture behavior of PWA 

1484 at 1900°F.  The first approach assumes that only the applied mean stress contributes 

to rupture damage.  This approach will be referred to as the Mean Stress Rupture Model.  

The second method, the Cumulative Rupture Model, considers the summation of rupture 

damage from applied stress over the entire fatigue cycle.   

The Mean Stress Rupture Model is represented by the expression in Equation 

(4.37) that relates mean stress to time to rupture.  The expression was derived by fitting a 

power law relationship to the four tests that were tested at R = 1 until rupture.  The 

equation is shown for reference: 
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Figure 4.137.  Walker Models A and C with 59 Hz 107 Cycles Goodman Diagram. 

 

 

0695910192 .. −= meanf xt σ  (4.37) 
 
where, σ is the applied mean stress in ksi and tf is the time to failure in hours. 
 

In the Cumulative Rupture Model, the rupture damage due to the applied 

stress is integrated over the loading history.  For a cyclic load, the applied stress is 

expressed as a sinusoidal function: 

)sin(
τ
πσσσ t

altmean
2

+=   (4.38) 

 
where, τ is the period of the cycle in hours.  

The load cycle is divided into small time increments, ∆t.  At each time 

increment, the applied stress is calculated and the corresponding rupture life is 

determined using Equation 4.35.  The rupture damage for the time increment is calculated 

using the expression 
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m
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=

∆
=

σ
 (4.39) 

 
Damage fractions for ∆t are summed over the loading cycle.  The number of 

cycles to failure can be calculated using the assumption that failure occurs when the 

rupture damage equals one. 

tcycle DD ∆Σ=  (4.40) 

cycleffailure DND == 1  (4.41) 

cycle
f D

N 1
=  (4.42) 

 
These calculations were performed in Excel or in a program written in 

BASIC.   The period of the cycle was divided into one hundred time increments when 

using Excel.   

When the stress ratio is less than zero, a portion of the loading cycle is 

compressive.  Two scenarios were considered when applying the Cumulative Rupture 

Model: a) compressive stress is neither damaging nor beneficial to life, and b) 

compressive stress is damaging to life.  As an example, consider a sinusoidal applied 

stress with mean stress of 5-ksi and alternating stress of 35-ksi.  Using the cumulative 

rupture model when compressive stress does not contribute to damage the time to failure 

is 91 hours vs. 76 hours if compressive stress is considered damaging.  The predicted 

time to failure is 627,140 hours using the mean stress rupture model where only mean 

stress contributes to rupture damage.  In total, three rupture models were considered: 

mean stress rupture model, cumulative rupture without compressive damage, and 

cumulative rupture with compressive damage.   

Figure 4.138 shows the rupture model predictions for a constant life of 10 

million cycles at 59 Hz compared to the HCF test data.  Both cumulative rupture models 

approximate the shape of the Goodman diagram.  The mean stress model predicts a mean 

stress of 32.5 ksi independent of R for 107 cycles at 59 Hz. 
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Figure 4.138.   1900°F 107 cycle Goodman diagram at 59 Hz with  

rupture model predictions. 

 

D.  Multi-Step and Variable Mean Stress History Tests  

Additional tests were run with multi-step load histories to assess damage 

accumulation and loading sequence effects.  Cyclic tests were also performed in which 

the mean stress was changed linearly as a function of time and the alternating stress was 

held constant.  These tests were performed to simulate the loading on turbine airfoils 

where the mean stress varies with time due to creep effects. PtAl coated cylindrical HCF 

specimens were used with a nominal <001> crystal orientation.  Testing was performed 

at Metcut at 59 Hz at 1900°F.   

Results for the multi-step tests and variable mean stress tests are shown in 

Tables 4.33 and 4.34.  Variable mean stress tests that were started at a mean stress of 0 

with high alternating stresses generally had a fracture surface that was typical of fatigue  
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failures; the fracture surfaces were flat and failure initiated at a single site.  For tests 

started at a high mean stress and low alternating stress, the fracture surfaces were rough 

and dimpled.  Coating cracks were evident in the specimens that were removed before 

failure.   

Table 4.33.  Multi-Step HCF Test Results for PWA 1484 at 1900°F 

 
 

Table 4.34.  Variable Mean Stress Test Results for PWA 1484 at 1900°F 

 
 

Specimen
1st Loading
Condition

Observed Cycles or
Time loaded in
Rupture for 1st

Condition
2nd Loading

Condition

Observed Cycles
or Time loaded in
Rupture for 2nd

Condition Notes

Total
Observed Life

(hrs)

A2LL9-1 Rupture at 35 ksi 15 hrs HCF at alt stress
42.5 ksi, R = -1 5,756,158 Failure, Gage 42

A2LLC-4 Rupture at 35 ksi 15 hrs
HCF at alt stress
42.5 ksi, R = -1 3,732,855 Failure, Gage 33

A2LLE-2
HCF at alt stress
42.5 ksi, R = -1 4,510,342 Rupture at 35 ksi 37.8 hrs Failure, Gage 59

A2LLE-1
HCF at alt stress
42.5 ksi, R = -1 4,460,416 Rupture at 35 ksi 35.6 hrs Failure, Gage 57

A2LKU-5
HCF at alt stress 7

ksi, R = 0.6 5,136,868
HCF at alt stress
17.2 ksi, R = 0.1 35,000,000 Run out 189

A2LL9-5
HCF at alt stress
17.2 ksi, R = 0.1 8,231,780

HCF at alt stress 7
ksi, R = 0.6 15,044,503 Run out 110

A2LKU-4

HCF at alt stress
10.4 ksi, R = 0.5,

24 hrs 5,097,729
HCF at alt stress
21.0 ksi, R = 0.1 13,140,545 Failure, Gage 86

A2LL9-4

HCF at alt stress
21.0 ksi, R = 0.1,

24 hrs 5,101,208

HCF at alt stress
10.4 ksi, R = 0.5, to

failure 11,277,793 Failure, Gage 77

A2LKV-3

HCF at alt stress
10.4 ksi, R = 0.5,

24 hrs 5,098,486
HCF at alt stress
21.0 ksi, R = 0.1 12,676,369 Failure, Gage 84

A2LKV-2

HCF at alt stress 13
ksi, R = 0.409, 16

hrs 3,398,400

HCF at alt stress 13
ksi, R = 0.316, to

failure 15,491,220 Run out 89

Specimen Condition Observed Cycles Notes

Approximate Mean 
Stress at Failure or Test 

Removal (ksi)

A2LLP-3
HCF at alt stress 10.4 ksi, initial mean stress 20.0 

ksi, increase mean stress 1 ksi every hour 5,135,071 failure, gage 44

T20W9-1
HCF at alt stress 30 ksi, initial mean stress 0 ksi, 

increase mean stress 1 ksi every hour 7,211,897 failure, gage 34

T20WA-5
HCF at alt stress 8 ksi, initial mean stress 22 ksi, 

increase mean stress 0.25 ksi every hour 11,457,556 failure, gage 35

T20W9-2
HCF at alt stress 8 ksi, initial mean stress 22 ksi, 

increase mean stress 0.25 ksi every hour 11,256,673 failure, gage 35

T20WA-1
HCF at alt stress 30 ksi, initial mean stress 0 ksi, 

increase mean stress 1 ksi every hour 4,979,607 failure, gage 23

T20W9-5
HCF at alt stress 20 ksi, initial mean stress 0 ksi, 

increase mean stress 1 ksi every hour 8,235,572 failure, gage 39

T20WA-4
HCF at alt stress 20 ksi, initial mean stress 40 ksi, 

decrease mean stress 1 ksi every hour 13,378,415 run-out -23

T20W9-4
HCF at alt stress 8 ksi, initial mean stress 38 ksi, 

increase mean stress 0.25 ksi every hour 15,625,693 run-out 20
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E.   Linear Combination of Models 

The simplest approach to modeling fatigue-rupture interaction is a linear 

combination of the respective damage.   

1=+ rupturefatigue DD  (4.43) 
 

The linear model was used to back-predict life for all tests that were 

performed.  The two variations of the Walker model were considered in combination with 

the three rupture models for a total of six linearly combined models.  The two cumulative 

rupture models were considered as independent models and were used to back-predict all 

the tests, making a total of eight model combinations evaluated.   

For the linear combination models, life was predicted on a time basis.  A 

time basis was more appropriate to represent the tests with multiple loading conditions 

that had a pure rupture component.  For those tests where two loading conditions were 

applied to the specimen, life was predicted only for the second leg of the test.  Predictions 

for the two leg tests are detailed below.   

The damage for the first loading condition was calculated and designated as 

D1.  For linear-combination models, this damage is the result of both fatigue and rupture.   
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predrupt
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t
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D
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1 +=  (4.44) 

 
The damage for the second loading condition was calculated assuming the 

total damage to failure is equal to one. Knowing the life fraction left for the second 

loading condition, the predicted time to failure can be calculated.   

 
12 1 DD −=  (4.45) 
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For pure rupture loading (R = 1), the predicted fatigue life was assumed to 

be essentially infinite (4700 hours) since there is no alternating stress.  Similarly, for 

cyclic loading with a mean stress of zero the predicted rupture life due to mean stress was 

assumed to be 109 cycles.  If the damage fraction for the first loading condition was 

calculated to be greater than one, then the predicted life for the second loading condition 

was taken to be zero.   

For each test that was performed, the life was predicted with each of the 

eight models.  Models were down-selected by performing an analysis of variance on the 

log ratio of observed life to predicted life for each set of tests.  A test for which the 

predicted life was exactly equal to the observed life gives a log ratio of 0 (observed time / 

predicted time = 1, log 1 = 0).  Numbers were assigned to each model to facilitate the 

analysis; model numbers are shown in Table 4.35.  The best models for each test type 

were noted in bold in the tables below. 

 
Table 4.35.  Model Names and Assigned Numbers 

 
Model 

Number 
Model 

1 Linearly Combined Walker Model A & Mean Stress Rupture Model 
2 Linearly Combined Walker Model C & Mean Stress Rupture Model 
3 Cumulative Rupture Model with No Compressive Damage 
4 Linearly Combined Walker Model A & Cumulative Rupture Model with No 

Compressive Damage 
5 Linearly Combined Walker Model C & Cumulative Rupture Model with No 

Compressive Damage 
6 Cumulative Rupture with Compressive Damage 
7 Linearly Combined Walker Model A & Cumulative Rupture Model with 

Compressive Damage 
8 Linearly Combined Walker Model C & Cumulative Rupture Model with 

Compressive Damage 
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The capability of these eight models were evaluated with all the test data 

combined and then with five subsets of the data representing major test types of: 59 hz, 

high frequency R = -1, high frequency R = 0, multi-step, and variable mean stress. 

The models were first evaluated by calculating the overall standard 

deviation of the log ratio of life with all the test types combined.  In total, life predictions 

were calculated for ninety tests.  Figure 4.139 shows the Analysis of Variance for the 

eight models when considering all test predictions taken together.  Model 2 is shown to 

have a mean of log ratio life that is closest to zero.  However, Model 1 has the lowest 

standard deviation of fit of all the models and has a mean fit close to zero, so it represents 

a good alternative. 

Analysis of Variance for log Tobs/Tpred  
Source     DF        SS        MS        F        P 
Model       7    22.081     3.154    16.80    0.000 
Error     712   133.678     0.188 
Total     719   155.758 
                                   Individual 95% CIs For Mean 
                                   Based on Pooled StDev 
Level       N      Mean     StDev  ----+---------+---------+--------
-+-- 
1          90    0.0951    0.3361                (----*---)  
2          90    0.0222    0.4568             (---*----)  
3          90   -0.1808    0.5778  (----*---)  
4          90    0.2831    0.3495                          (---*----
)  
5          90    0.2411    0.3912                        (---*----)  
6          90   -0.0872    0.4933       (----*---)  
7          90    0.3244    0.4109                            (---*--
--)  
8          90    0.2568    0.3989                        (----*---)  
                                   ----+---------+---------+--------
-+-- 
Pooled StDev =   0.4333             -0.20      0.00      0.20      
0.40 

 
Figure 4.139.  Analysis of variance for all predicted tests at 1900°F fitted to models. 

 
 

In addition, all eight models were evaluated against data subsets to look for 

bias in the models.  The first subset so evaluated was the baseline 59 Hz 1900°F HCF 

tests.  The analysis of variance on the log of the ratio of observed to predicted life showed 

that the model type was a significant factor.  Of the eight models, Models 1, 3, and 6 had 
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averages that were closest to 0.  The standard deviation of all the models were similar.  

Figure 4.140 shows the analysis of variance for this type of test. 

Analysis of Variance for log observed time /predicted time  
Source     DF        SS        MS        F        P 
Model       7    3.9719    0.5674    10.09    0.000 
Error     304   17.0896    0.0562 
Total     311   21.0615 
                                   Individual 95% CIs For Mean 
                                   Based on Pooled StDev 
Level       N      Mean     StDev  -+---------+---------+---------+-
---- 
1          39    0.0326    0.2065          (----*----)  
2          39   -0.0845    0.2344  (----*----)  
3          39   -0.0488    0.2882     (----*----)  
4          39    0.2064    0.2307                      (----*----)  
5          39    0.1487    0.2258                  (----*----)  
6          39    0.0208    0.2368         (----*----)  
7          39    0.2328    0.2350                        (----*----)  
8          39    0.1728    0.2314                    (----*----)  
                                   -+---------+---------+---------+-
---- 
Pooled StDev =   0.2371          -0.15      0.00      0.15      0.30 

 
Figure 4.140.   Analysis of variance for baseline HCF tests at 1900°F, 

59 Hz fitted to models. 
 
 

The analysis of pure rupture tests fitted with the models is shown in Figure 

4.141.  All eight models were able to predict pure rupture capability as would be 

expected. 

For varying frequency tests at R = -1, the best models on average were 

Models 1, 4, 5, and 7, as shown in Figure 4.142.   

The analysis of variance for varying frequency HCF tests at R = 0.1 showed 

that there was a significant difference between the different models.  Figure 4.143 shows 

that the best models were Models 2, 3, and 6. 

Figure 4.144 shows that Models 1, 2, 3, and 6 fitted the multi-step tests best. 

The analysis of variance for tests with varying mean stress histories indicated 

that there was no significant difference between the model capabilities since the p value 

was greater than 0.05.  Models 1, 2, 3, and 6 had average log life ratios closest to 0.  

Results from the analysis are shown in Figure 4.145.  
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Analysis of Variance for log observed time / predicted time 
Source     DF        SS        MS        F        P 
C2          7  0.000090  0.000013     0.05    1.000 
Error      24  0.006412  0.000267 
Total      31  0.006502 
                                   Individual 95% CIs For Mean 
                                   Based on Pooled StDev 
Level       N      Mean     StDev  -----+---------+---------+-------
--+- 
1           4   0.00025   0.01721   (-------------*-------------)  
2           4   0.00025   0.01721   (-------------*-------------)  
3           4  -0.00000   0.01715   (-------------*-------------)  
4           4   0.00400   0.01726      (-------------*-------------)  
5           4   0.00000   0.00000   (-------------*-------------)  
6           4   0.00025   0.01721   (-------------*-------------)  
7           4   0.00400   0.01726      (-------------*-------------)  
8           4   0.00250   0.01893     (-------------*-------------)  
                                   -----+---------+---------+-------
--+- 
Pooled StDev =  0.01635              -0.012     0.000     0.012     
0.024 

 
Figure 4.141.  Analysis of variance for rupture tests at 1900°F fitted to models. 

 

 

 
Analysis of Variance for log observed time / predicted time  
Source     DF        SS        MS        F        P 
C2          7    28.713     4.102    15.17    0.000 
Error     120    32.451     0.270 
Total     127    61.163 
                                   Individual 95% CIs For Mean 
                                   Based on Pooled StDev 
Level       N      Mean     StDev  --+---------+---------+---------+ 
1          16    0.0428    0.4415                    (----*---)  
2          16    0.3157    0.7698                         (---*----)  
3          16   -1.0541    0.5573  (---*----)  
4          16    0.1001    0.4358                     (----*---)  
5          16    0.1688    0.4332                       (---*---)  
6          16   -0.7531    0.5574       (---*----)  
7          16    0.1452    0.4352                      (---*----)  
8          16    0.2037    0.4333                       (---*----)  
                                   --+---------+---------+---------+ 
Pooled StDev =   0.5200           -1.20     -0.60      0.00      
0.60 

Figure 4.142.   Analysis of variance for varying frequency tests at 
R = -1, 1900°F fitted to models. 
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Analysis of Variance for log observed time / predicted time  
Source     DF        SS        MS        F        P 
C2          7     5.922     0.846     4.89    0.000 
Error      88    15.227     0.173 
Total      95    21.149 
                                   Individual 95% CIs For Mean 
                                   Based on Pooled StDev 
Level       N      Mean     StDev  -+---------+---------+---------+- 
1          12    0.3118    0.5151               (------*------)  
2          12   -0.0227    0.3624      (-----*------)  
3          12   -0.1344    0.5184  (------*------)  
4          12    0.5394    0.2860                      (-----*------
)  
5          12    0.2667    0.2708              (------*-----)  
6          12   -0.0554    0.5904     (-----*------)  
7          12    0.5572    0.3209                      (------*-----
-)  
8          12    0.3025    0.3348               (------*-----)  
                                   -+---------+---------+---------+- 
Pooled StDev =   0.4160          -0.35      0.00      0.35      0.70 

Figure 4.143.   Analysis of variance for varying frequency tests at R = 0.1, 
1900°F fitted to models. 

 
 
 

Analysis of Variance for log T/T  
Source     DF        SS        MS        F        P 
C2          7     5.308     0.758     3.67    0.002 
Error      72    14.864     0.206 
Total      79    20.172 
                                   Individual 95% CIs For Mean 
                                   Based on Pooled StDev 
Level       N      Mean     StDev  ---+---------+---------+---------
+--- 
1          10    0.2567    0.2192    (-------*--------)  
2          10    0.1970    0.2348  (--------*-------)  
3          10    0.3502    0.4133       (-------*-------)  
4          10    0.6871    0.3536                (--------*-------)  
5          10    0.8200    0.6052                    (-------*------
--)  
6          10    0.3441    0.2027       (-------*-------)  
7          10    0.8614    0.6384                     (--------*----
---)  
8          10    0.7750    0.6615                   (-------*-------
)  
                                   ---+---------+---------+---------
+--- 
Pooled StDev =   0.4544             0.00      0.35      0.70      
1.05 

 
Figure 4.144.   Analysis of variance for multi-step tests, 59 Hz, 1900°F fitted to 

models. 
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Analysis of Variance for log Tobs/Tpred  
Source     DF        SS        MS        F        P 
C2          7     1.263     0.180     1.55    0.169 
Error      55     6.394     0.116 
Total      62     7.657 
                                   Individual 95% CIs For Mean 
                                   Based on Pooled StDev 
Level       N      Mean     StDev  ----+---------+---------+-------- 
1           8    0.0631    0.3770         (---------*--------)  
2           8   -0.1069    0.6517  (---------*--------)  
3           8    0.1424    0.2909            (---------*--------)  
4           8    0.3269    0.2011                   (---------*-----
----)  
5           8    0.2750    0.2188                 (---------*-------
--)  
6           7    0.1624    0.3080            (---------*----------)  
7           8    0.3270    0.2011                   (---------*-----
----)  
8           8    0.2700    0.2278                 (---------*-------
-)  
                                   ----+---------+---------+-------- 
Pooled StDev =   0.3409             -0.25      0.00      0.25      
0.50 

 
Figure 4.145  Analysis of variance for variable mean stress tests at 1900°F, 59 Hz 

 

 

Based on the analysis of variance on log ratio life for each subset of tests, the 

models were down-selected to Models 1, 2, 3 and 6: Linearly Combined Walker Model A 

and Mean Stress Rupture, Cumulative Rupture with No Compressive Damage, and 

Cumulative Rupture with Compressive Damage.  Table 4.36 shows the down-selected 

models and test types for which the model was favorable.   

 

 

Table 4.36.  Models Evaluations Based on Analysis of Variance of Data Subsets 

 
Model No. 

 
HCF 59 Hz 

 
Rupture 

High Freq. 
R = -1 

High Freq. 
R = 0.1 

Multi-step 
Tests 

Varying 
Men Stress 

1 x x x  x x 
2  x  x x x 
3 x x  x x x 
6 x x  x x x 
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None of the models performed well in predicting frequency effects at both  

R = -1 and R = 0.1.  Model 1 (Walker A + Mean Stress Rupture) was better suited than 

others in predicting frequency effects at R = -1 which is dominated by fatigue processes.   

However, Model 2 (Walker C + Mean Stress Rupture) and the cumulative rupture 

models, Models 3 and 6, ranked better at predicting frequency effects at R = 0.1 where 

the failure mechanism is time dependent.  Based on the evaluation performed using all 

the data (Figure 4.139), Models 2 and 1 are preferred over 3 or 6.  

Figure 4.146 shows the ratio of observed time to failure to predicted time to 

failure for Models 1 and 2.  The capability of the models to predict experimental lives 

was very similar across all test types.  For frequency tests at R = 0.1, Model 2 showed a 

tighter scatter band, while for frequency tests at R = -1, Model 1 showed a tighter scatter 

band.  
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Figure 4.146.   Ratio of observed time to failure to predicted time to failure  

for Models 1 and 2. 
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 F.  Summary and Recommendations 

A variety of Rupture-HCF damage interaction models have been evaluated at 

1900°F using a wide range of test types from pure rupture to R = -1 HCF to tests with 

various cyclic frequencies and mixtures of stress ratios. 

The models that worked best were based on the Walker Model for the HCF 

damage combined with a Mean Stress Model for rupture damage (Models 1 and 2).  The 

evaluations against data did not show a clear preference between these two, but Model 2 

is conceptually favored since it bases the HCF capability on data which are known to 

more closely representing pure HCF conditions, that is, high frequency or frequency 

independent conditions. 

All the models that were considered were somewhat biased in the type of 

tests they were able to accurately predict.  No model produced accurate predictions with a 

tight scatter band across all the tests that were performed.  The linear combination models 

were better in predicting fatigue dominated tests while rupture dominated tests were 

better predicted by the cumulative rupture models.   

Frequency effects clearly need to be considered when predicting HCF 

capability at high temperatures.  Tests that were run with a positive mean stress (R = 0.1) 

showed a frequency dependence up to 900 Hz.  Application of S-N responses 

characterized at low frequencies (30 Hz – 100 Hz) may underestimate the actual HCF 

capability of turbine blades which vibrate at much higher frequencies, typically on the 

order of kilohertz.  Additional investigation of shifts in S-N response due to frequency is 

suggested.   
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4.4 NOTCH EFFECTS 

4.4.1 Critical Plane Modeling of Notched PWA 1484 at 1100oF 

4.4.1.1 Double Notch Testing of PWA 1484 at 1100oF 

HCF testing for double edge notched PWA 1484 single crystal specimens was 

conducted at 1100oF and the data is shown in Figures 4.147 and 4.148.  The tests were conducted 

at R = 0.1 and 0.8.  The R = 0.8 condition was tested for the kt = 2.5 specimens only.  Two 

different notch geometries were tested.  One notch geometry had a kt = 2.5 with a notch radius of 

0.032 inch and a notch depth of 0.05 inch.  The other notch geometry had a kt = 3.05 with a 

notch radius of 0.02 inch and a notch depth of 0.05 inch.  Furthermore, each notch geometry was 

tested at two different specimen orientations.  One orientation had the specimen axis along the 

<001> crystal axis with the notches cut in the <010> direction.  These specimens were denoted 

as <001>/<010>.  The other orientation had the specimen axis along the <011> crystal axis with 

the notches cut in the <011> direction. These specimens were denoted as <011>/<011>.  The R = 

0.8 specimens were tested at maximum cyclic stress levels above 125 ksi (except two which 

were tested at 116.7 ksi).  Since the yield strength at 1100oF is ~124 ksi, it is believed that these 

data may have been influenced by the effects of cyclic plasticity and creep.  The R = 0.8 data 

were not included in the critical plane analysis below.  The data in Figures 4.147 and 4.148 was 

analyzed using elastic 3-D finite element analysis (FEA) together with the Walls, Shear Stress 

Range (SSR), and the Chu-Conle-Bonnen (CCB) critical plane damage parameters. 

The failed specimens were observed under the scanning electron microscope (SEM) to 

study fatigue initiation mechanisms.  All the specimens were found to have crystallographic 

initiations.  A typical SEM micrograph is shown in Figure 4.149. 

4.4.1.2 Finite Element Analysis of Double Notch PWA 1484 Specimens 

The two different notch geometries and specimen orientations were analyzed using 

elastic 3-D FEA.  Figure 4.150 shows the 3-D solid model for the double-notched specimen.  

The refinement of the finite element mesh was checked using isotropic material properties. 
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PWA 1484, Notched HCF, 1100 F, <001/010>
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Figure 4.147.  Max cyclic stress versus life, PWA 1484, 1100oF, <001>/<010>. 

PWA 1484, Notched HCF, 1100 F, <011/0-11>
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Figure 4.148.  Max cyclic stress versus life, PWA 1484, 1100oF, <011>/<011>. 
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Figure 4.149.   SEM micrograph showing crystallographic initiation in 

notched HCF specimen, PWA 1484, 1100oF. 

 

 
 

 
Figure 4.150.  FEA 3-D solid model of notched HCF specimen. 
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The principal stress (σ1) contours for the kt = 2.5 specimen for the two different 

orientations are shown in Figures 4.151 and 4.152 for an applied load of 1000 lbs. 

 
 

 
Figure 4.151.   Principal stress (σ1) contours for the kt = 2.5,  <001>/<010>  

notched specimen, applied load = 1000 lbs. 
 
 

 
Figure 4.152.   Principal stress (σ1) contours for the kt = 2.5 <011>/<011> notched 

specimen, applied load  = 1000 lbs. 
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The principal stress (σ1) contours for the <001>/<010> specimen appear to be 

symmetrical with respect to the notch central plane.  For the <011>/<011> specimen the σ1 

contours appear to be skewed with respect to the notch central plane and also have a higher value 

of stress concentration.  The nature of the stress contours for each specimen orientation was 

considered in deciding the radial line along which the damage parameter gradients would be 

analyzed.  In order to keep away from the effects of surfaces and edges, only the stresses at mid-

thickness were used in the life analysis. 

4.4.1.3 Critical Plane Modeling 

As shown in Figure 4.149, all specimens showed evidence of crystallographic 

initiations.  Thus a critical plane approach appears to be well suited for analyzing the notch 

fatigue data.  The 3-D FEA results were used together with several critical plane damage stresses 

parameters to analyze the notched data.  Three different critical plane damage parameters were 

considered in the analysis of the notch specimen data.  These were the Walls, the Shear Stress 

Range (SSR), and the Chu-Conle-Bonnen (CCB) critical plane damage parameters.  These three 

parameters had correlated the smooth PWA 1484 data (at 1100oF) quite well (see Section 

4.3.3.5). 

A detailed description of these three damage parameters is given in Section 4.3.3.4.B.  

The critical plane search algorithm used for determining the “critical plane” for these damage 

parameters is described in Section 4.3.3.4.C  and in Appendix V. 

4.4.1.4 Results and Discussion 

All the calculations were performed using the following elastic constants, measured 

along the primary <001> orientations, for PWA 1484 at 1100oF: E = 15.69 msi, ν = 0.3995, G = 

15.93 msi.  The critical plane damage parameters were calculated for each applied stress level 

(and stress ratio) using the elastic 3-D FEA stresses.  The results shown in Figures 4.153 through 

4.158 include the damage parameters calculated at the notch surface (at specimen mid-thickness) 

and at a critical distance, ao, along a radial line below the notch surface.  For the <001>/<010> 

oriented specimens, the three damage parameters had a maximum gradient along the specimen 

mid-length line (between the two notches) and at the specimen mid-thickness.  For the 

<011>/<011> oriented  
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specimens, the Walls and CCB parameters were found to have a maximum gradient along a 

radial line, which was at 15 degrees to the specimen mid-length line (between the two notches) 

and at the specimen mid-thickness.  For the <011>/<011> orientation, the SSR parameter had a 

maximum gradient along the specimen mid-length line between the two notches, as in the case of 

the <001>/<010> specimen orientation. 

The damage parameters calculated at the notch surface were in general not able to 

correlate the data for the different orientations and notch geometries.  However, when the 

stresses at a critical distance, ao, were used to calculate the damage parameters, there was 

reasonably good correlation of the data at different orientations and notch geometries.  The 

critical distance ao was a function of both the orientation and the notch geometry for all the three 

damage parameters.  For the SSR parameter this critical distance was along the specimen mid-

length line between the two notches for both the different orientations.  The Walls and CCB 

parameters had the same critical distance values for the corresponding notch geometry and 

specimen orientation conditions.  Both these parameters also had their maximum gradients along 

a radial line which was at 15 degrees to the specimen mid-length line (between the two notches) 

and at the specimen mid-thickness for the <011>/<011> oriented specimens.   

All the three parameters did a reasonably good job of correlating the notch HCF data 

for the two different orientations and two different notch geometries. 

 
4.4.2 Modeling of Notched PWA 1484 at 1900°F 
 
4.4.2.1 Objective and Approach  

All turbine blade airfoils contain stress concentrations, whether at the airfoil to root 

transition, at tip shrouds, or at air-cooling holes.  Stress concentrations represent a common 

region of concern for HCF because stresses are usually highest there.  The objective of this 

portion of the technical effort was to investigate the capability of PWA1484 single crystal in the 

presence of stress concentrations and to evaluate analytical models for relating baseline 

unnotched material capability to that of various notch sizes and stress concentration factors. 
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Walls Parameter, PWA 1484, Notched HCF, 1100 F
Using Notch Surface Stresses
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Figure 4.153.  The Walls damage parameter calculated at notch surface. 

Shear Stress Range (SSR), PWA 1484, Notched HCF, 1100 F
Using Notch Surface Stresses
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Figure 4.154.  The SSR damage parameter calculated at notch surface. 
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Chu-Conle-Bonnen (CCB) Parameter, PWA 1484, Notched 
HCF, 1100 F, Using Notch Surface Stresses
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Figure 4.155.  The CCB damage parameter calculated at notch surface. 

Walls Parameter, PWA 1484, Notched HCF, 1100 F
Using Stresses at depth = ao from notch surface
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Figure 4.156.  The Walls damage parameter calculated at ao. 
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Shear Stress Range (SSR), PWA 1484, Notched HCF, 1100 F
Using Stresses at depth = ao from notch surface
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Figure 

4.157.  The SSR damage parameter calculated at ao. 

Chu-Conle-Bonnen (CCB) Parameter, PWA 1484, Notched 
HCF, 1100 F, Using Stresses at depth = ao from notch surface
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Figure 4.158.  The CCB damage parameter calculated at ao. 
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While the majority of turbine blade notches are at air cooling holes, which are usually 

fabricated by EDM or laser drilling processes, and as a result have relatively rough and recast 

finishes, the approach adopted here was to try to eliminate the variable of surface condition in 

establishing a notch method.  Therefore, all notches were introduced by grinding, rather than 

conventional blade hole drilling processes.  This grinding was used for the baseline specimens, 

so the differences in surface preparation would be minimized.  In addition, like the baseline 

unnotched specimens, all notched specimens were PtAl coated (Section 4.1.2), which further 

minimized any differences in surface effects.  A simple 2-D notch geometry was chosen.  The 

notched specimen was identical in configuration to a 0.4 inch by 0.168-inch rectangular gage 

with opposing edge notches.  Two different notch geometries were investigated: the 0.065-inch 

radius notch and a pair of smaller, 0.020-inch radius opposing notches (0.020 inch deep).  The 

latter size was closer to that used for cooling holes, and was felt to be the smallest notch that 

could   be reproducibly ground.  Prior ANSYS anisotropic elastic analysis of the 0.065-inch 

double-notch specimen showed it to have a kt of 2.04.  The kt of the 0.020-inch notch was 

estimated at 2.85. 

Testing was performed at Metcut Research at 1900°F, 59 Hz, to match the baseline 

conditions.  All specimens had nominal <001> stress axes (within 6°) and a <010> direction 

normal to the notch face (within 10°).  Two stress ratios were tested:  

R = -1, and R = 0.5. 

4.4.2.2 Results 

The HCF test results are shown in Table 4.37 and Figures 4.159 and 4.160. 

At R = -1, when plotted against nominal alternating stress (unconcentrated stress, 

based on net section area between notches), the HCF capability in Figure 4.159 shows a 

significant degradation of capability for both notches.  The degradation is slightly more for the 

smaller (higher kt) notch.  When using concentrated (pseudo) elastic stress the notched capability 

become slightly superior to that of the unnotched baseline.  This suggests that a local stress notch 

model, like “q” (see Section 4.4.2A below) may be applicable. 
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Table 4.37.  HCF Results for Notched PWA 1484 at 1900°F, 59 Hz 
 

 
S/N 

Notch 
Radius (in) 

 
R-ratio 

Nom. Alt. 
stress (ksi) 

 
Nf 

 
        Result 

A2LPE-2 .065” -1.0 65.0 1 F.O.L. at 50.3 ksi max 
A2LPF-2 .065” -1.0 41.0 298,653 Failed at Notch 
A2LRR-2 .065” -1.0 36.0 784,801 Failed at Notch 
A2LPE-4 .065” -1.0 31.0 4,134,320 Failed at Notch 
T20VT-4 .065” -1.0 28.0 9,602,775 Failed at Notch 
A2LRR-1 .065” -1.0 27.0 8,645,485 Failed at Notch 
A2LPE-3 .065” 0.5 13.0 2,844,490 Failed at Notch 
A2LLV-3 .065” 0.5 11.4 825,126 Failed at Notch 
A2LPE-5 .065” 0.5 11.0 8,020,485 Failed at Notch 
T20VT-5 .065” 0.5 10.0 14,633,628 Failed at Notch 
T20VT-3 .065” 0.5 9.0 15,040,417 No failure 
Z175P-2 .020” -1.0 35.0 673,152 Failed at Notch 
Z175P-1 .020” -1.0 32.0 1,426,202 Failed at Notch 
Z175P-4 .020” -1.0 28.0 5,888,317 Failed at Notch 
T20VV-4 .020” -1.0 26.0 9,887,968 Failed at Notch 
Z175P-5 .020” 0.5 13.0 1,672,353 Failed at Notch 
T20VV-5 .020” 0.5 11.4 3,809,117 Failed at Notch 
Z175P-3 .020” 0.5 10.0 5,589,788 Failed at Notch 
Z175R-5 .020” 0.5 9.0 13,605,264 Failed at Notch 

 
 

At R = 0.5, however, the notched and unnotched results are very close in capability 

when compared on a nominal stress basis, and converge as the life is increased.  Since this 

condition is at a stress ratio where it is known from the unnotched testing that creep can occur, it 

is quite likely that the local mean stress at the notches has relaxed to a level near that of the 

average (nominal) level.  Thus, although the stress amplitude would still be increased by the 

notch Kt, the mean stress would be considerably lower in the notched specimens than in the 

unnotched ones, i.e., although the remote applied stress ratios are the same, the notch roots are 

not running at the same local stress ratio as the unnotched specimens.  This interaction between 

creep and HCF needs to be more carefully modeled to determine if the combined effects of 

reduced mean stress and amplified alternating sress at a notch can be used to model 1900°F HCF 

in PWA 1484. 
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Figure 4.159.  Notched HCF of PWA 1484 at 1900°F, R = -1. 
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Figure 4.160.  Notched HCF of PWA 1484 at 1900°F, R = 0.5. 
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4.4.2.3 Fractography  

Representative fracture surfaces of specimens with both notch geometries and both 

stress ratios were examined.  Examples of each are presented in Figures 4.161 through 4.164.   

In general, the cracks always initiated at or near the root of the notch, usually in a 

broad, frontal manner.  Some localization of the crack initiation can be seen in some specimens, 

but the indications suggest that the initial crack front was much longer than it was deep.  In all 

but one case, crack initiation occurred in the PtAl coating and was intergranular in nature in the 

coating.  One case was seen (not shown) where the crack appeared to have initiated slightly 

subsurface in the superalloy.  The life of this specimen appeared to follow the same trend as the 

others.  The only major trend noted was that at  

R = -1 the coating cracks were relatively tight, while at R = 0.5 they were noticeably open.   

This is presumably due to creep occurring at the notch root under the non-zero mean 

stress of R = 0.5.  The crack propagation surfaces in the superalloy were smooth and oxidized, 

quite similar in appearance to those of the crack propagation specimens tested at similar 

conditions.  The extent of this flat, featureless region is quite large, especially on the R = 0.5 

specimens, and suggests that subcritical crack growth may have occurred to a significant depth.  

4.4.2.4 Notched HCF Modeling  

Several different models were investigated to try to correlate the notched and 

unnotched HCF behavior at 1900°F.  The simplest of these was based solely on the concentrated 

elastic notch stress as determined by the elastic notch stress concentration factor, kt, times the 

nominal alternating stress, σalt,nom.  For the unnotched tests, this is the same as the alternating 

stress.  When the unnotched and notched (kt = 2.04 and 2.85) results were fitted with a power 

law life relationship: Nf = ka(σalt,conc)n, a rather poor collapsing of these data resulted, Figure 

4.165.  The predicted lives for the kt = 2.04 results are on average about an order of magnitude 

greater than those of kt = 1 and the  

kt = 2.85 predictions were about another order of magnitude greater than that.  The 
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a) Overall view of fracture         b) Origin region 

 

 

 

 

 

 

 

 

 

 
 
 
c) coating surface on notch face  d) Close up of origin from coating 
    below fracture plane showing 
    multiple tight coating cracks 

 
 
Figure 4.161.   Fracture appearance of notched HCF A2LRR-1, 1900°F, 

kt = 2.04, R = -1, σalt = 27 ksi, Nf = 8.6E6 
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a) Overall view of fracture b) Origin region 

 

 

 

 

 

 

 

 

 

 

c) Close up of origin from coating 

 

 
Figure 4.162.   Fracture appearance of notched HCF T20VV-4, 1900°F, 

kt = 2.85, R = -1, σalt = 26 ksi, Nf = 9.9E6 



376 

 
 

 

 

 

 

 

 

 

 

 

 

a) Overall view of fracture         b) Origin region 

 

 

 

 

 

 

 

 

 

 
 
 
c) Coating surface on notch face d) Close up of origin from coating 
    below fracture plane showing 
    multiple open coating cracks 

 
 

Figure 4.163.   Fracture appearance of notched HCF T20VT-5, 1900°F, 
kt = 2.04, R = 0.5, σalt = 10 ksi, Nf = 14.6E6 
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a) Overall view of fracture               b) Origin region 

 

 

 

 

 

 

 

 

 

 

 

c) Close up of origin from coating 

 
Figure 4.164.   Fracture appearance of notched HCF Z175R-5, 1900°F, 

kt = 2.85, R = 0.5, σalt = 9 ksi, Nf = 13.6E6. 
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Figure 4.165.   Predicted S-N behavior for notched HCF life at 1900°F, R = -1  

for concentrated alternating elastic stress model. 
 

 

standard error of log(Nf) was 0.57 as shown in Table 4.38.  At R = 0.5 the modeled results were 

similarly spread apart as shown in Figure 4.166, although the standard error of fit was somewhat 

lower, 0.41 (Table 4.38). 

 

Table 4.38.  1900°F Notched HCF Model Parameters and Standard Errors 

Model R-ratio Model 
Parameter

Parameter 
Value 

Standard error  
in log(Nf) 

Concentrated Alternating Stress -1 none - 0.57 

Concentrated Alternating Stress 0.5 none - 0.41 

q -1 q 0.365 0.35 

q 0.5 q 0.0744 0.23 

Fs -1 α 9.5 0.34 

Fs 0.5 α 5.0 0.31 

Neuber -1 none - 0.49 

Neuber 0.5 none - 0.38 

Relaxed notch mean 0.5 w -.0239 0.36 
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Figure 4.166.   Predicted vs. observed notched HCF life at 1900°F, R = 0.5  
for concentrated alternating elastic stress model. 

 
 

The next model investigated was the “q” model, where q = (kf – 1)/(kt – 1).  Since kf = 

σunnotched/σnotched = σu/σn at constant life, then the predicted unnotched equivalent stress, σq can be 

defined as: 

σq = σn [q (kt – 1) + 1] (4.48) 

 This σq was related to life through a power law relationship, Nf = kq(σq)n  and q was 

allowed to vary to minimize the standard error of curve fit.  Using this method, q’s for R = -1 and 

R = 0.5 were 0.365 and 0.0744, respectively, as shown in Table 4.38.  The standard error of fit 

was significantly improved over the concentrated alternating stress approach.  At R = -1 some 

layering of the data by kt remained (Figure 4.167) but at R = 0.5 no segregation or layering of the 

predictions was observed (Figure 4.168).  Note that optimization of the fits at the two stress 

ratios required quite different values of q.  This is inconvenient since the implication is that q is 

stress ratio dependent, and a further relationship for this dependence would have to be 

developed.  The very low q obtained at R = 0.5 implies that the material is very notch insensitive 

at this condition, which agrees with the observed behavior in Figure 4.160. 



380 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.167.   Predicted vs. observed notched HCF life at 1900°F, R = -1 

for “q” model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.168.   Predicted vs. observed notched HCF life at 1900°F, R = 0.5 

for “q” model. 
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 The third model considered was the “Fs” model developed in the Titanium portion of 

this program (see Section 3.3.8).  Briefly, the model determines a notch equivalent stress, σFsi, 

based on the stress distribution over the surface area of the notch (obtained from an elastic finite 

element analysis of the specimen).  This equivalent stress is then fit to a stress-life relationship to 

identify the notch parameter, α, which provides the best fit.  The equations are: 

 Fs(geom) = Σ[-(σi/σmax)α]∆Ai (4.49) 

 σFSi = (Kt σalt,nom )(Fso/Fsi) (-1/α)    (4.50) 

 The Fs factors were calculated from a finite element analysis of each of the notches, 

using the stresses on the free surfaces only.  These calculations were repeated for different α’s to 

give a table of Fs vs α.  Fso was the Fs for the unnotched specimen, taken as the surface area of 

the gage section; Fso = πdLg.  The notch equivalent stress, σFSi, was calculated for each α value 

and the resulting σFSi and Nf data were fitted to a power law equation.  The standard error of 

curve fit was determined for each α and the α that yielded the lowest standard error was selected.   

These α’s and their standard errors of fit are shown in Table 4.38.  The standard errors are only 

slightly higher than those for the “q” model and the Fs model has the advantage of not having to 

define a far field stress to determine Kt.  In some features and stress fields the far field stress 

level is not obvious.  Predicted vs. observed life plots for the Fs model are shown in Figures 

4.169 and 4.170. 

 Again, the two stress ratios require different α’s to provide good fits for each, although 

the R = 0.5 results are not strongly sensitive to α, and a reasonable standard error could be 

obtained with α = 9.5.  The standard errors obtained for the two stress ratios are higher that those 

for the “q” model, but not excessive.   

 For most of the notched tests, the maximum concentrated notch stress exceeded the 

yield strength at 1900°F (about 50 ksi per the constitutive property tests described in Section 

4.3.2.2).  Therefore the use of the elastic stress concentration factor in all of the  
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Figure 4.169.   Predicted vs. observed notched HCF life at 1900°F, R = -1 for 

“Fs” model. 
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Figure 4.170.   Predicted vs. observed notched HCF life at 1900°F, R = 0.5 for “Fs” 

model. 
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above models may be erroneous, and the effect of yielding on reducing the maximum stress may 

need to be incorporated.  Indeed, it is possible that this may allow combination of the two stress 

ratios into one analysis.   

 The simplest method for evaluating the effect of yielding on notch stress was to 

perform a one dimensional (isotropic) Neuber analysis on the maximum stress location.  To do 

this requires an elastic-plastic stress-strain curve for the material.  Since PWA 1484 is strain rate 

sensitive at 1900°F, this curve would ideally be at the HCF strain rate, about 1 sec-1.  However, 

the constitutive tests were only performed up to a strain rate of 10-3 sec-1.  Since the flow 

behavior at the higher strain rates tested (10-5 to 10-3 sec-1) were about the same (stress at 10-4 

was anomalously high, and had other test difficulties, so it was ignored), the stress-strain 

behavior at 1 sec-1 was assumed to be the same as at 10-5 to 10-3 sec-1. 

This curve is shown in Figure 4.171.  The fit to the data is seen to be good up to about 

1% strain.  This was satisfactory for most of the tests, but some of the R = 0.5 tests at high stress 

had calculated notch root strains exceeding this value so for these tests the maximum stress at the 

notch may be somewhat overestimated.  The point along this curve at which the notch root 

operated was determined by applying the Neuber condition: 

σmax εmax = (ktσnom)2/E  (4.51) 

 
σmax and εmax are determined from the stress-strain curve: εmax = σmax/E + (σmax/K) (1/n) and the 

maximum stress was iterated until the left side of the equation matched the right side.  At both 

stress ratios, the maximum stress in the cycle was used.  The notched data were combined with 

the smooth bar data and the maximum (notch) stresses were related to cycles to failure by fitting 

them to a power law expression.  The standard error of curve 

fit of the predicted vs. the actual lives by this approach was decidedly poorer than for the “q” or 

“Fs” models, Table 4.38.  These S-N and predicted vs. observed correlations are shown in 

Figures 4.171, and 4.172, and 4.173. 
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Figure 4.171.  Stress-strain curve for <001> PWA 1484 at 1900°F. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.172.   Predicted vs. observed notched HCF life at 1900°F,  
R = -1 for “Neuber” model. 
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Figure 4.173.   Predicted vs. observed notched HCF life at 1900°F,  

R = 0.5 for “Neuber” model. 
 

 

One final modeling approach was tried with the R = 0.5 results.  At this elevated mean 

stress, it is likely that creep will be occurring that will tend to make the stress distribution across 

the specimen more uniform.  In other words, as creep occurs the actual stress concentration will 

tend to be less than the initial elastic one.  In the limit of full stress relaxation, the mean stress 

will be uniform across the net section of the specimen.  This fully relaxed mean stress is simply 

the nominal (net section) mean stress.  The alternating component of stress will not be affected 

by creep, since it occurs rapidly, so the stress ratio at the notch root effectively shifts (reduces) as 

the stresses relax.  By computing the new stress ratio and using the concentrated alternating 

stress, it is possible to arrive at a new equivalent stress using a Walker model.  This equivalent 

stress can then be entered into a stress-life relationship to determine the expected life in the 

presence of the relaxed mean stress.   
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The Walker model used for accounting for effect of the mean stress relaxation on life 

was: 

σeq = σalt/(1-Rrel)(1-w’)  (4.52) 

where, Rrel is the relaxed stress ratio.  For the Kt = 2.04 specimens, the relaxed stress ratio 

became 0.19, and for the Kt = 2.85 specimens became 0.026.  Since the Walker model does not 

work well over the entire range of stress ratios studied for PWA 1484 HCF at 1900°F, w’ was 

obtained by fitting only data with R’s close to the relaxed R’s.  For this study, data with R = -

0.33, 0.1, and 0.5 were used.  A best fit of the Walker model was found with w’ = -0.0239.  The 

negative sign is non-standard and reflects the downward concave nature of the Goodman 

Diagram in this region.  Normally Goodman Diagrams derived from Walker models are concave 

up (w ≥ 0).  The equivalent stresses so obtained from the notched tests were combined with the 

uniform stresses from the unnotched tests at R = 0.5 and all were fitted with a power law 

equation relating stress and life.  The standard error of fit was 0.36, as shown in Table 4.38, and 

the predicted vs. observed lives are shown in Figure 4.174.  As can be seen, the two notched sets 

of data are collapsed nicely by this method but the predictions fall about a factor of three lower 

in life than observed.  Since this is a bounding condition (the mean stress will fall gradually to 

the fully relaxed level during the test instead of immediately, as assumed), a prediction based on 

a more realistic mean stress history would be more pessimistic yet. 

Since the R = 0.5 condition is in the regime where rupture or time-dependent behavior 

dominates, as described in Section 4.3.4, it may be that modeling the effect of the mean stress 

relaxation using a rupture-based approach like that presented in Section 4.3.4 would provide a 

better correlation with the observed results. 

4.4.2.5 Summary of 1900°F Notch Modeling 

None of the notch models examined were fully satisfactory in correlating smooth and 

notched HCF capability over a range of kt and stress ratio.  The “q” and “Fs” provided the lowest 

standard errors of fit, and thus appear to be the most attractive.  However, both of these models 

required different values of the parameters (q or α) at 
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Figure 4.174.   Predicted vs. observed notched HCF life at 1900°F,  
R = 0.5 for “relaxed notch mean stress” model. 

 

 

different stress ratios in order to obtain the best fits.  Thus for predicting (or correlating) behavior 

for any notch at any stress ratio, a stress ratio dependence of the parameter must be developed, 

which is cumbersome.  Notch tests were not performed at enough stress ratios to determine the R 

ratio dependence of these parameters completely. 

The Neuber and relaxed notch mean stress models were attempts to remove the stress 

ratio dependence of the model fitting by determining in more detail the stress conditions at the 

notch root.  However, the model variations examined here did not 

achieve this.  Perhaps a combination of these models with a model such as “q” or “Fs” would 

provide a better correlation. 

The contribution of crack propagation to total life was ignored in these models, as is 

typical in total life approaches.  However, there is some evidence from the fractography that 

crack propagation may have occupied a non-trivial portion of total life.  This should be 
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investigated further to determine whether a combination of initiation- and propagation-based 

models would be superior. 

4.4.3 Flat Cooling Hole Testing and Verification 

4.4.3.1 Introduction 

 This test program was undertaken to examine the effects of cooling holes on HCF life 

in a representative nickel base single crystal alloy PWA 1484. About 30 tests were planned to 

examine the effect of cooling hole orientation and mean stresses on the endurance limits in PWA 

1484. The test plan is shown in Table 4.39 

Table 4.39.  HCF Test Plan 
 

Specimen and test type Number of specimens 
Coated, no holes, R = 0.1 5 
Coated, no holes, R = 0.5 5 
Coated, normal holes, R = 0.5 5 
Coated, skew holes (A), R = 0.5: A = 40 deg 5 
Coated skew holes (B), R = 0.5:  B = 50 deg 5 
Coated, normal holes, R = 0.1 4 
 

 Fully heat treated PWA 1484 plates were provided by GEAE.  The plates, 6 inch x 3 

inch x 0.625 inch and <001> oriented slabs, as per Honeywell Drawing PAP 601225-a, were 

used to fabricate flat sheet specimens.  The blanks were excised such that the tensile testing axis 

was oriented in the <001> direction. The specimens were milled and ground to final dimensions.  

A single EDM hole 0.020 inch in diameter was drilled in the middle of the gage section in some 

of the specimens as per the test plan.  The orientation of the hole was representative of what we 

would expect at the different regions of some of our advanced military engine airfoils. 

 The measured thickness of the coating as shown in Figure 4.175 is about 0.0019 inch, 

which is about 9.5% of the total thickness of the specimen. At the test temperature of 1900°F, the 

PtAl coating and the diffused layer are not expected to be able to support any loads and hence the 

stresses have been adjusted by changing the net section areas. 
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Figure 4.175.   Cross-section of a test coupon of PWA 1484 showing the PtAl  

coating and the diffused layer.  The total thickness is about 
0.0019 inch. 

 
 

 The recast layer from the hole drilling was removed by light grit blasting and all the 

specimens were then sent to Howmet Corporation for a PtAl coating, which was applied by 

chemical vapor deposition.  The HCF tests on these coated specimens were conducted at 

Rockwell Science Center on a servohydraulic test frame capable of operating at 300 Hz. All 

testing was done at 1900°F using miniature igniter furnaces that have a hot zone of about 2 

inches.  Calibration of the hot zone showed uniform temperatures with the temperature gradients 

that are less than 1%. 

 Baseline tests were initiated on the specimens with no holes.  Tests were initially run at 

300 Hz.  At that frequency, a considerable number of contact problems leading to failures at the 

grips were encountered as shown in Figure 4.176.  Various techniques were investigated to 

eliminate the problem, including compliant layers.  Although the problem was somewhat 

reduced, there were still grip failures.  Once the test frequency was reduced to 120 Hz, there 

were no additional grip failures.  Subsequently all tests were run at 120 Hz.  A gage failure is 

shown in Figure 4.177.   
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Figure 4.176.  Failure at 300 Hz in the tabs. 

 

 

Figure 4.177.  Failure in the gage section. 

 
 
4.4.3.2 Experimental Test Setup 

A custom-built 300-Hz electrohydraulic axial test machine was used for the evaluation 

of PWA 1484 specimens in the life regime to 109 cycles (Figure 4.178).  

Normally, long life fatigue testing is performed in rotating bending or cantilever 

bending where a stress gradient is imposed on the material. Such testing techniques cannot reveal 

changes in crack initiation mechanisms that occur with axial loading of bulk volumes where 

there is no strain gradient. Control was provided through a load cell – computer-controlled A/D  
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Figure 4.178.  Overall view of high cycle fatigue load frame. 

 

 

feedback system. Feedback correction to loading amplitude and mean was made every 300 

cycles at 300 Hertz.  Heating to 1900°F was provided by quartz IR heaters mounted adjacent to 

either flat side of the specimen gage section. The temperature gradient was maintained within ± 

1°F across the gage section throughout the duration of each test. All specimens were thermally 

equilibrated for 15 minutes before cyclic loading. The specimen was gripped with water-cooled, 

lightweight wedge-collet grips. The lower grip and hydraulic actuator were torsionally 

constrained to inhibit any non-axial loading. Atmosphere was laboratory air, although capability 

exists for flowing nitrogen or argon gas. A detailed image of the HCF system with furnace in 

operation is shown in Figure 4.179.  The results of the experiments are summarized in Table 

4.40. 
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Figure 4.179.  Close-up of high-temperature HCF test system. 

 

 

4.4.3.3 Failure Analysis 

The PWA 1484 used in this study is a coated nickel-base single crystal superalloy with 

nominal composition of 5Cr-10Co-2Mo-6W-9Ta-3Re-5.6Al-0.1Hf-Bal Ni. A typical fatigue 

initiation site for the no-hole condition is shown in Figure 4.180.  Significant oxidation of the 

crack front is apparent. 

The extent of oxide penetration is shown in the backscattered SEM mode of Figure 

4.181. Oxide accumulation at the initiation site decreases with crack depth, and correlates with 

crack front progression (light regions are metallic). All specimens in the no-hole condition 

exhibited crack initiation at gage section corners. 
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Table 4.40.  Load-Controlled HCF Test Results on PWA 1484 Sheet 

     Account for coating 
thickness 

 

 
 

Condition 

 
Specimen 

ID 

 
Frequency 

--Hz 

 
Gage  

CSA--in.2

Stress 
level--

ksi 

Modified 
stress--

ksi 

 
 

Cycles 

 
 

Comments 
No hole, E-5 150 0.01619 35 37.8 82,781  

R = 0.1  200 0.01619 35 37.8 118,671 Poor test control 

  180 0.01619 35 37.8 0 Stopped, temp to 
RT 

  300 0.01619 35 37.8 n/a Poor test control 

  200 0.01619 35 37.8 n/a Strain gage 
results confirm 
good control 

 C-5 200 0.01556 32 33.2 1,395,160 Failed outside 
gage section in 

grips 
 C-6 200 0.01594 32 34.0 10,008,692  

  200 0.01594 34 36.1 1,867,273 Failed outside 
gage section 
(not in grips) 

 C-7 200 0.01531 32 32.7 10,713,036  

  200 0.01531 34 34.7 10,001,754  

  200 0.01531 36 36.8 2,424,102 Failed in gage 
section 

 E-2 200 0.01575 34 35.7 8,683,789 Failed in grips 

        

90 deg, C-3 120 0.01573 22 23.1 10,000,000  

R = 0.1  120 0.01573 24 25.2 63,000  

 D-1 120 0.01606 24 25.7 3,397,946  

 D-8 120 0.01571 26 27.2 6,540,000  

 D-6 120 0.01577 22 23.1 12,900,000  

 B-6  0.01621 22 23.8  Broke in grips 

        
30 deg, A-4 120 0.01578 24 25.2 3,422,115  

R = 0.5 B-4 120 0.01563 22 22.9 7,613,516  

 C-1 120 0.01588 21 22.2 17,132,141  

 C-8 120 0.01578 20 21.0 33,461,862  

 D-3 120 0.01539 23 23.6 14,016,492  
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Table 4.40.  (continued) 
Load-Controlled HCF Test Results on PWA 1484 Sheet 

        

     Account for coating 
thickness 

 

 
 

Condition 

 
Specimen 

ID 

 
Frequency  

--Hz 

 
Gage  

CSA--in.2 

Stress 
level--

ksi 

Modified 
stress--

ksi 

 
 

Cycles 

 
 

Comments 
40 deg, D-2 120 0.01581 28 29.5 775,516  

R = 0.5 E-3 120 0.01581 26 27.4 1,818,984  

 E-7 120 0.01542 24 24.7 2,009,684  

 E-6 120 0.01607 22 23.6 4,273,267  

 E-1 120 0.01608 20 21.4 91,185,941  

        

90 deg, 
R = 0.5 

A-5 120 0.01616 26 28.0 16,870,431 Failed across 
hole 

 A-6 120 0.01614 24 25.8 42,760,954 Failed across 
hole 

 A-7 120 0.01562 28 29.2 3,310,686 Failed across 
hole 

 A-8 120 0.01620 23 24.8 43,093,656 Failed across 
hole 

 B-3 120 0.01561 22 22.9 80,237,072 Failed across 
hole 

 B-5       

        

No hole, R 
= 0.5 

A-2 120 0.01625 36 39.0 7,155,826 Failed in gage 
section 

 A-3 120 0.01621 34 36.7 10,043,807 Failed in gage 
section 

 B-1 120 0.01538 30 30.8 20,154,379 Failed in gage 
section 

 C-2 120 0.01594 25 26.6 89,964,131 Failed in gage 
section 

 C-4 120 0.01599 27 28.8 43,095,077  
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Figure 4.180.  SEM image of fatigue crack initiation site (A-2, no hole, R = 0.5). 
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Figure 4.181.  Backscatter image of fatigue initiation site  
(A-2, no hole, R = 0.5). 
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Crack propagation in the 30 deg hole specimens was similar.  Initiation (for the 30 deg 

hole condition) was observed at the stress concentration formed by the acute hole entrance 

(Figures 4.182 and 4.183).  In the one case examined, initiation for the 90 deg hole condition was 

at the hole wall (Figures 4.184 and 4.185). 

 
 

 
 
 

 
 

Figure 4.182.  SEM image of fatigue crack initiation site (Specimen D-3). 
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Figure 4.183.  Detail SEM image of initiation site (D-3). 
 

 
 

 
 

Figure 4184.  SEM image of fatigue crack initiation site. (B-3, 90 deg hole, R = 0.5). 
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Figure 4.185.  Detail SEM image of initiation site (B-3). 
 

 

4.4.3.4 Results and Discussion 

This verification program was an attempt to apply the models developed during the 

high cycle fatigue program to correlate the results of HCF tests.  As described, the single crystal 

verification study consisted of a number of high cycle fatigue tests conducted on coated PWA 

1484 sheet specimens.  The specimens were 0.040 inch thick.  Four geometries were tested, three 

with 0.020 inch diameter holes and one with no hole.  The plane normal to the loading and at the 

specimen center contained the holes.  The three holes were at an angle to the sheet face; one 

normal (90 degree) to the sheet while the other two angles were 50 and 60 degrees.  The 

specimen drawing is shown in Figure 4.186.  The test results are summarized in Table 4.40. 

The results of the verification experiments were evaluated using elastic finite element 

analysis and the Glinka stress redistribution model.  An example of the finite element model for 

the 90-degree specimen is shown in Figure 4.187.  The other models were similar except for the 

angle of the hole.  The principal material directions of the single crystal were assumed to 

coincide with the axes of the specimen, i.e. along the loading axis and normal to the face.  The 

coating on the specimen was not explicitly modeled.   
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Figure 4.186.  Flat specimen drawing for HCF test program. 

 

 
Figure 4.187 (a).  Overall model of flat specimen finite element model. 

 

RoushRV
Text Box
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Figure 4.187 (b).  Hole region of flat specimen finite element model. 

 

 

Some results of the initial elastic analysis are shown in Figures 4.188 through 4.190.  

The figures show the location of the peak effective stress for each hole geometry.  In all cases, 

the maximum value is on the hole surface, some distance from the specimen face.  The 60 and 

90-degree specimens reach maximums near the front surface while the 50-degree panel has its 

maximum near the rear face.  Based on the elastic stress analysis and the local effective stress, 

the kt values are given in Table 4.41. 

 
 

Table 4.41.  Stress Concentration (kt) Values 
 

Hole angle-- kt 
50 3.63 
60 3.27 
90 2.74 
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Max

 

Figure 4.188.  Maximum stress location in 90-degree hole specimen model. 
 

Max

 

Figure 4.189.  Maximum stress location in 60-degree hole specimen model. 
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Figure 4190.  Maximum stress location in 50 degree hole specimen model. 

 

Throughout the HCF program, extensive work has been conducted to determine the 

“best” parameter to be used in predicting fatigue life.  Generally it has been found that the 

critical plane approaches have been superior, although the Manson-McKnight method has shown 

capabilities almost as good.  While these methods eventually will be applied to this set of results, 

it seemed premature to do so at this time since a fully verified anisotropic constitutive model of 

PWA 1484 was not widely available.  Instead, it was decided to rely on HCF parameters, which 

can be easily calculated using largely elastic methods. The Smith-Watson-Topper (SWT) 

parameter was used since it accounts for the mean stress, is amenable to calculation from finite 

element results, and has been applied previously in the program.  However, given the high 

temperature and positive mean stress, it was expected that creep would play a large role in 

relaxing the stress field around the holes.  Thus, some nonlinear analysis was performed to 

examine the contribution of creep to the HCF process. 

The initial effort to correlate the test data of Table 4.40 was to perform a “traditional” 

notch analysis.  This analysis calculated a local stress using the applied stress and stress 
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concentration factor; this stress was then redistributed through a Glinka/Neuber model.  When 

this analysis was completed and compared to the no hole sheet data, the hole specimen data was 

located above the baseline data by at least a factor of two.   

The next step was to combine the results of the finite element analysis with the Glinka 

notch model developed in this program.  The Glinka model requires three pieces of input data:  a 

material stress-strain curve, a description of the stress gradient at the stress concentration, and the 

stress increments describing the applied stress cycle.  The stress increments were obtained from 

the finite element models that were subjected to a load cycle of zero-minimum-maximum.  The 

stress component increments were obtained from these load steps and input to the model.  The 

material stress-strain data for PWA 1484 was obtained from GEAE and input as several linear 

segments.  The stress gradient was obtained directly from the ABAQUS output by picking nodes 

along a path from the hole to the edge of the specimen.  This procedure required some smoothing 

since the models were meshed with 10 node tetrahedrons and thus a straight, planar path could 

not be selected.  The stress vs. distance data was input to a spreadsheet and adjusted to give a 

monotonic decay.  Since the data reflected the particular nodal path chosen, no standard 

procedure was developed; the smoothing was done manually since only small shifts were needed 

on most cases.  

The results of this procedure are shown in Figure 4.191, a plot of the failure data using 

the Smith-Watson-Topper parameter calculated for the maximum stress nodes.  The results show 

that the hole specimen data does not correlate with the baseline panel data.  The data demonstrate 

that either the calculated maximum stress or strain range, or both, are too large.  This result is 

very similar to that obtained by the stress concentration and Glinka method.  The surface stress 

obtained in a finite element model is obtained by extrapolation, and when there is a high stress 

gradient, there is some concern about the magnitude of the surface stress being overestimated.  

To address this issue, the results were reanalyzed using a subsurface node.  The node selected 

was the first corner node near the surface maximum stress point; the subsurface distance ranged 

from 0.0045 to 0.0048 inch.  The same process was followed. The stress increments at the node, 

along with its location, were input to the Glinka redistribution code.  The result based on the 

SWT parameter is shown in Figure 4.192.  The figure shows some layering of the data but 

brackets the baseline data rather well. 
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Figure 4.191. Correlation of HCF data with Smith-Watson-Topper parameter, 

based on surface stresses and the Glinka plasticity adjustment. 
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Figure 4.192.   Correlation of HCF data with Smith-Watson-Topper parameter, 

using subsurface stresses, ≈ 0.0045 inch, and the Glinka plasticity 
adjustment. 
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Since the calculated surface stress appears to be too high and the choice of the 

subsurface depth is mesh dependent, it was decided to look at time dependent deformation in the 

specimens.  This was done using two models, one with creep-fatigue loading and one with a 

three-hour hold at mean load.  The creep-fatigue model used the 90 degree hole, R = 0.5, with 

σmax = 25.2 ksi.  The specimen was loaded from zero to minimum, and the ramp from minimum 

to maximum divided into ten load steps, each 1.17e-7 hours.  Creep was turned on during the 

loading to simulate the local stress relaxation.  At the end of the load ramp, the analysis was 

restarted and the panel was unloaded.  Several load-unload steps were run.  The changes in stress 

magnitude are small, about 0.2 percent on the first cycle, and an order of magnitude less 3 cycles 

later.  The changes in creep strain are much larger but the creep strain magnitude is the order of 

10-7 in/in, and is concentrated at a couple of nodes.  The volume of strained material is very 

small.  Because of the size of the analysis files, it is not practical to continue the cycle-by-cycle 

loading very far.  It is difficult to tell if the local creep strain is fully relaxed at this point in the 

test.  Since the extrapolation is over millions of cycles, any small change would result in 

unrealistically small-predicted stress values.   

 In an effort to see how much creep would be anticipated over a million or so cycles, 

the specimens were loaded to their mean load and then held for 3 hours.  A typical stress 

relaxation curve is shown in Figure 4.193.  The element stress was taken at an element at the 

maximum stress location.  Clearly the stress decay was not asymptotic after 3 hours but the rate 

of relaxation significantly drops after 15 minutes.  Confirming the earlier creep result, the creep 

strain was very localized.  For the high stress 50 degree hole, the decrease in maximum stress 

was 43.7% at the critical node but only 7.2% at the adjacent node used for the life calculation of 

Figure 4.192.  The other holes had smaller percent changes.  The models indicated that there was 

a small amount of creep at the holes, which was a very local influence.  If the lowered stress 

level were used in the calculation of the SWT parameter, it would lower the surface values 

plotted in Figure 4.191.  However the problem was determining the appropriate hold time.  

Given this uncertainty, the extremely local nature of the creep, and the fact that the creep 

analysis has to be performed for each specimen, the explicit inclusion of creep into the model 

prediction seemed premature.  However, it should be performed as part of the analysis to  
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determine if there is significant creep in the component.  In such a case, the current approach of 

using the subsurface elastically calculated stresses in the life model would have to be revisited. 

The results of the verification testing on coated flat sheets of PWA 1484 containing holes 

through the panels were correlated using elastic finite element results combined with the 

program-developed Glinka notch model to account for local stress redistribution.  It was found 

that using the surface stress values was grossly conservative but the use of stress components at a 

subsurface node, approximately 4.5 mils from the surface, led to reasonable correlations.  While 

this makes the approach somewhat model dependent, it is consistent with the very local nature of 

the calculated high stresses.  By using an “average” value, a more representative failure criterion 

is achieved.  In addition, while the test specimens did not include compound skew holes with 

acute included angles, the success of the SWT parameter in correlating this class of holes 

suggests that when predictions of actual airfoil cooling holes is attempted, a measure of success 

can be anticipated. 

 

 

Figure 4.193.  Relation of stress at the 50 degree hole over 3 hr accumulated time. 
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4.4.4 Anisotropic Shakedown Methodology For Bivariant Stress Fields 

This section summarizes the development and validation of an anisotropic shakedown 

methodology for bivariant stress fields where stresses vary in both the x and y directions.  

Additional details on the methodology are provided in Appendix J. 

Shakedown occurs due to stress relaxation and redistribution arising from plastic 

strains generated during loading.  Plastic deformation can occur in regions of high stress, such as 

notches and underneath contact surfaces.  A compressive residual stress is left in the structure as 

a consequence of elastic unloading following stress relaxation.  This static compressive stress is 

beneficial in inhibiting both crack initiation and crack propagation by lowering the local stress 

ratio, R, and in helping to increase the critical crack size by reducing the maximum crack-tip 

driving force. 

After the formation of the compressive residual stress the structure is said to have 

undergone shakedown, and further load excursions will result only in linear-elastic behavior as 

non-linear behavior has been "shaken out."  The analytical shakedown methodology described 

herein enables elastic-plastic stress and strain distributions to be determined from the results of a 

linear elastic stress analysis.  The shakedown residual stress field is obtained from these 

solutions by subtracting the linear elastic solution from the analytically estimated elastic-plastic 

solution. 

The advantage of an analytically based shakedown methodology is that it can account 

for plastic deformation in design and reliability assessments without the need to perform more 

time consuming and costly elastic-plastic finite element analyses. Although the methodology 

described herein, and the anisotropic shakedown module developed by SwRI to implement it, are 

verified against the results of elastic-plastic finite element computations using materials data and 

constitutive models developed by P&W specifically for the single crystal material PWA 1484, 

the shakedown module is applicable to a wide variety of other anisotropic materials, provided the 

appropriate constitutive models are available to describe the relationships between stress and 

strain in these materials. 
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4.4.4.1 Anisotropic Shakedown Methodology 

The anisotropic shakedown methodology developed by SwRI is an extension of the 

isotropic shakedown methodology described in the Final Report on titanium material prepared 

under the first HCF Program [1].  The load shedding and load redistribution schemes employed 

in the anisotropic shakedown module to allow for the effects of plastic deformation on linear 

elastic stress solutions are similar to those used in the isotropic shakedown module.  The major 

difference between the isotropic and anisotropic shakedown modules is the algorithm used to 

determine the stress relaxation at a point (point relaxation) whose formulation depends on the 

material modeling.  The reason for this is that whereas the constitutive behavior of an isotropic 

material can usually be expressed as a relatively simple relationship between uniaxial stress and 

uniaxial strain, this is not the case for the more complicated constitutive models that describe 

anisotropic materials such as PWA 1484.  

The shakedown methodology converts incremental linear elastic solutions, 

corresponding to incremental load changes, into equivalent elastic-plastic solutions while 

conserving forces and moments resulting from the remote loading.  All six components of stress 

are required for the shakedown analysis.  The z-component of stress that is normal to the load 

bearing area is considered the primary stress of concern.  The out-of-plane direction is in the y-

direction, and this coordinate along with the x coordinate defines the load bearing section.  The 

designation of stresses conforms to the coordinate system employed in Figure 4.194, which 

shows the load bearing section (enclosed by dashed lines) corresponding to a notched plate. 

Two major tasks are performed in the anisotropic shakedown methodology.  The first 

task determines the stress relaxation at a point on the load bearing area from the linear elastic 

stress state.  This point-relaxation procedure provides an initial approximate solution to the 

elastic-plastic stress state at each point when load re-distribution and shedding are ignored.  The 

point relaxation procedures are based on Neuber’s rule that converts the incremental elastic 

strain energy density into the equivalent incremental elastic-plastic strain energy density.  

Neuber’s rule states that the incremental product of stress and strain is invariant for each load 

step irrespective of the constitutive relationship between stress and strain.  The second task 

performs the load shedding that occurs due to point relaxation and re-distributions of the surplus 

incremental forces and moments over the load bearing area.   
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Figure 4.194. Geometry, coordinate system, and example loading conditions for a typical 
rectangular structure that can be analyzed using SwRI's anisotropic shakedown 
module. The crystal axis can be at any angle to the axis of the structure (the z-axis 
in the figure). In one analysis reported herein to verify the shakedown module the 
axis of the plate is assumed parallel to the <001> direction, while in another set of 
calculations the axis of the plate is assumed parallel to the <111> direction. 

 

 

The material data needed in the shakedown analysis is composed of discrete pairs of 

stress and strain values that define the uniaxial stress and strain behavior of an anisotropic 

material under monotonic loading when the direction of loading is along the <001> 

crystallographic direction.  Along the <001> direction, the anisotropic materials in this study 

display “pseudo-isotropic” behavior.  The coordinate system that is compatible with the <001> 

or equivalent direction is herein called the local coordinate system.  In addition, there is a global 

coordinate system.  The global coordinate system is the system consistent with the external 

loading direction, the direction for which the linear elastic stress results are obtained.  
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The linear elastic stress analysis data that are input to the shakedown module consist of 

the incremental changes in the global stress components as the applied load(s) are incrementally 

increased.  The point relaxation calculations are performed in the local coordinate system.  

Hence, the transformation matrix and its transpose that operate on the global stresses to 

transform them into local stresses, and on the calculated local plastic relaxed stresses to 

transform them back into the global stresses also have to be input into the module. 

Currently, the anisotropic shakedown methodology is limited to isothermal and 

constant strain rate loading conditions. Thus, the so-called “pseudo-isotropic” stress-strain curve 

provided by the user needs to be representative of the actual operating temperature and strain 

rate.   

4.4.4.2 Software Module Anisotropic Shakedown 

The isotropic shakedown methodology described in [1] is implemented in a software 

module called SHARP (Shakedown Analysis of Residual Plasticity).  The anisotropic shakedown 

methodology described herein is implemented in a software module called SHARP_AN 

(Shakedown Analysis of Residual Plasticity Anisotropic). Both shakedown methodologies are 

based on approximate elastic-plastic stress analyses that are applicable to rectangular load 

bearing areas, such as that illustrated in Figure 4.194.  User provided routines that determine the 

constitutive behavior of the anisotropic material are needed to interface with SHARP_AN.  

These constitutive-based routines (called generic interface routines, see Figure 4.195) have to be 

compatible with material behavior measured on a specimen with its axis parallel to the <001> or 

equivalent crystallographic direction. In other words, quantities calculated within the user 

provided routines have to be compatible with the local coordinate system.  

A very brief overview of the anisotropic shakedown module and how it interacts with the 

point relaxation model and three user-provided generic interface routines is shown in Figure 

4.195.  The purpose of the three generic routines signified as GENERIC_INTF I, 

GENERIC_INTF II, and GENERIC_INTF III is to provide needed data that is derived from the 

material constitutive model.  Since the derivation of these data are constitutive model dependent, 

the user is required to develop explicit routines and procedures for extracting the needed data  



412 

from the constitutive model. This generic interface approach enables users to implement a 

variety of anisotropic material constitutive relationships.  More details are available in Appendix 

J. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.195.   An overview of the program structure of SwRI’s anisotropic shakedown  
module and how the shakedown module interfaces with three user 
provided routines: GENERIC_INTF_I, GENERIC_INTF_II, and 
GENERIC_INTF_III. 

 
 

4.4.4.3 Verification of ANSYS User Material Routines 

Elastic-plastic finite element analyses were performed using ANSYS to verify the 

anisotropic shakedown module.  To accomplish these analyses, P&W provided SwRI with 

software modules to link with ANSYS in order to implement the Walker constitutive model for 

PWA 1484 (see Section 4.3.2.1).  Modified versions of these ANSYS user material routines were 

developed and used by SwRI to validate the anisotropic shakedown methodology.  The modified 

versions corrected incompatibility problems between the received versions and ANSYS that led 

Anisotropic Shakedown Module 
Purpose: perform load shedding 
              and load re-distribution 

Point Relaxation Module 
Purpose:  convert linear elastic field 
quantities at a point into elastic-plastic 
quantities using Neuber’s rule  

GENERIC INTERFACE I 
Purpose: provide values for the material 
constants used in the constitutive 
model. 

GENERIC_INTF_II 
Purpose: determine the incremental change in 
 elastic-plastic field quantities consistent with the 
 material constitutive model based on the 
 equivalent  stress and  the equivalent strain.   

GENERIC_INTF_III 
Purpose: determine the 
equivalent stress from the 
component values consistent 
with the material constitutive 
relationship 
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to overwriting the state variables used internally by ANSYS.  The modified versions of P&W’s 

ANSYS user material routines were verified by SwRI as the initial step in the development of the 

anisotropic shakedown module.  This was accomplished by comparing the results of FEA 

computations with those derived from the analytical solutions for a plate and round bar subjected 

to uniaxial tensions and shear, respectively.  The PWA 1484 material constitutive relationship 

corresponding to a uniform temperature of 1400oF was used in the computations.  Figure 4.196 

presents the comparison of the analytical tension results with the finite element results and shows 

that the FEA results predicted using the SwRI modified material routines are in excellent 

agreement with the solutions for three strain rates at 1400oF.  Also given in the figure (solid line) 

are the FEA results calculated assuming a temperature of 1100oF.  At this temperature, which is 

typical of the blade attachment area, the stress-strain relationship is independent of the applied 

strain rate.  
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Figure 4.196. Comparison between analytical solutions from the Simple Tension 
Model, derived from the Walker constitutive equation, and the 
corresponding finite element analysis. 

 
 

4.4.4.4 Verification of the Anisotropic Shakedown Module Against Finite Element Results 

Three-dimensional elastic-plastic finite element analyses were performed to validate 

the anisotropic shakedown methodology once the material routines had been verified.  The 

anisotropic shakedown module used, as input, bivariant stress fields determined from three-

dimensional anisotropic linear-elastic finite element computations employing ANSYS.  The 
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elastic finite element results were obtained based on the anisotropic linear-elastic relationship 

derived from the Walker constitutive model.  

The validation was performed for a single-edge-notched plate containing a semi-

circular through-thickness notch (see Figure 4.194).  This plate was subjected to various 

combinations of tensile load and out-of-plane bending moment, as illustrated in Figure 4.194.  

Two sets of computations were performed.  In one, the axis of the plate was assumed parallel to 

the <001> direction, while in the other the axis was assumed parallel to the <111> direction.  The 

local and global coordinate systems are identical for the specimens whose axes are parallel to the 

<001> direction.  The nonlinear material behavior used for the anisotropic shakedown module 

corresponded to a temperature of 1100oF.  At this temperature, the effect of strain rate is minimal 

(see Figure 4.196).  Typical comparisons between the results predicted by the shakedown 

module and FEA are presented in Figures 4.197 and 4.198.  Each figure shows results for 

different planes through the plate thickness parallel to the two side surfaces.  For symmetrical 

loading conditions and the <001> direction, only results on three planes are plotted.  The 

locations of these planes are at one of the free surfaces (y/r=0), a plane one quarter of the way 

through the thickness (y/r=1.237), and the mid-thickness (y/r=2.5).  For loading parallel to the 

<111> direction results are not symmetric with respect to the mid-thickness, thus, results are also 

given on the two additional planes corresponding to about three-quarters of the way through the 

plate (y/r=3.763) and the other side surface (y/r=5).  

The results obtained by applying the anisotropic shakedown module developed by 

SwRI are, as in the case of the isotropic shakedown module, SHARP, in excellent agreement 

with the FEA results obtained using Walker’s constitutive model, except for the through-

thickness (out-of-plane) component of stress, yσ .  The reason that this stress component is not 

estimated as accurately as it is by the isotropic module is the fact that the out-of-plane multi-axial 

stress corrections that were developed in that case were not implemented in the anisotropic  

module.  The main reason for this is that evaluation of these corrections for isotropic materials 

involved performing finite element computations for materials with a range of strain hardening 

capabilities.  This option was not available for anisotropic material studied in the present work 

because of the nature of the material strain hardening response embodied in the Walker 

constitutive relationship specifically derived for PWA 1484.  
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The deficiency of the simple point relaxation predictions is apparent from the results 

shown in Figures 4.197 and 4.198.  However, the deficiency is not as great as that observed 

under some circumstances in the development of the isotropic shakedown module [1].  The 

reason is that the anisotropic material investigated herein displays significant strain hardening 

capability, as illustrated by the stress-strain curve for 1100°F shown in Figure 4.196.  The major 

discrepancies between the point relaxation model predictions and the elastic-plastic finite-

element results observed in the isotropic case occurred for materials like Ti-6Al-4V that 

exhibited little strain hardening capability.  As strain hardening capability increases the changes 

between the linear-elastic and elastic-plastic results become less significant.  Thus, materials 

with a high strain hardening capability result in less load redistribution for a given applied load 

than do materials with low hardening.  This means that the point relaxation model will become 

more accurate with increasing strain hardening, as borne out by the present results.  

4.4.4.5 Verification of the Anisotropic Shakedown Module 

The following conclusions are drawn based on the results reported herein. 

(1) The shakedown methodology developed by SwRI for isotropic materials has been 

successfully extended to anisotropic materials. 

(2) A shakedown software module has been developed for implementing the 

anisotropic methodology and verified against the results of three-dimensional elastic-plastic 

computations for structures orientated with their axes parallel to the <001> and <111> 

crystallographic directions. 

(3) Generic software interfaces have been developed to allow users of the shakedown 

module to employ anisotropic constitutive models other than the Walker model used herein to 

validate the shakedown module.    

(4) The shakedown methodology developed by SwRI includes the effects of load 

shedding and re-distribution due to stress relaxation. It has been shown that the accuracy of the 

shakedown model is significantly reduced if this capability is not included in the modeling.  
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 Figure 4.197(a) Figure 4.197(b) Figure 4.197c) 
 
Figure 4.197.   Comparison of stress components predicted by SwRI’s anisotropic shakedown module with the results obtained from 

FEA.  The results computed from point relaxation are also included to illustrate the effects of load shedding and re-
distribution.  The notched plate is subjected to a uniform stress, Sz=110 ksi, and the axis of the plate is parallel to the 
<001> direction.  Results in (a) are for the side surface of the plate (y/r=0), results in (b) are for a plane one quarter of 
the way through the plate thickness (y/r=1.237), and results in (c) are for the mid-thickness (y/r=2.5). 
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                                                                   Figure 4.198(a)                                              Figure 4.198(b) 
 
Figure 4.198.   Comparison of stress components predicted by SwRI’s anisotropic shakedown module with the results obtained from 

FEA.  The results computed from point relaxation are also included to illustrate the effects of load shedding and re-
distribution.  The notched plate is subjected to a uniform stress ,Sz=66 ksi, and a out-of-plane moment, Mx=112.5 kip-
in, and the axis of the plate is parallel to the <111> direction.  Results in (a) are for the mid-thickness (y/r=2.5) and 
results in (b) are for a plane about three quarters of the way through the thickness (y/r=3.763). 
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                                                               Figure 4.198(c)                                                    Figure 4.198(d)  
 
Figure 4.198.  (continued). Comparison of stress components predicted by SwRI’s anisotropic shakedown module with the results 

obtained from FEA.  Results in (c) are for a plane about seven eights of the way through the thickness (y/r=4.657), 
and results in (d) are for the other side surface (y/r=5.0). Note the break on the stress axis. 
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4.5 ATTACHMENT TESTING, METHOD DEVELOPMENT AND 
CALIBRATION 

 Realizing the objective of designing and manufacturing of damage tolerant bladed 

rotors within an agile and validated engineering system mandates a computationally efficient 

and accurate framework for determining the stress histories near the blade/disk interface.  

Such a framework must incorporate the mission-driven morass of static and transient 

mechanical, thermal and aerodynamic loads on the blade and rotor components. While 

conventional finite element models are used routinely and effectively to define robust airfoil 

and rotor structures, they fall far short in resolving adequately the interfacial displacements 

and sharp gradients in contact stresses near the edges of the blade/disk interface responsible 

for initiating and subsequently propagating fatigue cracks into the blade and disk. 

 This chapter serves to summarize recent efforts to develop and deploy advanced 

mechanics-based modeling tools that ensure the streamlined design of robust attachments by 

integrating accurate contact stress modeling in gas turbine engine components with validated 

life prediction approaches.  Specific attention will be given to highlighting: 

• the development and calibration of a design methodology that integrates 

accurate modeling of attachment stress histories in HCF environments with 

validated life prediction models; 

• successful efforts to calibrate this approach on well-characterized HCF 

durability shortfall experienced in a fielded bladed-disk design; and 

• the fundamental underpinnings of this approach, including advances in 

contact modeling, characterization of the tribology of nickel-based alloys at 

elevated temperature and results from contact specimen and component 

testing. 

4.5.1 Accurately Modeling Stress Histories in Bladed-Disk Attachments 

4.5.1.1 Continuum Mechanics Approaches to Contact Stress Modeling 

 Efforts carried out under this program have yielded a set of numerically efficient 

and robust tools for modeling the two-dimensional or line contact of nominally flat surfaces 

representative of the profiles present in fan, compressor and turbine bladed rotors.  These 
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tools enable solution of the singular integral equations (SIE) rooted in elastic continuum 

mechanics that govern the interaction between interfacial normal and tangential surface 

displacements.  The interaction among these displacements, associated contact pressure, 

frictional traction and near-surface stresses drive galling, fretting and fatigue damage in 

bladed disks. 

 For the case of contacting surfaces with similar elastic properties (i.e. a fan or 

compressor stage comprising a titanium disk and blades), the uncoupled system of equations 

can be solved within a matter of seconds for the near-surface contact stress fields using a Fast 

Fourier Transform (FFT) algorithm.  In the case of contacting components with either 

dissimilar isotropic or even orthotropic material properties—such as single-crystal turbine 

blades in an Inconel rotor—a separate, but nearly as efficient, numerical technique can be 

employed in an incremental fashion to solve the coupled system of singular integral 

equations that arise.  Pertinent details of and results from this latter method will be presented 

in the context of interpretation of well-controlled fretting fatigue experiments conducted with 

contacts comprising dissimilar isotropic and single crystal/isotropic pairs. 

4.5.1.2 Advances in the Hybrid Approach for Contact Stress Prediction 

 In transitioning these analytical tools successfully to a design environment where 

three-dimensional finite element models of bladed rotors are ubiquitous, links must be 

established between the contact analysis based on efficient numerical solution of singular 

integral equations and the results readily available from finite element models possessing 

fidelity compatible with an agile concurrent design environment.  Such a hybrid approach 

would empower designers with mechanics-based insight into the influence of geometric 

details, manufacturing tolerances and coatings on the subsequent damage tolerance of blade 

attachments and disk lugs. 

 As illustrated in Figure 4.199, a global-local hybrid approach that treats axial slices 

of the blade attachment and disk lug geometries represented in a three-dimensional finite 

element model as isolated two-dimensional contacts is straightforward to implement for 

static analyses requisite for LCF-type assessments of mission histories.  In this hybrid  
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approach, a coarse blade attachment/disk lug mesh that includes the non-linear influences of  

frictional contact is used to solve the statically indeterminate eccentric normal and tangential 

reaction loads between the blade and disk.  The reactions over each axial slice then serve as 

inputs to determine the interfacial tractions and near-surface stress histories.  Finally, these 

stress histories can be interpreted within the context of a validated lifing system and 

associated criteria. 

 

 
Figure 4.199. An illustration of the hybrid approach for modeling near-surface  

 contact stresses in blade attachment and disk lug designs.    

 

 

 A.   The Hybrid Approach and Single Crystal Blade Attachments 

 Central to the hybrid approach is treating piecewise segments of a three-

dimensional geometry as independent two-dimensional (either plane stress or plane strain) 

contacting elastic half spaces.  Implicit in this two-dimensional analysis is an absence of out-

of-plane shear loading, either applied or induced through the in-plane/out-of-plane coupling 

afforded by anisotropic material properties. 
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The latter influence is of direct relevance to typical turbine blade attachments 

produced from either directionally solidified or single crystal nickel alloys.  In an effort to 

understand the influence of material anisotropy on in-plane and out-of-plane contact reaction  

loads, a series of trade studies was conducted with a three-dimensional finite element model 

of a single-tooth fir tree (STFT) laboratory specimen (Figure 4.200) and associated fixture.  

The objectives of these studies were to: (1) examine the validity of applying the hybrid 

approach to anisotropic contacting surfaces by assessing the out-of-plane interfacial 

reactions, and (2) characterize the sensitivities of both the planar and anti-plane reaction 

loads (and thus the near-surface contact stress histories) to primary and secondary 

crystallographic orientations. 

 

 

 

 
Figure 4.200. The three-dimensional finite element model used in the  

single-crystal Nickel single-tooth fir tree trade study analysis. 
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The model portrayed in Figure 4.200, comprised eight-noded brick elements 

almost exclusively.  Node-to-node contact was established during a non-linear static analysis 

at 1100°F to resolve the interaction between the STFT specimen feature and fixture during 

application of a full-load waveform to the buttonhead specimen feature.  Both in-plane and 

out-of-plane relative tangential motions were incorporated using identical friction 

coefficients of 0.35.  

The specimen element material properties were representative of an 

orthotropic single-crystal nickel alloy, PWA 1484, while the material of the mating fixture 

was modeled as an isotropic nickel-based superalloy.  As detailed in Figure 4.201, the 

primary and secondary orientations of the crystallographic axes were varied with respect to 

the specimen/loading axes.  Analyses for each of these orientations were carried out for the 

same specimen load waveform and post-processed to extract the reaction forces at the 

specimen/fixture interface for three axial locations. 

 

 
  

 Figure 4.201. Definition of the primary crystallographic axis orientation ranges  
  used in the single-crystal nickel STFT trade studies. 
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A review of the interfacial antiplane shear loads from these runs provided 

convincing validation to the applicability of the hybrid method to these contacts:  These loads 

induced through the orthotropic material properties of the single-crystal nickel alloy were 

negligible compared to their in-plane counterparts.  Explicit comparisons of the in-plane 

reaction loads are shown in Figures 4.202 through 4.204, which present the ratios of 

reactions from off-axis orientations to those corresponding to the baseline crystallographic 

orientation.  As is clearly evident, the in-plane normal and shear loads show little sensitivity 

(0% to 5%) over the range of primary axis orientations considered.  Changes in primary 

orientation, however, had a stronger influence over the eccentricity of the normal load 

distribution, or effective in-plane moment.  These sensitivities tend to skew the distributions 

of contact traction on the surface and can lead to an amplification of stress near the critical 

edges of contact. 

 

 

 
 
Figure 4.202. A comparison of the normal line loads on the center slice of the 
   single-crystal nickel STFT model for various primary axis. 
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   orientations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.203. A comparison of the shear line loads on the center slice of the 
   single-crystal nickel STFT model for various primary axis 
   orientations. 
 

 
Figure 4.204. A comparison of the unit moment loading on the center slice of the single-

crystal nickel STFT model for various primary axis orientations. 
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Two secondary axis orientations, one aligned to the specimen geometry and 

one offset by 45 degrees, were also considered as shown in Figure 4.205.  The influence of 

the secondary axis orientation was similar to that of the primary axis, with little effect on the 

normal and tangential loads, but over a 30% increase in magnitude of in-plane moment. 

 

  

 
 

 Figure 4.205. A comparison of the contact reactions on the center slice of the single-
crystal nickel STFT model for two secondary axis orientations. 

  

 B.  Application to HCF-Environments:  Quasi-Dynamic Vibratory Analysis 

 To this point, the obvious advantages to the hybrid method of attachment 

analyses have been illustrated for load and stress histories representative of the LCF mission 

cycles.  Direct application of the hybrid methodology to understand non-linear reaction load 

and contact stress histories in HCF environments is precluded at first glance by the linear 

modal analysis used conventionally to characterize stage vibration.  These modal results are 

typically generated by determining solutions of the eigenvalue problem: 

 

  ( ) 0}ˆ{][][ 2 =− uMK ω        (4.53) 
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 In this equation, [M] is the elemental mass matrix and [K] is the model 

stiffness matrix that may include non-linear influences such as stress-stiffening and spin-

softening associated with high-speed rotation of the bladed disk rotor structure.  In such an 

analysis, the contact interaction at the blade/disk interface is often modeled in a linear 

fashion with displacement constraint equations that prevent interpenetration of the blade 

attachment and disk lug nodes; and enforce either a no-slip/infinite friction or pure 

sliding/zero friction condition in the tangential direction. 

A procedure dubbed quasi-dynamic vibratory analysis (QDVA) has been 

developed to bridge this gap between conventional modal analysis procedures and the need 

to obtain non-linear interfacial reaction loads for subsequent accurate and efficient 

characterization of near-surface contact stress histories.  As outlined in steps 2 through 5 of 

the process presented in Figure 4.206, the QDVA process involves conducting an 

incremental static analysis including frictional contact at the blade/disk interface using a load 

history comprised of a nodal force history extracted from the modal results.  This quasi-

dynamic force history is determined by scaling the modal forces generated from the 

aforementioned eigenvalue problem by either recorded or predicted stage vibration levels 

(strain gage readings, optical probe tip deflection measurements, etc.); or by design-system 

criteria defining acceptable vibratory responses. 

The scaled modal force history is then enforced over the entire model, save at 

the blade/disk interface—which is resolved through the use of contact elements on the 

surfaces of the blade attachment and disk slot.  Implicit in this approach is the assumption 

that the set of interfacial displacement boundary conditions imposed during the modal 

analysis (and thus used to generate the scaled modal force history) are identical to those 

during the actual vibratory response of the bladed disk stage.
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 Figure 4.206. A summary of the Pratt & Whitney proprietary radical analytical framework assembled for designing  
   damage tolerant attachments in gas turbine engine bladed disk assemblies. 
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4.5.1.3 Validating the RADICAL Methodology:  F100-PW229 3rd-Stage Fan Analysis 

 With the development of this approach to determine contact reaction loads during 

forced vibration, an inclusive compliment of modeling tools now exist to determine both 

accurately and efficiently the near-surface contact stress histories in bladed-disk attachments 

during complete mission histories.  Juxtaposing these analysis capabilities with the lifing 

methods presented previously in Chapters 4.2 and 4.3 yields a design-oriented framework for 

damage tolerant attachment design, as presented in Figure 4.206.  While the path outlined in 

this framework is considered a generic one, a proprietary implementation of this approach 

dubbed RADICAL—Robust Attachment Design Through the Integration of Contact Analysis 

and lifing—is being deployed within the standard work instructions of Pratt & Whitney.  

With these specific efforts detailed in Chapter 4.6, this section focuses on a calibration of the 

radical approach to a well-characterized and since-eliminated HCF-driven durability shortfall 

in a military fan application. 

  A.   Background 

With an extensive well-characterized set of engine, modeling and mission data 

available, a recent case of HCF-cracking in both the blade attachments and disk lugs in the 

3rd-stage of the F100-PW229 fan provided an excellent baseline for calibrating the radical 

methodology.  These data were used previously to identify root cause for the cracking as an 

integral stiffwise bending response of the stage at a sea-level mil power rating, driven by bow 

waves from downstream static hardware.  A redesign effort introduced geometric changes in 

both the rotor and blade attachment to successfully eliminate the incidents of HCF cracks. 

Figure 4.207 provides a cross-section of the fan geometry, highlighting not only 

representative views of the blade and disk cracks, but also instrumentation used to 

characterize the vibratory responses of the stage, including dynamic strain gages and non-

intrusive structural measurement system (NSMS) optically based tip timing probes.  Blade 

attachment cracks initiated at the forward, convex corner, while the disk lug cracks began on 

both the concave and convex aft corners of the pressure surface.  
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 Figure 4.207. Cross-section of F100-PW229 fan, highlighting of 3rd-stage disk 
  lug and blade attachment HCF cracks and instrumentation used 
  to characterize the vibratory responses of 3rd stage bladed-disk. 

 

 B. Analysis 

A sector model of the bladed disk with appropriate cyclic symmetry 

constraints (Figure 4.208) was used to analyze both the static and vibratory responses of the 

stage.  Similar to the aforementioned single-tooth fir tree models, node-to-node contact was 

employed at the blade attachment/disk lug interfaces with a friction coefficient of 0.15.  The 

finite element analysis consisted of four segments, following the steps outlined in Figure 

4.206:  (1) a steady-state thermal analysis with an applied rotor and blade temperature 

distribution, (2) a non-linear static analysis from idle to the sea-level mil power rating, (3) a 

subsequent pre-stressed modal analysis corresponding to the measured 14 nodal diameter 

pattern of the stiffwise bending response, and (4) the quasi-dynamic vibratory analysis, using 

the modal force history for the stiffwise bending mode scaled using tip deflection 

measurements from the leading-edge NSMS probes. 
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Figure 4.208.   Three-dimensional sector mesh of the 3rd-stage fan. 

 

The reaction force and moment histories on all four contact surfaces (concave 

sides of blade attachment and disk lug; convex surfaces of blade attachment and disk lug) 

were generated via an ANSYS macro for each of the 19 axial slices composing the interfaces.  

These histories served as inputs to the FFT-based contact traction and near-surface stress 

analysis.  It is critical to note that while this fan application involves isotropic titanium 

components and related application of the FFT-based contact analysis, the modular 

framework of RADICAL provides for transparent transition to the numerical solution of the 

governing singular integral equations for either dissimilar isotropic contact pairs or contacts 

involving anisotropic materials.  

Figure 4.209 presents one visual representation of the results from the entire 

analysis—the evolution of contact pressure on the interface of the disk lug on the concave or 

suction side of the airfoil.  This evolution is presented as a sequence of snapshots proceeding 

from left to right and top to bottom in the following chronology:  (1) ground idle to sea-level 

mil power (top row), and (2) one complete cycle of a measured stiffwise bending response.  

It is important to note that the vibratory results in rows 2 through 4 are not scaled modal 
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 Figure 4.209. Evolution of contact pressure on the concave side disk lug surface during take-off from idle and a 
   Subsequent measured stiffwise bending vibratory response at sea-level mil power rating.

432 
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results from the finite element model, but highly accurate analytical contact pressures from 

the hybrid approach. 

The near-surface stress histories associated with the evolution of both this 

normal pressure and shear traction were then interpreted in the context of the Findley 

multiaxial life parameter presented earlier in this document.  Any influence of residual stress 

resulting from either shot peening or localized yielding was not included when calculating 

the life parameters.  Figure 4.210 presents contours of this parameter over the surface of the 

disk lug on the concave side of the airfoil.  As highlighted on the plot, the RADICAL 

approach predicts finite lives (< 108) in the vicinity of the observed initiation sites.  The 

predictions made to date have fallen short, however, in agreeing with the remaining initiation 

sites on the convex sides of the disk lug and blade attachment.  Future work will be directed 

at enhancing the approach to incorporating the influence of both history effects induced by 

simultaneous variation of normal and tangential loading, and surface treatments such as shot 

peening and coating.  Furthermore, additional calibration efforts are required to correlate the 

actual cycles predicted by the Findley parameter to the estimated exposure to the hardware 

based on detailed mission analysis. 

 

Figure 4.210. Contours of the Findley parameter on the concave disk lug surface, where 108 
cycles correspond to around a parameter value of 30 ksi.  The observed 
component initiation region corresponds to the lower right corner of the plot, 
in agreement with the predictions. 
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4.5.2 Testing 

4.5.2.1 Single Tooth Firtree 

 A.   Background  

The single tooth firtree (STFT) sample is a subcomponent test used to evaluate 

blade attachment LCF, HCF, and fracture mechanics capability. The STFT consists of a 

holder and the dovetail shaped specimen as shown in Figure 4.211.   

 

 
Figure 4.211.  Single tooth firtree test hardware. 

 
 

 Small misalignments and induced bending have a big effect on the true stress 

at the failure location. This robust geometry for both the holder and the specimen reduces the 

effect of misalignment. The testing procedure addresses the problem by monitoring 

misalignment through strain gages that are attached to both sides of the rectangular section of 

the specimen just above the specimen to holder interface. Then rig alignment is adjusted to 

reduce gage measured bending where modulus is taken into account in gage measurements.    

Both LCF and HCF testing have been conducted with this sample.  The HCF 

testing was conducted at 1100oF with a stress ratio of 0.70 and at 1200oF with stress ratios of 

0.05 and 0.80.    
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B. Stress Analysis 

The quarter finite element model of the STFT specimen, holder and fixturing is 

shown in Figure 4.212.  The loading cycle modeled for the STFT specimen, which has 

<001> radial crystalline orientation and a <010> tooth orientation is shown in Figure 4.213.  

This model was analyzed with a coefficient of friction of 0.35.   

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.212.   Single tooth firtree stress model. 
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 Figure 4.213.  Loading cycle and displacement used in single crystal STFT analysis. 

 
 

Contour plots of the displacements and stresses in the specimen and holder are  

shown in Figures 4.214 through 4.216.     

 

Step 3: 15820 lbs Step 4: 19775 lbs

 
 
 
 

Figure 4.214.   Radial displacement results from the single crystal STFT  
analysis. 
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Step 3: 15820 lbs Step 4: 19775 lbs

 
Figure 4.215.  Maximum principal stress in the holder for the single crystal STFT test. 

 
 

Step 3: 15820 lbs Step 4: 19775 lbs

 
Figure 4.216.  Maximum principal stress in the single crystal STFT specimen. 

 
 

  To reduce computer time for a full model of the STFT, holder and fixturing, a 

mesh refinement study was pursued with 5, 9 and 18 elements across the bearing surface 

being considered and compared to the load sensitivity, see Figure 4.217.  The full model was 

required so as to study orientation effects on the bearing surface loading.  The results of the 

study are shown in Figure 4.218.  Note that with the exception of the shear load, little 

changed was observed in going to as few as five elements across the bearing surface.  The 

resulting loads produced from the study indicated that the coarse mesh, five elements across 

the bearing surface, could be used to capture the proper loading for the 360-degree model. 
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Figure 4.217.  Mesh sensitivity study for orientation study. 
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 Figure 4.218.   Mesh refinement study for single crystal bearing study. 

 

 The full 360-degree model took approximately one week to do a five load step 

analysis.  A mesh density of nine elements was found to be appropriate for modeling contact 

regions of the blade.  Single tooth firtree specimen stiffness is different from conventional 

5 Elements 9 Elements 18 Elements
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disk geometries and is sensitive to out of plane loading.  Care was taken in test set-up to limit 

out-of-plane loading and in utilizing results in application to turbine disk attachments.  This 

was done through the design of the latest single tooth firtee fixturing and the use of modulus 

corrected strain gage readings to evaluate alignment.  

 C.   Single Crystal Single Tooth Firtree Test Results 

A plot of the data versus a psuedo-Smith Watson Topper parameter where 

normal bearing stress is used as the input stress is shown in Figure 4.219.  This permits the 

combining of several different stress ratios under which the testing was conducted.  Figure 

4.220 only includes the edge of contact failure test results.  Due to the fact that a critical 

plane life prediction method for single crystal had not yet been established and that the 

contact analysis method (CAFDEM) for single crystal had not been evaluated at Pratt and 

Whitney, predictions for the STFT contact failures could not be made.  It is also uncertain as 

to whether or not plasticity would or would not have had to be considered for the life 

predictions in single crystal STFT specimens.     
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Figure 4.219.   Single crystal single tooth firtree HCF test results versus a pseudo  
                        Smith Watson Topper parameter. 



 440

 
Bearing symmetry good, octahedral and non crystallographic  
fracture noted on same specimen:  

subsurface origin

Damper contact
spot

octahedral non- crystallographic
 

Figure 4.220.  Fractography of a edge of contact HCF failure site. 
 
 
 

4.5.2.2  High Temperature Fretting and Tribology Experiments 
 
 A.    Experimental Development 

Purdue University’s standard fretting rig as described in a previous section (see 

Section 3.5.3.1) had been designed to operate at room temperature. The rig was useful in 

testing the materials like Ti-6Al-4V, Ti17 and Inco718 that are used in components that 

operate at lower temperatures. However, advanced alloys like Single Crystal Nickel (SCN) 

and IN100 are known to have different mechanical fatigue characteristics at high temperature 

than at room temperature. Therefore, to study the material characteristics, the experiments 

have to be conducted the elevated temperatures which the material is exposed to. A rig was 

designed to achieve an elevated temperature of 610oC at the contact region. Figure 4.221 

shows a schematic of the rig designed for high temperature tests. Components of the rig 

closer to the zone of elevated temperature were designed using Ti-6Al-4V alloy.  4140 steel 

was used to design the components that were far away from the region of high temperature. 
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Figure 4.221.   Schematic of rig designed for conducting  
  experiments at elevated temperatures. 

 
 
Load transfer in the high temperature rig is based on a principle similar to that 

of the room temperature fretting rig. The webs connected to the platforms that hold the pads 

act as membranes. They transfer most of the normal load applied to it, but their stiffness in 

the tangential direction gives rise to tangential (shear) load at the contact. Normal load is 

again applied using two hydraulic actuators. Two rods on either side of the contact ensure 

that the pressure is applied symmetrically to the pads. Since the temperatures that would be 

encountered during the experiments were high, assembly of different parts using welds or 

bolts were avoided. Hence the webs and the platforms that hold the pads were machined from 

a single Ti-6Al-4V block. Further, the pad holder block was not made of two different parts 

bolted together with the pad in between them, as in the case of the standard room temperature 

rig. As the normal load is applied, the pads get wedged into a tapered groove (tapered at an 

angle of 5o) machined in the pad holder block. 

The temperature of the local area of contact was increased using a pair of 

igniters on either side of the specimen. The igniters draw a current of 4.25A to 4.75A at 

132V, and the maximum temperature achieved by the igniter surface is 1550oC. The heat 

transfer from the igniter to the specimen and the pads is through radiation and convection 

with air as the medium. Temperature of the specimen was measured using a K type 
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thermocouple spot-welded onto the specimen, halfway between the two contacts. The voltage 

output of the thermocouple was used to control the temperature at the contact using an on/off 

type of control. The controller was set up such that the igniter switches off if the temperature 

goes up by 1oC from the desired temperature and switches on if the temperature drops by 

0.5oC. In an on/off type of control, the igniter should reach a very high temperature in a short 

period of time to minimize the fluctuations in temperature. Hence, an igniter that can achieve 

the maximum temperature from room temperature in 17 sec. was chosen. However, there was 

a fluctuation of +/-5oC when the desired temperature was 610oC. The fluctuation may be due 

to air currents affecting the convective heat transfer, in addition to on/off type of control. The 

influence of air currents was minimized by forming a shield around the zone of elevated 

temperature with ceramic blocks and sheets. The fluctuation was less than 1% of the desired 

value so it was neglected.  

The surface of the webs and the pad holder block facing the zone of elevated 

temperature was covered with ceramic sheets glued using high temperature adhesive, hence 

preventing their exposure to high temperatures. It also prevents absorption of heat by the rig 

from the elevated temperature zone. Loss of heat to ambient air was further prevented using a 

shield made of ceramic block placed behind the igniter. 

The ceramic shields along with the ceramic sheets covering the rig give rise to 

a furnace-like environment around the region of contact. In spite of covering the surface of 

the webs with ceramic sheets, there is some heat transfer to the rig due to air surrounding it 

that is at very high temperature. In addition, there is a transfer of heat from the pad to the pad 

holder, by conduction. To absorb the heat generated in the rig, the pad holders are cooled by 

passing water through channels machined in the block (Figure 4.222). Heat is also conducted 

to the wedges that hold the specimens. Hence, water-cooled wedges were used for clamping 

the specimens. 
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Figure 4.222.   A photograph of the rig designed for conducting  
 experiments at elevated temperature. 

 
 
 

Cylindrical rods (7.9 inches long, 1 inch in diameter) cast from SCN were used 

to machine the fretting fatigue specimens. The primary principal axis (x0) is possibly tilted 

from the cylinder axis (x1) by a small angle (< 10o). A rectangular cross section (0.6 inches 

times 0.38 inches) oriented at an arbitrary angle about the x1-axis was machined (Figure 

4.223-a).  Tabs made from WASP alloy were inertia welded to the ends to produce the 

specimens. The nominally flat fretting pads were made from IN100.  
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Figure 4.223(a).  Schematic showing the 
material principal axes with respect to the 
specimen. 

Figure 4.223(b).  Effect of the change in 
orientation of principal axes with respect to 
contact surface on the subsurface stresses. 

 

 

 B.  Experimental Results 

  The details of the experiments are listed in Table 4.42.  

 
Table 4.42.   Experimental Conditions for High Temperature  
 Fretting Fatigue Experiments with SCN on IN100*   

 
*( ơt=stresses measured by top load cell, ơb=stresses measured by bottom load cell).  

s gross sliding observed throughout the experiment, p partial slip or mixed fretting regime 
during the experiments. 

 

Controllable Loads Measured loads Total
Expt. P σt

max σt
min σb

max σb
min Qmax Qmin Life

No. (lb/in) (ksi) (ksi) (ksi) (ksi) (lb/in) (lb/in) (Cycles)
HTFF01 10695 30.7 7.5 46.9 0.6 4871 -2084 415,000s 

HTFF02 10575 58.0 7.7 64.1 2.0 1799 -1696 944,495
HTFF03 12522 42.1 11.3 51.9 3.3 2964 -2410 2,000,000r

HTFF04 19100 58.2 12.9 77.3 2.1 5733 -3249 174,973
HTFF05 19380 59.0 12.2 72.8 0.1 4128 -3620 169,815
HTFF06 19592 48.9 10.3 64.5 -0.1 4688 -3101 61,900
HTFF07 19791 53.5 14.5 64.0 0.3 3141 -4260 491,292
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The first experiment provided valuable insight into the mechanics of the rig and 

the temperature variation at the contact. Based on the behavior of the rig in the first 

experiment, changes were made in the alignment procedure. The next two experiments 

served the purpose of verifying the working of the rig. Coefficient of friction was found to be 

very low (0.17 - 0.23) for the given contacting materials, due to which severe gross sliding 

(implying Q= µP) was observed during the course of experiments. It is possible that the 

relatively large displacements associated with sliding wear introduced non-linearity into the 

load transfer relationship. Thus P could be smaller than the measured value. 

In order to achieve partial slip, representative of the engine hardware, the 

tangential load has to be decreased such that Q< µP. Either the length of the specimen 

between the contact and the top grips could be reduced or the area of cross-section (i.e. the 

thickness) of the diaphragms could be reduced in order to reduce Q. The length of the 

specimen was reduced due to the ease of modification. This was achieved by raising the 

fretting chassis, relative to the specimen, using spacers. By this process, partial slip 

conditions were achieved in the subsequent experiments. Q/P ratios of up to 0.27 were 

achieved implying that the coefficient of friction could be higher than what was anticipated 

from the first few sliding experiments. 

As a preliminary study, the effect of the orientation of material principal axes 

on a sliding contact problem, representative of first two experiments, was studied using the 

aforementioned SIE approach. The orientation of the primary axis of the material with 

respect to the axis of the specimen was obtained from the manufacturer. However, since the 

orientation of the secondary axis with respect to the contacting surface was not known, SIE 

analysis was performed for all possible orientations. The effect of orientation of the material 

principal axes on subsurface stresses is significant. Lauè x-ray diffraction method is being 

used to determine the orientation of the material principal axes to facilitate an accurate stress 

analysis. Further analysis of the fretting experiments will be conducted after determining the 

orientation of the material principal axes.  
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C.    Summary 

Fretting characteristics of advanced materials at higher temperatures were 

studied. A new rig has been designed to operate at temperatures representative of the 

conditions to which the engine components are exposed in the turbine.  Load histories clearly 

illustrated the effect of temperature on tribological behavior through the friction coefficient. 

The effect of change in the orientation of the secondary axis in the samples provided has 

been evaluated and a method to determine the orientation of the secondary axis has been 

discussed. Once the friction coefficient and the orientation of the secondary axis is known, 

efforts to relate fretting fatigue life to local stresses will be pursued. 

4.5.3  Component Stress Prediction 

4.5.3.1 Background on HCF Induced Attachment Cracking in Turbine Blade 

 Validating the advanced modeling tools that integrate accurate contact stress 

modeling with validated high cycle fatigue (HCF) life prediction is a key part of the single 

crystal HCF attachment analysis system.  Validation cases consist of fretting fatigue data 

generated by Purdue University and a P&W single tooth firtree (STFT) test.  Additional 

validation cases were conducted after completion of basic work and are reported in Appendix 

X.   

The component considered for the calibration of the single crystal attachment HCF 

life system is a low turbine blade that experienced considerable vibratory excitation from 

both a 3E and a non-integral mode.  The blade is made of a directionally solidified nickel 

base material but exhibited initiation from the HCF loading within a single grain.  This 

configuration has since been redesigned to remove this sensitivity to HCF.  The fracture 

surfaces for one of the blades are shown in Figure 4.224 and 4.225.  Figure 4.224 is a 

composite of several blade fracture locations.  Sufficient information was available on both 

fractured and non-fractured parts to develop a comparison for HCF fatigue predictions in the 

attachment region.  In addition, extensive testing was done with a Noninterference Stress 

Measurement System (NSMS) to determine blade motion, a critical element in applying the 

RADICAL HCF predictive process.  
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Figure 4.224.  Top view of low pressure turbine blade upper tooth fracture surface 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.225.  Side view of low pressure turbine blade upper tooth fracture surface. 
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4.5.3.2 Component Stress Prediction 

 This section describes the progress made in the stress analysis portion of the 

RADICAL HCF attachment lifing system validation.  This low pressure turbine blade 

presents some unique challenges in that it has two teeth and is shrouded, whereas the 

previous analysis work on fan blades contained only one tooth and was unshrouded.  The fan 

analysis was therefore less complicated from a stress analysis and particular boundary 

condition perspective.  The low pressure turbine blade exhibited attachment failure due to 

high cycle fatigue excitation from a 3E stiffwise bending mode response.  The turbine blade, 

see Figure 4.226, had begun to be subjected to the initial part of the RADICAL analysis 

process, that is developing the finite element model.  This process consists of: (1) three 

dimensional finite element analyses with and without contact to characterize both static and 

vibratory responses of bladed disk designs, (2) engine data or aeromechanical predictions 

characterizing vibratory responses, (3) serial two-dimensional quasi-analytical contact 

analyses conducted using finite element method input, and (4) interpretation of the accuracy 

of the stress histories within the context of a validated lifing system.  Time limitations 

prevented the completion of the verification work, therefore this section chronicles progress 

made towards that end.  (Subsequent to this analysis, further work was completed on the 

validation phase and is documented in Appendix X.) 

Life prediction verification is to be built upon previous studies of the F100-PW-229 

4th Turbine Blade [63,64].  These previous studies contained analyses and laboratory testing 

concluding that blade failure was due to the effect of a 3E stiffwise bending mode upon the 

blade-to-disk contact surface.  Two separate NASTRAN finite element models were used for 

that work; one for LCF and the other for HCF.  The LCF model contained the loads at the 

0.6/0K condition for the 3E mode [Reference 63, page 37, Figure 22] but was not suited for 

robust contact or current modal cyclic symmetry techniques.  The HCF model did not contain 

the required loads but was suited for symmetry and can be modified for robust contact. 

Accurate contact stress analysis verification requires a model having loading 

conditions simulating 0.6/0K and blade/disk contact. To meet these requirements loads from 

the NASTRAN LCF model are to be mapped onto the HCF model. In this way the steps for 
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the RADICAL process can be completed and the necessary contact load and stress dieout 

data can be extracted from the finite element analysis model for later use. 

The NASTRAN models have been successfully translated into ANSYS as shown in 

Figure 4.226 and 4.227 and the load mapping strategy has been laid out. More work, beyond 

the scope of this program, is required to complete the verification process.  (See Appendix X 

for updated information on verification of RADICAL process.) 

 

 
  

Figure 4.226.  4th blade and disk 3D finite element model (assembled). 
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Figure 4.227.  4th blade and Disk 3D Finite Element Model (dis-assembled). 
 

 
 

4.5.3.3 HCF Life Prediction Attachment Cracking in Turbine Blade 
 
 Subsequent work to the work under the basic program, the RADICAL process has 

been exercised against several field and laboratory test cases, for which there is attachment 

EOC cracking experience.  The objective is to understand the robustness of the process as 

well as to calibrate it.  A description of the hardware on which the calibration/validation is 

performed, the analysis assumptions and process, and the results of the analyses are 

presented in Appendix X.  In the case of the turbine blade the single crystal system is adapted 

to directionally solidified material for both life and contact stress analysis.  It was not 

determined if a plastic analysis involving a constitutive model would be required.   

 

4.6 IMPLEMENTATION INTO DESIGN INVIRONMENT 

The technologies developed under this program for single crystal materials are 

aimed at ultimately improving the design and analysis capabilities of the engine 

manufacturers for both new designs as well as analysis of existing components in order to 

insure structural durability.  The methods for implementing these technologies involve 
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incorporating them into standard design practice through their inclusion of the design 

manuals used within the engine companies.  Described, below, are the summary comments 

by Pratt and Whitney and GEAE on the inclusion of single crystal technologies into 

“Standard Work” and “Best Practices,” respectively.  In addition to the implementation, 

technologies developed under this program will be adopted, where appropriate, into the 

ENSIP specifications. 

4.6.1 Deployment into Pratt & Whitney Standard Work 

 With the development and successful calibration of the RADICAL approach as a 

solid foundation for contact fatigue, intensive efforts have been underway within both the 

Compression Systems and Turbine Module Center to deploy, apply and mature this suite of 

analytical capabilities within the context of the standard work instructions for bladed disks 

that frame all design and field investigation efforts.  The current vision incorporates a subset 

of the RADICAL approach and criteria into the preliminary design phase and embraces the 

complete process for detailed design work and field investigations. 

Specific steps are being incorporated into the activity pages that define explicit 

guidelines for modeling and analysis procedures for designers and structural analysts during 

a concurrent design effort.  An overview of the steps is included below:  

• Create appropriate three-dimensional sector representation of bladed disk 

stage with pre-defined mesh features in attachment region 

• Run ANSYS non-linear static solution with frictionless node-to-node 

contact corresponding to initial (idle) condition, followed by a restart 

with appropriate friction coefficient enforced 

• Continue non-linear static solution to mission point corresponding to 

vibratory crossing 

• Reduce convergence tolerance and restart/rerun solution at this point 

• Perform a pre-stressed modal analysis and extract modal force history for 

mode(s) of interest 



 452

• Restart analysis at mission point of interest and solve with superposed 

scaled modal force history until frictional path dependence effects have 

shaken down 

• Extract interfacial reaction load history for complete analysis and execute 

contact stress analysis & lifing modules corresponding to materials of 

interest. 

Pratt & Whitney’s commitment to transferring the technologies and methods 

developed under the auspices of this contract promise to have immediate, persistent and 

profound impact on the robust design of bladed disk attachments.  As evidence of this, 

consider that this methodology is being applied currently to over ten commercial and military 

applications at various stages in their life cycle—from clean-sheet designs, to development 

components and finally maturing hardware in need of durability improvements. 

 

4.6.2 Development of Best Practices at GE 

4.6.2.1 1900°F SX HCF Implementation  

Modeling studies have been performed to determine the applicability of the HCF-

Rupture Interaction Model developed for PWA1484 (Section 4.3.4.3) to the single crystal 

alloy, Rene N5, used in GEAE engines.   This effort used historical Rene N5 data at 1900°F.  

The study examined the influence of rupture damage in high mean stress HCF, and the 

capability to model tests under constant and variable mean stress by the cumulative rupture 

damage approach shown to be valid for PWA 1484 at high mean stress.  Following the 

method outlined in Section 4.3.4.3, pure rupture data under constant stress was fit with a 

power law of the form tr = kσm, where tr is rupture time, σ is stress, and k and m are 

empirical constants.  The life of 2-step rupture tests (high-low and low-high) was calculated 

assuming linear damage summation.  The lives of HCF tests with different mean and 

alternating stresses) were calculated assuming rupture was the only damage mechanism and 

that damage under variable stress conditions could be integrated over each cycle (cumulative 

rupture model without compressive damage).  Tests for two cyclic frequencies were included 

(60 and 900 Hz).  Since the model was based on rupture damage, the lives of these two 
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frequencies were predicted to be the same on a time basis.  This was in good agreement with 

observations.  The life of 2-step HCF tests (high-low mean and low-high mean) was also 

computed by assuming linear damage accumulation of the two HCF segments (each of which 

was calculated from rupture).  Figure 4.228 shows a comparison of the predicted (y-axis) and 

observed (x-axis) lives using this approach.   

In the key attached to Figure 4.228, “const HCF, s1” refers to 60 Hz HCF at a 

constant mean stress of s1 (s1 > s2 > s3 > s4) and several different alternating stress levels.  

(Each test has only one alternating level; there are one or more different tests for each 

alternating stress.)  “Hi Freq HCF” is 900 Hz HCF, also at a constant mean, R >0.  “Lo-Hi 

Rupture” refers to rupture tests in which the specimen is loaded for a fraction of life at a low 

stress (s3) and then the load is increased to a higher stress(s1).  “Lo-Hi HCF” is similar, 

where the mean stress is changed from s3 to s1 while the alternating stress is kept constant.   

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
Figure 4.228 Comparison of predictions vs. observed lives (hr) using linearupture damage 

model for rupture and HCF of Rene N5 at 1900°F. 
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Overall, this approach performed remarkably well: 18 of the total of 26 test 

predictions fell within a factor of 2 of the observed lives.  The test conditions that are not 

well predicted are: Hi-Lo HCF and HCF at the lowest mean stress (lowest R).  There is also a 

noticeable trend of increasing conservatism (predicted less than observed) as the stress-ratio 

is decreased (as mean stress decreases).  This might be expected since at lower R the 

conditions are farther from pure rupture, where the cumulative rupture model is expected to 

work the best.  The reason for the failure of the model to predict Hi-Lo HCF capability is not 

known but is disturbing since many turbine blades undergo time-varying (relaxing) mean 

stresses due to creep during engine exposure.  One possible reason comes from observation 

of the test specimens themselves: except for the rupture tests and the HCF tests with the 

highest mean stresses, the failure modes in these specimens were all fatigue-like (flat, 

oxidized surface origins) and not rupture-like (rough, dimpled, internally initiated).  Thus 

even though the extent of agreement is relatively good, as shown in Section 3.4.3, a rupture 

damage-based model alone may not be appropriate for all high temperature HCF conditions.  

Unfortunately, the low mean stress HCF data representing a pure fatigue capability were not 

available to construct the Walker HCF model required for lower mean stress HCF modeling.  

Nevertheless, the extension of the HCF-Rupture modeling approach to other single crystal 

superalloys is certainly promising and will be pursued under internal company funding. 

4.6.3 ENSIP for Single Crystal Materials 

The following is a summary statement of the state-of-the-art of some aspects of SX 

and DS alloys.  These observations should be recognized in ENSIP, and specific guidance 

should be developed on how to deal with these features that are unique to anisotropic 

materials. 

Unlike traditional polycrystalline, isotropic materials, components made from 

directionally solidified (DS) or single crystals (SX) materials require several special design 

considerations.  The first of these is that DS and SX materials are anisotropic, that is, their 

properties vary with direction.  This is true for elastic, inelastic, and fracture properties.  Both 

material types are fabricated so that one axis of the cubic crystal geometry is approximately 

parallel to the solidification direction of the part, usually noted by convention as the <001> 

direction.  In a DS material, there are multiple grains, all with the same <001> axis, but with 
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varying and random transverse orientations.  In a SX material there is only one grain or 

crystal, whose transverse orientation may or may not be controlled by processing.   

By virtue of the cubic symmetry of nickel-based superalloys, SX superalloys have 

cubic symmetry, and thus require three independent elastic constants to fully describe them.  

Unlike isotropic materials, the shear modulus is not definable in terms of the Young’s 

modulus and Poisson’s Ratio.  DS materials have lower symmetry due to the random 

transverse orientation of their grains.  This makes them elastically transversely isotropic, and 

they require 5 constants to define their elastic response.  Both types of material symmetry are 

found in most modern finite element codes and modeling of elastic response should be done 

with the proper anisotropic description.  The elastic anisotropy does not change much with 

temperature. 

The yield and creep behavior of DS and SX materials is also anisotropic due to the 

strong tendency for these materials to deform on a limited number of slip systems.   This 

response is more complex than the elastic response and much more difficult to model and 

imbed in stress analysis codes.  The plastic and creep anisotropy appears to be greatest at low 

temperatures (up to about 1400°F) and then diminishes above that, due to the activation of 

additional slip systems at higher temperatures.  In parts where the loading is primarily 

uniaxial, the properties in the stress direction (usually <001>) can often be used to 

satisfactorily describe the inelastic response of these materials. 

Fracture properties (e.g, rupture, LCF) can also be anisotropic with the extent varying 

with temperature.  Properties can be developed uniaxially for different orientations, but there 

is no widely agreed-upon method for evaluating the capability of DS or SX materials under 

complex stress states (as often occur in blades and vanes).  In addition to the material 

anisotropy, DS and especially SX materials can be subject to cracking along crystallographic 

planes, especially under fatigue cycling.  This crystallographic cracking is most pronounced 

at low temperatures, and introduces a mixed-mode fracture component.  For conditions 

where such crystallographic cracking is anticipated, mixed mode characteristics should be 

incorporated into the fracture analysis.  For many cases, Mode I cracking is observed and 

conventional Mode I practices suffice. 
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Most modern turbine airfoils are relatively defect and damage tolerant structures, as 

evidenced by their ability to function with many cooling holes drilled into them.  This 

tolerance results partly from the need to keep stresses low due to the limited creep-rupture 

capability at high temperature, and partly to the large component of thermally-generated 

stress, which tends to make cracking self-limiting.  Blade shanks and dovetails are usually 

more highly stressed, since they are much cooler, and here more attention needs to be paid to 

defects and damage tolerance. 

Both DS and SX materials can have manufacturing defects or in-service damage that 

may need to be considered in the component capability.  Examples of manufacturing defects 

are: primary grain misorientation, inclusions, porosity, low angle grains, and high angle 

grains.  The latter two are only relevant for SX materials.  In-service damage can be from 

impact, fretting, or erosion.  Currently, most of these defect types are managed by placing 

experimentally determined acceptance limits on them.  An example would be manufacturer’s 

limitations on the allowable primary grain misorientation.  There is only limited evidence and 

experience in DS and SX hardware on using fracture mechanics based determinations of 

allowable defect or damage type or size.  Again, consideration needs to be made as to 

whether the cracking will be Mode I or mixed mode.  Grain boundary type defects in SX 

materials (low angle and high angle grains) do not appear to be well suited for conventional 

fracture analysis, since the defect geometry is wide by very thin and the grain boundary 

properties are not easily characterized.  These defects are usually governed by experimental 

or empirical acceptance limits on misorientation, size, or location. 

Impact damage is less of a problem for turbine airfoils than for compressor airfoils, 

since the turbine section is more isolated from the outside environment.  Most turbine impact 

events are domestic in nature, that is, from upstream combustor or airfoil pieces that are 

liberated inside the engine.  Superalloys have high ductility and toughness, so their resistance 

to such events is generally good.   However, when considering low ductility or low toughness 

materials for turbine airfoils, careful attention must be paid to potential effects of impact. 

Calculation of the stress intensity factor, K, or range of K, ∆K, is necessary for crack 

growth rate computations or fracture toughness evaluation.  K calculations are based either 

on standard solutions found in handbooks or are determined from analytical or numerical 
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procedures, the latter often based on FEM.  Most solutions are based on isotropic material 

properties and are, therefore, not strictly applicable to anisotropic materials such as SX or DS 

alloys.  In this program, several specific cracked specimen geometries were evaluated using 

both isotropic as well as anisotropic analysis techniques.  For the most part, the isotropic 

solutions were found to be a reasonable representation of the more accurate anisotropic 

analysis, primarily for Mode I stress intensity solutions.  For this reason, it seems reasonable 

to use isotropic solutions for geometries and crack lengths where validation of the accuracy 

of the isotropic solution has been demonstrated and the amount of error is considered to be 

within acceptable limits.  For mixed mode cracks, however, the observed crack path as well 

as the associated Mode I and Mode II K values can differ from those predicted from isotropic 

solutions.  Again, the use of isotropic solutions can only be justified if it can be demonstrated 

that the errors in mixed mode K values, as well as crack paths, are well predicted compared 

to those from the anisotropic solution.  It is recommended that future versions of ENSIP 

provide documentation of cases where isotropic solutions have been compared with 

anisotropic solutions and present data on the magnitude of the errors for specific cases. 

Material properties of SX materials such as threshold or critical K values vary with 

crystal orientation.  General anisotropic models of material properties, developed primarily 

for anisotropic metals with texture, are not necessarily valid for single crystal materials.  

Great care should be used in extrapolating properties in a direction in one crystal orientation 

to another direction using conventional anisotropic models.  As an example, extrapolation of 

threshold ∆K under Mode I can produce significant errors in the value of threshold ∆K under 

Mode II for the same material orientation and crack direction.  Future versions of ENSIP 

should highlight these differences. 



 458

REFERENCES 
 
 
1. Gallagher, J.P., et. al., Improved High Cycle Fatigue (HCF) Life Prediction,  

Final Report, Contract No. F33615-96-5269, UDRI Report No. UDR-TR-1999- 
00079. 

 
2. Lenets, Y.N. and Bellows, R.S. (2000) Crack Propagation Life Prediction for Ti-6Al-

4V Based on Striation Spacing Measurements. Int. J. Fatigue, Vol. 22, p. 521. 
 
3. Lenets, Y.N., Bellows, R.S., and Merrick, H.F. (2000) Propagation Behavior of 

Naturally Initiated Fatigue Cracks in Round Bars of Ti-6Al-4V. In Proceedings of the 
5th National Turbine Engine High Cycle Fatigue Conference, HCF’00. 

 
4. Boyce, B.L. and Ritchie, R.O. (1999) On the definition of lower-bound fatigue-crack 

propagation thresholds in Ti-6Al-4V under high cycle fatigue conditions. In 
Proceedings of the 4th National Turbine Engine High Cycle Fatigue Conference, 
HCF’99. 

 
5. Lenets, Y.N., Nelson, R., and Merrick, H.F.  (2001) Incorporation of “Small” Crack 

Behavior into Life Prediction Methodology for Military Aircraft Engines. In 
Proceedings of the 6th National Turbine Engine High Cycle Fatigue Conference, 
HCF’01. 

 
6. Larsen, J.M., Worth, B.D., Annis, Jr., C.G., and Haake, F.K., An Assessment of 

the Role of Near-Threshold Crack Growth in High-Cycle Fatigue Life Predictions 
of Aerospace Titanium Alloys Under Turbine Engine Spectra, International 
Journal of Fracture, Vol. 80, 1996, pp. 237-255. 

 
7. Maxwell, D.C. and Nicholas, T., A Rapid Method for Generation of a Haigh 

Diagram for High Cycle Fatigue, ASTM STP 1321, T. L. Panontin and S. D. 
Sheppard, ASTM, 1999. 

 
8. Peterson, R.E., Stress Concentration Factors, John Wiley and Sons, New York, 

1974. 
 
9. Southwest Research Institute, Honeywell, General Electric, Pratt & Whitney, Rolls-

Royce Allison, Scientific Forming Technologies, Federal Aviation Administration 
Grant, Turbine Rotor Material Design Final Report, 95-G-041, August 1999. 

 
10. Hudak, Jr., S.J., Small Crack Behavior and the Prediction of Fatigue Life, ASME 

Trans., Journal of Engineering Materials and Technology, Vol. 103, 1982, p.26. 
 
11. Suresh, S. and Ritchie, R.O., The Propagation of Short Fatigue Cracks, Int. Metals 

Reviews, Vol. 29, p. 445, 1984. 
 



 459

12. Ritchie, R.O. and Lankford, J., TMS-AIME, Small Fatigue Cracks, Warrendale, 
PA, 1986. 

 
13. Topper, T.H. and. El Haddad, M.H., Fatigue Strength Predictions of Notches Based 

on Fracture Mechanics, Fatigue Thresholds: Fundamentals and Engineering 
Applications, Engineering Materials Advisory Services, LTD, Warley, UK, 1982. 

 
14. Hudak, Jr., S.J., Chell, G.G, Rennick, T.S, McClung, R.S., and Davidson, D.L.,  

A Damage Tolerance Approach to FOD Based on the Worst Case Notch Concept, 
Proceedings of the 4th National Turbine engine High Cycle Fatigue Conference, 
Monterey, CA, February 1999. 

 
15. Chell, G.G, Hudak, Jr., S.J., Lee, Y.D., and Feiger, J.J, An Assessment of the 

“Worst Case Notch” Model for Prediction of HCF Threshold Stresses in the 
Presence of Foreign Object Damage, Proc. of the 5th National Turbine Engine High 
Cycle Fatigue Conference, Chandler, AZ, March, 2000. 

  
16. Hudak, Jr., S.J., Chan, K.S., Chell, G.G, Lee, Y.D., and McClung, R.C., A Damage 

Tolerance Approach for Predicting the Threshold Stresses for High Cycle Fatigue in 
the Presence of Supplemental Damage, Fatigue – David L. Davidson Symposium, 
Edited by K. S. Chan, P. K. Liaw, R. S. Bellows, T. C. Zogas, W. O. Soboyejo, TMS, 
2000. 

 
17. Chan, K.S., Lee, Y.D., Davidson, D.L. and Hudak, Jr., S.D., A Fracture Mechanics 

Approach to High Cycle Fretting Fatigue Based on the Worst Case Fret Concept:  
Part I – Model Development, Int. J. of Fracture (to be published). 

 
18. Chan, K.S., Davidson, D.L., Owen, T.E., Lee, Y.D., Hudak, Jr., S.J., A Fracture 

Mechanics Approach to High Cycle Fatigue Based on the Worst Case Fret Concept:  
Part II – Experimental Evaluation, Int. J. of Fracture (to be published). 

 
19. Tanaka, K., Nakai, Y., and Yamashita, M., Fatigue Growth Threshold of Small 

Cracks, International Journal of Fracture, Vol. 17, pp. 519-533, 1981. 
 
20. Brown, C.W. and Taylor, D., The Effects of Texture and Grain Size on the Short 

Fatigue Crack Growth Rates in Ti-6Al-4V, in Fatigue Crack Growth Threshold 
Concepts, D. Davidson and S. Suresh, Eds. TMS-AIME, pp. 433-445, 1984. 

 
21. Southwest Research Institute, DARWIN User's Guide, Version 3.5, Appendix : 

Shakedown Residual Stress Methodology and Validation of SHAKEDOWN Module, 
2002. 

 
22.  Amstutz and Seeger, T., Accurate and Approximate Elastic Stress Distribution in the 

Vicinity of Notches in Plates Under Tension.  Unpublished results (referenced in G. 
Savaidis, M. Dankert, and T. Seeger, “An Analytical Procedure for Predicting 



 460

Opening Loads of Cracks at Notches,” Fatigue Fracture Engineering Materials. 
Structure”, Vol. 18, No. 4, pp. 425-442, 1995). 

 
19. Hudak, Jr., S.J., Chan, K.S., McClung, R.C., Chell, G.G, Lee, Y.D., and Davidson, 

D.L., High Cycle Fatigue of Turbine Engine Materials, Final Technical Report, U.S. 
Air Force Contract No. F33615-96-C-5269, UDRI Subcontract No. RI 40098X, 1999. 

 
20. McVeigh, P.A., Harish, G., Farris, T. N., and Szolwinski, M. P., Modeling Interfacial 

Conditions in Nominally-Flat Contacts for Application to Fretting Fatigue of Turbine 
Engine Components, International Journal of Fatigue, Vol. 21, pp. 5157-5165, 1999.  

 
21. Hills, D. A., and Nowell, D., Mechanics of Fretting Fatigue, Kluwer Academic 

Publishers, Drodrecht, Netherlands, 1994. 
  
22. Murthy, H., Harish, G. and Farris, T.N., Efficient Modeling of Fretting of Blade/Disk 

Contacts Including Load History Effects, ASME Journal of Tribology, In-Press. 
 
23. Murthy, H., Farris, T.N., and Slavik, D.C., Fretting Fatigue of Ti-6Al-4V subjected to 

blade/disk contact loading, Developments in Fracture Mechanics for the New 
Century, 50th Anniversary of Japan Society of Materials Science, 2001, pp. 41-48.  

 
24. Murthy, H., Harish, G. and Farris, T. N., Influence of Contact Profile on Fretting 

Crack Nucleation in a Titanium Alloy, in A Collection of Technical Papers, 
Proceedings of 41st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics 
and Materials Conference, Atlanta, GA, AIAA, Vol. 1, 2000, pp.1326-1333. 

 
25. Szolwinski, M. P. and Farris, T. N., Mechanics of Fretting Fatigue Crack Formation, 

Wear, Vol. 198, 1996, pp. 93-107.  
 
26. Szolwinski, M.P. and Farris, T.N., Observation, Analysis and Prediction of Fretting 

Fatigue in 2024-T351 Aluminum Alloy, Wear, 221(1), pp 24-36 (1998) 
 
27. Doner, M., Bain, K.R., and Adams, J.H., Evaluation of Methods for the Treatment of 

Mean Stress Effects on Low-Cycle Fatigue, Journal of Engineering for Power, 1981, 
pp 1-9. 

 
28. Murthy, H., Rajeev, P. T. and Farris, T. N., Fretting Fatigue of Ti6Al4V/Ti6Al4V and 

Ti6Al4V/In718 Subjected to Blade/Disk Contact Loading, Fatigue 2002: The 8th 
International Fretting Fatigue Congress, Stockholm, Sweden, Ed A.F. Blom, EMAS, 
Volume 3, pp 2153-2160, 2002. 

 
29. Golden, P.J., High Cycle Fatigue of Fretting Induced Cracks, PhD thesis, Purdue 

University, West Lafayette, IN, 2001. 
 



 461

30. Cormier, N.G., Smallwood, B.S., Sinclair, G.B., and Meda, G., Aggressive 
Submodeling of Stress Concentrations, Int. J. Numer. Meth. Engrg., Vol 46, 1999, pp 
889-909. 

 
31. Neuber, Heinz, Theoretical Determination of Fatigue Strength at Stress 

Concentration, AFML-TR-68-20, April 1968. 
 
32. Sih, G.C., Paris, P.C., Irwin, G.R., On Cracks in Rectilinearly Anisotropic Bodies, 

International Journal of Fracture Mechanics, Vol. 1, pp. 189-203, 1965. 
 
33. Chan, K.S., Cruse, T.A., Engineering Fracture Mechanics, Vol. 23, No. 5, pp. 863-

874, 1986.  
 
34. Hoenig, A., Near-Tip Behavior of a Crack in a Plane Anisotropic Elastic Body, 

Engineering Fracture Mechanics, Vol. 16, No. 3, pp. 3930403, 1982. 
 
35.  Tada, H., Paris, P.C., Irwin, G.K., The Stress Analysis of Cracks Handbook, 1st Ed., 

Del Research Corp. Hellertown, PA, 1973. 
 
36.  Johnson H. H., Calibrating the Electrical Potential Method for studying Slow Crack 

Growth, Materials Research and Standards, 442 – 445 (Sept. 1965). 
 
37.  Cunningham, S.E., DeLuca, D.P., Haake, F.K., Crack Growth and Life Prediction In 

Single Crystal Nickel Superalloys, Crack Growth and Life Prediction In Single 
Crystal Nickel Superalloys, Vol. 1,  Air Force Wright Aeronautical Laboratory,  pps. 
86 – 95. 

 
38. Wright, P.K., Jang, H., and Popp, H.G., Fatigue and Fracture of Advanced Blade 

Materials, AFWAL TR-84-4166, Materials Laboratory, Air Force Wright 
Aeronautical Laboratory, WPAFB, OH, Feb. 1985. 

 
39.  DeLuca D.P., and Cowles, B.A., Fatigue and Fracture of Advanced Blade  

Materials” AFWAL TR-84-4167, Materials Laboratory, Air Force Wright 
Aeronautical Laboratory, WPAFB, OH, Feb. 1985. 

 
40.  Cunningham, S.E., Deluca, D.P., Haake, F.K., Crack Growth and Life Prediction in 

Single-Crystal Nickel Superalloys, Volume 1, WL-TR-94-4089, Air Force Wright 
Laboratory, February 1996. 

 
41.  Cunningham, S.E., Deluca, D.P., Hindle, E.H., Sheldon, J.W., Haake, F.K.,  Crack 

Growth and Life Prediction in Single-Crystal Nickel Superalloys, Volume 2, WL-TR-
96-4048, Air Force Wright Laboratory, August 1994. 

 
42.  ANSYS Structural Analysis Guide, Chapter 11 “Fracture Mechanics”. 
 
43. Leverant, G.R. and Gell, M., Metal Transactions A, Vol. 6A, 1975, pp. 367-371. 



 462

 
44. Leverant, G.R. and Gell, M., and Hopkins, S.W., Mat. Sci. Eng., Vol. 8, 1971, 

pp. 125-133. 
 
45. Telesman, J., and Ghosn, L.J., Crack Growth and Life Prediction in Single-Crystal 

Nickel Superalloys, Vol. 3, WL-TR-94-4090, Pratt & Whitney, West Palm 
Beach, FL, 1996. 

 
46. DeLuca, D.P., and Annis, C., Fatigue in Single Crystal Nickel Superalloys, FR23800, 

Pratt & Whitney, West Palm Beach, FL, 1995. 
 
47. Wright, P.K., Jang, H., and Popp, H.G., Fatigue and Fracture of Advanced Blade 

Materials, AFWAL-TR-84-4166, General Electric, Cincinnati, OH, 1985. 
 
48. Hudak, Jr., S.J., Chan, K.S., Chell, G.G, Lee, Y.D., and Feiger, J.J., 

Advanced HCF Life Assurance Methodologies for Turbine Engine Materials, SwRI 
Annual Progress Report to UDRI, UDRI Subcontract No. RSC99008, UDRI 
Contract No. F49620-99-C-0007, Southwest Research Institute, April 30, 2002. 

 
49. Snyder, M.D. and Cruse, T.A., Crack Tip Stress Intensity Factors in Finite 

Anisotropic Plates, AFML-TR-73-209, 1973. 
 
50. He, M.Y. and Hutchinson, J.W., Asymmetric Four-Point Crack Specimen, Journal of 

Applied Mechanics, Vol. 67, pp. 207-209, 2000. 
 
51. Swenson, D. and James, M., FRANC2D/L:  A Crack Propagation Simulator for Plane 

Layered Structures, Kansas State University, Manhattan, Kansas, 1995. 
 
52. Erdogan, F. and Sih, G.C., Journal of Basic Engineering D, Vol. 85, 1963, pp. 519-

527. 
 
53. Pettit, R., Pratt & Whitney Aircraft, East Hartford, CT, Private communication, 

December 2001. 
 
54. Telesman, J., Ghosn, L.J. and DeLuca, D.P., Hydrogen Effects in Materials, edited by 

A. W. Thompson and N. R. Moody, TMS, Warrendale, PA, 1996, pp. 943-952. 
 
55. Behavior of a Single Crystal Ni-Base Superalloy Subjected to Mixed Mode Loading, 

Mixed-Mode Crack Behavior, ASTM STP 1359, K. J. Miller and D. L. McDowell, 
Eds., American Society for Testing and Materials, West Conshohocken, PA, pp. 312-
328, 1999. 

 
56. Hussain, M.A., Pu, S.L., and Underwood, J., Strain Energy Release Rate for a Crack 

Under Combined Mode I and Mode II, ASTM STP 560, 1974, pp. 23-28. 
 



 463

57. Sih, G.C., Some Basic Problems in Fracture Mechanics and New Concepts, 
Eng. Frat. Mech., Vol. 3, 1973, p-p. 439-451. 

 
58. Milligan, W.W., Department of Mat. Sci. & Eng., Michigan Technological 

University, Houghton, MI, Private Communication, August 2000.  
 
59. Milligan, W.W. and Antolovich, S.D., Yielding and Deformation Behavior of the 

Single Crystal Superalloy PWA1480, Metal Transactions A, Vol. 18A, 1987, 
pp. 85-95. 

 
60.   Life Prediction and Constitutive Models for Engine Hot Section Anisotropic 

Materials Program, Final Report, NASA CR-189223, September, 1992. 
 
61.  Shah, D., and Duhl, D., The Effect of Orientation, Temperature, and Gamma Prime 

Size on the Yield Strength of a Single Crystal Nick Base Superalloy, Proceedings of 
the Fifth International Symposium on Superalloys, ASM, Metals Park, Ohio, 1984. 

 
62.  Stouffer, Donald C., and Dame, L. Thomas, Inelastic Deformation of Metals: Models, 

Mechanical Properties, and Metallurgy, John Wiley & Sons, Inc., New York, 1996, 
pp. 413-430. 

 
63. Cap, T. and Martin, S., et al., F100-PW-229 4th Blade Investigation Engine Test 

Report, FTDM #3013, Traceability Number 95AQ052, July 26, 1996. 
 
64. Conner, S. and Cap, T., F100-PW-229 4th Stage Turbine Blade and Disk Attachment 

Stress/Life Analysis with Verification Test Results for the Current and Full-Life Blade 
Designs, FTDM#2926, Task Number 91QA204, January 29, 1992. 

 



 

A-1 

APPENDIX A 

Ti-6Al-4V SMALL CRACK BEHAVIOR 
 

A.1 MATERIAL AND EXPERIMENTAL DETAILS 
 

The tests were conducted on a forged Ti-6Al-4V titanium alloy representative 

of a turbine engine fan blade material fully described in [1] as well as in Section 3.1.1.1 

of this report. All experiments were carried out at room temperature in laboratory air on 

servo-hydraulic, closed-loop test frames operating under load control conditions. Smooth 

cylindrical specimens of 0.2 inch nominal diameter were subjected to interrupted high 

cycle fatigue (HCF) tests at different stress ratios (R = 0.1 and 0.5) and a frequency of 60 

Hz.  During the periodic interruptions, acetate replicas were taken from the entire gage 

section of a specimen surface. The replication employed 0.0013” thick Bioden RFA 

Acetyl Cellulose film and methylacetate. Since initial attempts to replicate unprepared 

electro-polished surface were not successful, subsequent efforts employed a quick (about 

20 second) etch with Krolls reagent to enhance the effectiveness of the method.  After 

completion of the test, the replicas were used to track the critical crack backwards to its 

initiation. In addition to conventional analysis in optical microscope, selected replicas 

were sputtered with gold and evaluated in a scanning electron microscope. 

The replication information was converted into conventional da/dN - a and 

da/dN - ∆K form. The NASCRAC™ (NASA CRack Analysis Code) software was used to 

determine the stress intensity factor. Surface cracks were assumed to be semi-circular, so 

that the length of the surface crack (Figure A1c) was twice the crack depth (Figure A1a). 

The results obtained were compared to the available data for both compact tension and 

surface flaw specimens obtained via load shedding technique under constant R as well as 

constant Kmax conditions.  
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Figure A1.  Fractograph of the crack initiation location (a); the same location tilted ~45o 

(b) and crack profile on the specimen surface (c). 
 
 
A.2 RESULTS AND DISCUSSION 
 

A representative example of several consecutive replicas taken from the same 

location is shown in Figure A2. It can be concluded that the fatigue crack in the given 

specimen initiated between 2,420,000 and 2,440,000 cycles (Figure A2e and A2d, 

respectively). Also, the rate of subsequent crack propagation on the specimen surface can 

be readily and very accurately evaluated.  

 

(a) 

(b) 

(c) 
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In order to obtain even more information about small crack initiation and 

propagation behavior, an attempt was made to match the crack profile from the replicas 

with postmortem observations made on the fracture surface. One example of such 

exercise is given in Figure A1. The bottom photograph in Figure A1 contains the crack 

Figure A2. Consecutive replicas taken from the same location of the specimen. 

(a) 

(b) 

(c) 

(d) 

(e) 
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profile from one of the replicas shown before (see Figure A2b). The top photograph in 

Figure A1 was taken from the fracture surface at the supposed location of crack initiation. 

The same location is shown in the middle photograph, however in this case the sample 

was tilted in the SEM so that both crack profile on the specimen surface and fracture 

surface can be seen simultaneously. The presence of a very specific feature (almost 90 

degrees change in the crack propagation direction) in all three photographs confirms that 

they were taken from the same location. It is also evident that in this particular specimen 

intra-granular crack initiation occurred from a relatively large sub-surface grain. Another 

example (Figure A3) shows similar crack initiation mechanism from a large grain 

immediately adjacent to the specimen surface.  

This fractographic evidence is consistent with common observations for alpha-

beta Ti-alloys. According to the current understanding, such behavior can be attributed to 

the occurrence of heterogeneous plastic deformation in the form of intense slip bands 

interacting with microstructural constituents of the material [2-4].  This nucleation 

mechanism should result in intra-alpha-grain initiation.  It is interesting to note that in our 

earlier tests conducted on the same material and microstructure at R = 0.1, an inelastic 

portion of the total strain range was smaller and the dominant crack nucleation event was 

interface-related separation. 

The fatigue crack propagation rate in two different specimens is plotted in 

Figure A4 as a function of the crack size. Both parameters were evaluated from replicas 

and, therefore, reflect the crack propagation behavior on the specimen surface. An arrow 

indicates the size of the crack-initiating grain as determined by post-test fractography. It 

may appear that the two charts shown in Figure A4 represent different types of 

interaction between propagating small crack and the microstructure of the material. In the 

first case (Figure A4a) microstructure-sensitive crack propagation appears to be limited 

to the first grain, while in the second case (Figure A4b) microstructure-related variability 

of the crack propagation rate persists well beyond the size of the first, crack-initiating 

grain. 
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Figure A3.  Fractograph of the crack initiation location (a); the same location tilted ~45o 

(b) and crack profile on the specimen surface (c); shows similar crack 
initiation mechanism (vs. Figure A1) from a large grain immediately adjacent 
to the specimen surface. 

 

(a) 

(b) 

(c) 
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119-6, Surface crack initiation
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Figure A4.  Crack propagation rate as a function of crack size. Arrow 

indicates the size of the crack-initiating grain. 
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Additional information about crack initiation mechanism turns out to be very 

helpful in explaining these observations. In fact, only the latter chart (Figure A4b) 

represents the true propagation behavior of a small crack. In the former case (see Figure 

A4a), due to sub-surface crack initiation, an initial (microstructure-sensitive) portion of 

the crack propagation process could not be monitored by the surface replication method 

employed in the present study. As a result, an initial crack size measured from the replica 

corresponds to a larger crack that has already propagated through several grains under the 

specimen surface, and therefore demonstrates very limited microstructural sensitivity. 

The above analysis provides a better understanding of the small crack 

propagation behavior in Ti-alloys as well as points out some limitations of the surface 

replication method.  

In Figure A5, the fatigue crack propagation rate plotted as a function of the 

crack size for R = 0.5 (points) is compared to the earlier data for R = 0.1 (lines). No 

significant difference can be seen between small crack propagation behavior at R = 0.1 

and R = 0.5. Similarly, reasonable agreement exists between the raw small crack data for 

both R = 0.1 and R = 0.5 when plotted in a “da/dN – ∆K” format. At the same time, both 

sets of small crack data appear to be shifted to the left in respect to the available long 

crack data for the same material and microstructure. 

A recent study [5] of long cracks performed on the same material in the same 

microstructural condition has shown a significant effect of positive R (0.1-0.95) on 

fatigue thresholds and near-threshold propagation behavior. In respect to the lower part of 

the stress ratio range studied (R ≤ 0.5), such observations are consistent with the 

traditional explanation [6] of stress ratio effects based on the crack closure concept. The 

same concept can be applied to the results of the present study in order to justify the 

opposite observation, namely – the absence of any significant effect of stress ratio on the 

crack propagation behavior.  
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Figure A5. Crack propagation rate as a function of crack size (A5a) and ∆K (A5b). 
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According to the common perception originally proposed in [10], in the case of 

a long crack, stress ratio R determines the amount of crack tip shielding (closure) 

accompanying the process of fatigue crack propagation. This, in turn, will affect the crack 

propagation rate and threshold, until the value of R becomes high enough to completely 

eliminate any crack closure. In the case of a small crack, crack closure is absent for all 

positive values of R. Therefore, the transition from R = 0.1 to R = 0.5 should not cause 

any change in the crack propagation rate as, indeed, was observed in the present study.  

 
A.3 SUMMARY AND CONCLUSIONS 
 

The results obtained can be summarized as follows: 

1.) At R = 0.5, intra-granular crack initiation occurred from relatively large 

surface or sub-surface alpha grains. In contrast, at R = 0.1, the dominant crack nucleation 

event was interface-related separation. 

2. ) An apparent scatter in the microstructural sensitivity of the small crack 

propagation behavior can be associated with different (surface vs. sub-surface) initiation 

mechanisms. 

3.) No significant difference can be seen between small crack propagation 

behavior at R = 0.1 and R = 0.5 while presenting replication test results in “da/dN – a’” 

or “da/dN – ∆K” form. At both stress ratios tested, small cracks are shown to propagate 

much faster than the long cracks under identical conditions. 

4. ) The results obtained further confirm the applicability of the Kmax = 

constant test method as an effective alternative to the direct study of the naturally 

initiated small cracks.  
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APPENDIX B 

CHARACTERIZING FATIGUE LIMITS FOR HAIGH DIAGRAMS 
 

Using HCF S-N data collected as part of the Damage Tolerance program we 

exercise the Random Fatigue Limit model proposed by Pascual and Meeker.  Preliminary 

results are very encouraging and include these observations: 1) the RFL model provides 

excellent descriptions of S-N behavior over the entire range of data and out-performs 

competing models in the long-life region; 2) curve-fits that exclude long-life tests 

(N>107) significantly underestimate material capability, indicating that long life tests are 

necessary; and 3) if tests with lives at least 107 cycles are censored (stopped prior to 

failure) at 107 cycles, the fit changes remarkably little from the original fit, suggesting 

that these tests are important, but the added value of testing them longer than 107 cycles 

is minimal. 

B.1 INTRODUCTION 

 The concept of the Haigh diagram will remain an important element of the 

design processes being developed to protect against high cycle fatigue (HCF) in turbine 

engines.  In the past, the constant life, fatigue limit stresses of a Haigh diagram have been 

determined from fits to constant amplitude, stress-life, S-N, data.  In [1], the fatigue limit 

is defined in terms of the median and pth percentile of the limiting distribution of fatigue 

strengths as N increases without bound.  Fatigue strength at N cycles is similarly defined 

in terms of the stress levels for which p percent of a population of specimens will survive 

for at least N cycles.  These definitions do not provide for the characterization of the 

fatigue limit in terms of an observable stress property since the result of a fatigue test is 

the random number of cycles to failure for the fixed stress level that was used in the test.  

As a result, the distribution properties of fatigue strengths at a fixed, large N have been 

inferred from the distribution of cyclic lives from specimens that have failed or have 

reached some economically defined runout life. 

 There are at least three practical problems in this traditional approach to 

estimating fatigue limits: 
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1.)  At the stress levels of interest, S-N curves are relatively flat.  To get failures 

below the median fatigue limit requires tests that are potentially orders of magnitude 

longer than the desired cyclic life.  The primary interest, of course, is in a stress level at 

which one percent or less of the structures would not survive, say, 107 cycles.  While 

extrapolation of a median S-N curve to the long life of interest may be acceptable, 

estimation of the first percentile of the fatigue limit distribution most likely is not. 

2.)  The variability of fatigue lives increases greatly as test stresses decrease and 

a general model for this changing scatter has not been accepted.  Thus, extrapolation of 

the percentiles of the fatigue strength to longer lives also requires linking the standard 

deviation of fatigue lives with stress levels.   

3.)  Current HCF problems indicate the necessity to define fatigue limits at lives 

longer than 107.  The economic burden of testing runout lives to 108, or longer,  only 

compounds the first two problems. 

Because of the erratic nature of the scatter in lives at the stress levels of prime 

interest and the expense of testing for lengthening high cycle fatigue lives, alternative 

methods of estimating and validating fatigue limits are needed. 

 The step test is one method being investigated to determine the properties of the 

fatigue strength distribution [2]. In this approach, a specimen is tested at stress conditions 

slightly below the anticipated fatigue limit for the specified number of cycles.  If it does 

not fail, the cycling is continued at a slightly increased stress.  The process is continued 

until the specimen fails.  The failure stress is estimated by interpolating on the number of 

cycles in the last increment as a ratio of the runout number of cycles.  This procedure 

provides a sample of fatigue strengths which are assumed to represent the population that 

would be obtained if each specimen failed at the runout stress.  There is a continuing 

discussion concerning the introduction of a step test interaction effect that potentially 

alters the S-N relationship.  While "coaxing" that produces higher fatigue limit stresses, 

has been considered, the results are inconclusive.   
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 An innovative approach to estimating the fatigue limit distribution has recently 

been proposed by Meeker and his student Pascual [3].  A random fatigue limit (RFL) 

model is postulated in which each specimen has its own fatigue limit in much the same 

way that each specimen has its own fatigue lifetime if tested at a sufficiently high stress.  

This random fatigue limit is explicitly included in the S-N model.  Maximum likelihood 

methods are then used to estimate the parameters of the S-N equation as well as the 

parameters of the fatigue limit distribution.  The percentiles of the fatigue limit 

distribution are easily calculated from the estimated parameters.  The random fatigue 

limit model produces the proper shape of the median S-N function and the type of scatter 

typically seen in fatigue tests at HCF stress levels. 

The threefold objective of this paper is to describe the random fatigue limit 

model, to demonstrate its application using the baseline Ti 6-4 test data from the PRDA 

V Materials Damage Tolerance HCF Program, and to suggests its further use in 

describing HCF S-N behavior.   

B.2   THE RANDOM FATIGUE LIMIT (RFL) MODEL 

 Past attempts at modeling the stress-life (S-N) behavior of cyclic fatigue in the 

long life regime used  an equation of the form: 

log Ni = β0 + β1 log (Si – β2) + ει (B1) 

where, for specimen i, Ni represents cycles to failure, Si is the applied stress parameter, β2 

is a constant fatigue limit (Si>β2), and εi is a random variable representing the scatter in 

cycles to failure about the predicted life. [4] (Note: all logarithms in this paper are to base 

e.) Typically, the life random variable, ε, would be represented by a lognormal 

distribution with zero mean.  For this assumption, εi is the difference between the log life 

of specimen i and the log median life at the test stress Si.  The parameters of the median 

life prediction, β0, β1, and β2 are estimated from test data and β2 is interpreted as the 

fatigue limit stress condition.  Since β2 is an asymptote, the S-N curve flattens as S 

approaches the fatigue limit.  This model may be adequate for the median behavior in the 

long life regime but it is not consistent with the commonly observed increase in the 

standard deviation of lives as S approaches the constant fatigue limit.  But its main 
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shortcoming is that it doesn't work.  Since the single-valued, constant, fatigue limit, β2, 

must be less than the lowest stress tested (so that the logarithm of  (Si - β2) is defined) it 

must be less than even the lowest runout stress tested.  This causes the β2 asymptote to be 

so low as to produce an unrealistic material model. 

 The random fatigue limit model [3] is a generalization of Equation (B1) in 

which the fatigue limit term is modeled as a random variable that can be considered to 

result from inherent, but unknown, quality characteristics of each specimen in the 

population.  Thus, the fatigue limit is not a single constant, but rather an individual 

characteristic of each specimen.  The RFL model for test specimen i is given by: 

log Ni = β0 + β1 log (Si – γi) + ει (B2) 

where γi is the random fatigue limit for specimen i (Si > γi) and is expressed in units of the 

stress parameter.  In this model, ε is the random life variable associated with scatter from 

specimens that have the same fatigue limit. 

The RFL model produces probabilistic S-N curves that have the characteristics 

commonly seen in HCF data.  This is illustrated in Figure B1 which presents the 1st, 25th, 

50th, 75th and 99th percentile S-N curves as would be determined from the distribution of 

fatigue limits.  The percentile S-N curves display the commonly observed shape in the 

HCF regime.  Further, it is easily seen in Figure B1 that a difference in test lives from 

two specimens with slightly different fatigue limits could be quite large.  The increased 

scatter in fatigue lives is explained by different specimens having different fatigue limits 

and this is true regardless of the scatter in life at higher stresses.  Thus, the RFL model 

accommodates not only the flattening of the S-N curve but also the increased scatter that 

is typical of HCF lives.  To date, little experience has been gained with this model but, 

intuitively, the fatigue limit scatter would be expected to dominate in the HCF regime 

when S is close to γi while the scatter in life, ε, could be significant when S is large 

compared to γi. 
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Figure B1. Example S-N curves calculated from percentiles of the Random 

Fatigue Limit distribution (Scenario 1). 
  

There are two random variables in the RFL model for which probability 

distributions are needed.  In theory, any family of distributions could be used to model 

either of the distributions and Pascual and Meeker considered several.  In this paper, the 

conditional distribution of cycles to failure given γ will be assumed to have a lognormal 

distribution with mean equal to β0 + β1 log (S – γ) and standard deviation equal to σε.  

Then ε is lognormal (0,σε).  This assumption is consistent with common practice in the 

analysis of S-N data. 

The random fatigue limit, γ, will be assumed to have a smallest extreme value 

(SEV) distribution.  The SEV distribution has two parameters – location, µγ, and scale, 

σγ.  The equations for the cumulative distribution and probability density function of the 

SEV distribution are: 

F(z) = 1-exp [-exp(z)] (B3) 
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f(z) = (1/σγ) exp [z- exp(z)] (B4) 

where z = (γ - µγ) / σγ.  The pth percentile of the fatigue limit distribution, γp, is calculated 

quite simply from Equation (B3) as 

γp = µγ + σγ • ln(-ln(1-p)) (B5)  

Figure B2 shows example SEV probability density functions for fatigue limit 

distributions.  The distribution labeled Scenario 1 was used to generate Figure B1.  The 

SEV distribution was selected as a model for fatigue limits because it has a basis in 

extreme value theory and it is skewed to the left, i.e., to values smaller than the median.  

Additionally it is analytically convenient, although convenience was not a selection 

criterion. 
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Figure B2.  Smallest Extreme Value (SEV) probability density functions. 
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Intuitively, quality differences  can result in distinct fatigue resistance in the 

long life regime.  Quality is more limited on the good side than on the bad side.  It is 

reasonable that upper limit resistance will have a sharper upper bound while the degrees 

of weakness in the lower tail of the distribution will be more scattered.  Thus, the fatigue 

limit distribution should be skewed to lower values.  It might be noted that if the random 

variable Y has a Weibull distribution then log Y will have an SEV distribution – the SEV 

is to the Weibull as the lognormal is to the normal. 

 Given a set of S-N data including runouts, the five parameters of the RFL model 

can be estimated using maximum likelihood methods.  Pascual and Meeker discuss these 

methods in detail [3].  Maximum likelihood estimates have known, desirable statistical 

properties and confidence bounds can be calculated when wanted.  See, for example [5].  

Computer software that works with the S-PLUS statistical analysis program can be 

obtained from Dr. Meeker (wqmeeker@iastate.edu or 

http://www.public.iastate.edu/~wqmeeker/other_pages/wqm_software.html). 

B.3  EXAMPLE APPLICATION 

 There are two objectives in presenting the example application of this paper.  

The prime objective is to demonstrate that the model can produce a valid description of 

S-N data in the HCF regime.  The secondary objective is to demonstrate one use for the 

model by investigating the necessity of having long runout lives in the analysis. 

The smooth bar, baseline S-N data from the PRDA V Materials Damage 

Tolerance HCF program are used for this example application [6].  The fatigue test data 

used in the analysis were collected at lab temperature on the same lot of Ti 6-4 material 

by four organizations at three stress ratios (R = -1, 0.1, and 0.5) and three cyclic 

frequencies (60, 400, and 1000Hz).  For the purposes of this example, the Smith-Watson-

Topper (SWT) stress parameter was used to adjust for stress ratio effects [7].  Any 

potential differences due to the other test factors were investigated and found to be of 

secondary importance for our purposes.  A total of 95 S-N test results were available for 

estimating the parameters of the RFL model with 15 of these being runouts at 107, 108, or  
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109 cycles and two that failed between 107  and 108 cycles; the others had shorter lives.  

The S-N data used in the analysis are shown in Figure B1. 

(It is noted that three of the 1000 Hz S-N specimen lives collected during the 

PRDA V program were not included in this example application.  There is some concern 

over the actual conditions governing these tests, those reported resulting in significantly 

reduced fatigue strengths than the other test results.  The cause of the differences is being 

investigated.  Since the prime objective of this paper is to illustrate the RFL model, 

exclusion of these data was deemed warranted.)  

 Three scenarios were analyzed to investigate the effect of approaches to setting 

runout test lives.  In Scenario 1, all 95 test results were used as originally recorded and 

provides the best available estimates of the parameters of the model.  This scenario 

included the 15 specimens with runouts at 107 or greater and the two failures with 

lifetimes greater than 107.  Scenario 1 is the baseline scenario for demonstrating the 

general application of the RFL model, and is illustrated in Figure B1.  In Scenario 2, all 

lives and runouts greater than 107 were treated as though they were runouts (censored) at 

N = 107.  Scenario 2 addresses the need to test to the extremely long (108 and 109) runout 

times.  In Scenario 3, only the 78 test failures with lives less than 107 (i.e., no runouts) 

were used in the analysis to address the question of estimating the fatigue limit 

parameters using only data from higher stress levels.  The estimates of the RFL model 

parameters and three example percentiles of the fatigue limit distribution are presented in 

Table B1.  

Table B1. Estimated RFL Model Parameters and Percentiles under Three Scenarios 
 

RFL 
Parameter 

Scenario 1 -  
All Data 

Scenario 2 –  
Runouts at 107 

Scenario 3 –  
N < 107 

β0 16.90 17.17 18.55 
β1 -2.022 -2.089 -2.394 
σε 0.00246 0.00375 0.00238 
µγ 4.014 4.005 3.928 
σγ 0.06757 0.06652 0.06951 

γ0.01 40.6 40.4 36.9 
γ0.50 54.0 53.6 49.5 
γ0.99 61.4 60.7 56.5 
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The fit of the RFL model for Scenario 1, shown in Figure B1, produces a 

median curve that is slightly high (2.4 percent).  Since maximum likelihood estimates are 

not necessarily unbiased, there may be a bias in the estimate of the median fatigue limit.  

In many applications it is possible to develop factors to remove bias.  Further 

development of the model will be required to resolve this issue. 

The estimate of the standard deviation of ε, the life random variable in the 

model, was extremely small (σε = 0.0025) and had a negligible effect on the estimates of 

the percentile curves in the range of the data.  Scatter from this factor is introduced as the 

multiplicative factor, exp(zp • σε), where zp is the pth percentile from the standard normal 

distribution  For example, if p = 0.01, zp = -2.326, then exp(zp • σε) = 0.994 for Scenario 

1, a negligible change.  A small sensitivity study was performed to investigate the effect 

of the standard deviation of life, σε, on the 1st and 99th percentile S-N curves.  σε was set 

equal to 0, 0.0025, 0.025, and 0.25.  Both γ and ε were set to their respective 0.01 and 

0.99 percentiles which will produce S-N plots which are outer bounds for the true p S-N 

curves.  The results of the sensitivity to σε calculations are presented in Figure B3.   
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 Figure B3.   Sensitivity of Life Variability (SEV) parameter on p S-N Curves, 

PRDA V, Ti 6-4 smooth bar baseline data. 
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For the data of this example, for σe ≤ 0.025, there is no practical difference in 

the S-N curves for p = 0.01 and 0.99 for lives greater than 105 and very little difference 

over the entire range of the data.  Even for a σε  value that is two orders of magnitude 

greater than the estimate, there is little or no difference in the curves when N > 5×106.  

This suggests that the observed scatter in HCF lifetime can be almost entirely explained 

by each specimen's individual fatigue limit for this collection of data. 

For these data it is not necessary to include the parameter in the RFL model that 

adjusts for variability in life at a fixed fatigue limit.  As previously noted, there is little 

experience with the RFL model and it is not known whether or not the extremely small 

estimate of σε will be typical of S-N data in general.  If σε proves to be negligible, the 

model and analysis can easily be simplified by eliminating this random factor.  Negligible 

σε would indicate that the quality characteristics that determine a specimen’s fatigue limit 

also account for scatter in life that is seen in the LCF regime. 

Scenarios 2 and 3 are based on not using the full amount of information that is 

in the baseline data set.  The probability density functions of the three estimates of the 

fatigue limit distribution are presented in Figure B2.  Table B1 lists the estimates of 

selected percentiles of the fatigue limit distribution that were obtained from the three 

scenarios.  When the tests longer than 107 cycles are analyzed as though they were 

runouts at 107 cycles, Scenario 2, the parameter estimates are neither statistically nor 

practically significantly different from those of the baseline.  In this data set, running the 

tests  beyond 107 provided little  additional information to the characterization of the 

fatigue limit distribution.  In the data of this analysis, very little information was obtained 

from testing to the longer runout cycles. 

 Scenario 3 is based on the test results from only those specimens with lives less 

than 107 cycles.  The Scenario 3 parameter estimates are statistically and practically 

different from those of the baseline scenario.  Figure B4 presents Scenario 3 and a visual 

comparison for Scenarios 1 and 3 (Figures B1 and B4) suggests that excluding long-term 

tests (as might be desired to reduce testing costs) results in considerable underestimation 

of material capability.  The location parameter, µγ, is significantly less than the baseline 
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µγ which resulted in an overly conservative estimate of the 0.01 percentile of the fatigue 

limit distribution.  The 1st, 50th, and 99th percentiles from the shorter test result are 

approximately 9 percent less than those of the baseline scenario.  Since if all 17 tests with 

lives at least 107 cycles were censored (stopped prior to failure) at 107 cycles, the fit 

changes remarkably little from the original fit, this suggests that these tests are important, 

but the added value of testing them longer than 107 cycles is minimal. 
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Figure B4.  PRDA V smooth bar S-N data and scenario 3 RFL model fit. 

 

B.4  SUMMARY AND CONCLUSIONS 

Existing methods for determining the fatigue limits that characterize safe 

operating stress levels for HCF have traditionally been based on the distribution of cyclic 

fatigue lives at fixed stress levels.  This approach has well recognized problems in 

obtaining and analyzing data for stress levels below the estimated median fatigue limit.  

The random fatigue limit model proposed by Pascual and Meeker predicts both the S-N 

curve shape and scatter in fatigue lives that is observed in the HCF regime.  The RFL 

model is based on the concept that each specimen has an inherent fatigue limit that will 
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determine its HCF life behavior.  Since the fatigue limits are unknown for a population of 

structural details, they are accounted for by the inclusion of a fatigue limit random term 

in the S-N model.  Modern computerized statistical analysis methods facilitate the 

estimation of the parameters of the model with confidence bounds on lower percentiles of 

the fatigue limit distribution, if desired. 

The model was demonstrated by fitting it to the Ti 6-4 smooth bar S-N data of 

the PRDA V HCF Program.  An acceptable fit was obtained as the scatter observed in the 

data was well described by the estimated fatigue limit distribution.  Three additional 

conclusions were drawn from the analyses of this example: 

a) The scatter in life of the smooth bar specimens was adequately  described by 

the distribution of the fatigue limit parameter.  The inherent quality properties 

that affect the long life behavior may also dominate cyclic life at higher 

stresses. 

b) The added information from testing to lives greater than a runout life of 107 

did not significantly change the fatigue limit distribution. 

c) Using only lives less than 107 in the analysis produced a significantly lower 

and unreasonable fatigue limit distribution. 

The RFL model is not just another curve-fit.  The formulation is based on 

physics, not just arithmetic. Explicitly modeling the random fatigue limit term may 

provide new insight into the interplay of parameters that primarily influence both LCF 

(N<107 cycles) and HCF (N>>107 cycles). 
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APPENDIX C 

BIAXIAL FATIGUE OF TI-6-4 AND TI-17-β AT 70 AND 500 oF 
 
 

C.1 EXPERIMENTAL PROCEDURE 

The materials investigated were a Ti-6-4 forged alloy on the PRDA V pedigree and a 

Ti-17 β anneal.  Only some of the Ti-6-4 specimens were tested at 500oF.  The forged plates 

were approximately 20 mm thick.  These materials are utilized extensively in the front fan of 

gas turbine engines.  Even though a forged plate is utilized, they are heat treated to resemble 

airfoil microstructures [1].  Solid biaxial specimens were fabricated with approximate 

dimensions shown in Figure C1.  Grip section diameters were dictated by the thickness of the 

forging.  Hence, the gage section diameter of 12.5 mm was the maximum possible.  The 

choice of a solid bar does make analysis of plastic deformation more difficult, but a tubular 

specimen would necessitate a wall thickness of less than 1 mm for the thin walled tube 

approximation to be appropriate.  This might have introduced torsional buckling as well as a 

non-representative cross section from a microstructural perspective.  Grain size for the Ti-6-4 

material is inferred from the PRDA V pedigree designation, as is specimen stress relief, and 

subsequently chem-milling.  This was done in part to facilitate comparison to existing 

uniaxial data. 

All testing was conducted on a closed loop servo-hydraulic tension-torsion load 

frame, with an axial load capacity of 445 kN and a torsional load capacity of 5000 N-m.  

Since anticipated maximum loads were approximately 10% of full scale, load cells were 

calibrated within this range, and were linear to within 0.05% of the anticipated test range.  A 

hydraulic collet system was utilized to grip the specimens.  Solid aluminum bars of the same 

grip diameter and length were strain gauged in accordance with ASTM E1012-93 to assure 

alignment of the test frame and grips.  Room temperature strains were measured with a 

modified MTS model 632.85-xx biaxial extensometer with conical points.  The modification 

involved strain gauging existing flexure elements to measure torsional strains.  The 

extensometer’s gage length was 25 mm and an axial full scale calibration of 2.5%.  

Nonlinearly of this measurement was less than 0.2% of full scale.  Torsional full-scale 

rotations of 5 degrees or a shear strain of approximately 4.3%, were linear to within 0.3% of 

full scale.  Maximum cross talk between the axis was 0.5% of either full scale.  This 
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extensometer provides averaging of two locations for both axial and torsional measurements.  

Elevated temperature strain measurements were obtained utilizing a quartz rod MTS model 

632.68C-04 extensometer with full scales of 2.5% axial and 5 degrees rotation.   

60.00

��60.00

30.00

19.15

R70.00

12.50

21.00

21.00

Biaxial Test Specimen
Units in mm  

 
Figure C1.  Baseline multiaxial specimen 

 
 Cross talk, gage length, and nonlinearty were almost identical to the room 

temperature extensometer.  Small dimples had to be made on the specimen surface to attach 
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the extensometer.  Since fatigue cracks did not originate from these dimples in most cases, 

their effect on fatigue life is ignored.  On specimens where the cracks did originate at the 

dimple, other similar sized cracks were observed that had other origins.   Data acquisition 

and test path generation was handled by a 32-bit data acquisition/control system.   

Specimen dimensions limited the maximum frequency of testing to approximately 1 

Hz.  The 12.5 mm diameter severely reduces the torsional stiffness of the specimen, which 

limited frequency of testing.  Before conducting any test at the reported levels, 20 cycles of ± 

8 kN axial and then ± 40 N-m torsional load were performed.  This data was utilized to check 

both the axial and shear moduli of the specimen and insure the integrity of the extensometer 

before switching to strain control.  These are the values reported in the tables for initial 

moduli.  All tests were conducted in strain control for the entire fatigue life.  Not much 

frequency increase could have been obtained by switching to load or stress control.  Some of 

the non-fully reversed tests displayed ratcheting.   

For the elevated temperature tests, one specimen was instrumented with multiple 

welded thermocouples (Table C1) to verify a quasi-uniform temperature distribution in the 

gage section of the specimen. Originally, it had been suggested to control temperature via a 

thermocouple welded to the shank of the specimen.   

Table C1. Thermocouple Locations 
Case 1:  4-1-4 coil design, 1/8” tubing.  Control temp = 152oC 300o F (300o F) 

 
TC-#,
Data

column

Loca tion
(± from midsec tion)

1 B(-18 mm)
2 T (+12.5  mm)
3 T (+6.25  mm)
4 Midsection (0.0

mm)
5 B (-6.25 mm)
6 B (-12 .5 mm)
7 Top Shank  (+5

mm)
8 Ambient air

 
However, temperature gradients from shoulder curvature region to shank were 

noticeable.  Due to different shoulder configurations (i.e. machining from Metcut), this 

region is not highly amenable to calibration for remote temperature control.  Also, slight 
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shifts (±2 mm) in coil position cause ±5o C differences in shoulder/curvature region 

temperatures, and ambient temperature also impacted shoulder/shank temperature stability.  

Specimen gage section temperatures were marginally affected (>±1o C) by similar coil 

movements.  The ensuing graph (Figure C2) shows that in the gage section there is for the 

most part a steady temperature (within ±2.5o C of control temperature).  This experiment in 

essence verifies the coil design.  To avoid fatigue failures emanating from the thermocouple 

welds, only one thermocouple was attached to test specimens with fiberglass insulation 

tubing at the midsection of the gage length.  Similar data was obtained at 75, 205 and 260 o C 

(150, 400, and 500 oF). 
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Figure C2.  Coil verification test. 

 
 
C.2 EXPERIMENTAL DATA 

Data obtained from this smooth specimen test program is summarized in Tables C2 

and C3.  Tests are grouped with regard to type of test, not the order in which they were 

conducted.  As previously noted, specimens were cycled at low load or torque levels prior to 

fatigue testing to determine the cyclic modulus.  These results are summarized in Table C3, 

and presented in a format indicative of a normal distribution in Figures C4 and C5.  

Specimen 156-11 was a fully reversed axial test.  It was initially the quality control specimen 

returned to GEAE after the specimens were machined for phase 1. Before testing it was 

instrumented with a 3 element rosette strain gage to determine Poisson’s ratio, and verify 

extensometer measurements of E and G (Note: these values are not reported).  Minimal 

insight was also gleaned into specimen size compared to previous smaller uniaxial 
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specimens.  The next group of tests in the phase 1 tables are torsion only experiments.  The 

goal of these experiments was to ascertain if mean shear stresses influence fatigue lives.  

Quite a bit of mean shear stress relaxation was observed for those tests that were not fully 

reversed.  These tests are also vital to obtain baseline constants for some critical plane 

multiaxial theories.  Next, three proportional combined axial-torsional tests are reported.  

This is probably the simplest combined loading.  Phase 2 proportional testing was intended 

to fill some gaps in the data that remained after phase 1.  Several of the damage parameters 

did a poor job predicting torsion only data, and it was deemed essential to duplicate some of 

the experimental results. 

It was deemed important to consider non-proportional loading in the testing and life 

analysis programs.   In phase 1, one 90-degree out-of-phase test (Figure C3a) was conducted. 

Many researchers regard this path as being critical with regard to out-of-phase deformation 

and fatigue damage.  

σ

τ

90° out-of-phase

σ

τ

Triangle path

σ

τ

Box path

σ

τ

Check path  
 

Figure C3.  Non-proportional loading paths: a) 90 degree out-of-phase (Phase 1), b) Triangle  
 Path and individual segments X,Y and Z (Phase 1), c) Box path (Phase 2) and d) 

“Check Mark” path (Phase 2). 
 
 

The triangle path  (Figure C3b) is another out-of-phase approximation of service 

conditions.  The final six non-proportional tests conducted in phase 1 all consist of segments 

of the triangle path.  Since the extrapolation of each path does not pass through the origin of 

strain space, they are also considered to be out-of-phase.  The Y+ or Y- connotation for the 

cyclic torsion with static axial strain indicates whether the static axial strain is positive or 

negative.  A Y+ segment is not shown in Figure 3Cb, but would be on the other side of the 

origin in comparison to the Y- segment.  Both Y+ and Y- tests were proportionally loaded to 

the maximum positive shear strain when starting a test.  The segments of the triangle path 

were also conducted so that cumulative damage of the triangle path could be performed 

a) b) c) d) 

Y- 
Z 

X 

Y+ 

Upper 
leg
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based on the segments.  The sequence of loading for the triangle path was on startup to the 

positive axial stress (zero shear strain), then the X leg, Y- leg and the Z leg were repeated for 

the duration of the test.  Two additional non-proportional paths and subsequent mission 

histories were introduced in Phase 2.  The box path (Figure 3Cc) is a simplification of the 

edge of contact state of stress, and the ‘check mark’ path (Figure 3Cd) is derived from blade 

loading histories.  Both are deemed relevant for the application and material under 

consideration.  Simplified mission histories utilize these two non-proportional paths as a 

basis with either 5 or 50 subcycles.  For the box mission history subcycles were located on 

the Y+ leg of the box, and for the check path the subcycles were located on the upper leg.  

The subcycles for either mission history did not have the range of ether the Y+ or upper leg 

shown, but a portion thereof.  Both subcycles were skewed toward positive shear stress.  The 

tests were conducted in strain control, even though stress is shown on the ordinates of Figure 

C3.  Minimal plastic deformation for these paths at the levels chosen makes the difference 

between stress and strain control minimal (see Figures C11-C14).  

Table C3 summarizes the experimental deformation results.  These materials have 

monotonic yield strengths in excess of 1000 MPa, resulting in the expectation that many of 

the tests would incur only elastic cyclic loads.  Calculating a plastic strain is straight forward 

for axial loading of a solid bar,  but is somewhat more challenging for torsional loading of 

the solid bar specimen.  The quantities in the τmax and τmin columns in Table C3 are the 

results of an elastic calculation based on the torque and original specimen dimensions. 
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Table C2. Life Results for Ti-6-4 and Ti-17- β 
 

Ti-6-4, Phase 1 (old data) 

Test 
#

Spec 
ID

Freq 
(Hz)

Temp 
(F)

Spec Dia 
(in)

Nf or long 
crack(cycles) Comments

1 156-11 0.5 70 0.492 6200
2 21-11 0.5 70 0.492 72141
3 21-6 1 70 0.491 241250
4 156-10 0.5 70 0.492 961806
5 21-7 0.5 70 0.492 24895
6 156-5 0.5 70 0.491 150293
7 156-4 0.5 70 0.491 151598
8 156-1 0.5 70 0.492 814753
9 21-4 0.5 70 0.492 141229 outside gage section

10 21-8 0.5 70 0.492 72124
12 21-3 0.5 70 0.491 73728
13 21-10 0.5 70 0.492 329058
14 156-7 0.5 70 0.492 >24576 overload during storm
15 21-1 0.5 70 0.491 67965
16 156-9 0.5 70 0.492 60514
17 156-3 0.5 70 0.491 87920

18 156-8 0.5 70 0.492 111783 90-OP
19 156-2 0.33 70 0.491 38355 triangle
20 21-2 0.33 70 0.492 43009 triangle
21 156-6 0.5 70 0.492 >19864 top-triangle-overload during storm
22 21-9 0.5 70 0.491 71358 top-triangle
23 21-5 0.5 70 0.492 79367 Bottom-triangle

 
 

Ti-6-4, Phase 2 (new data) 

Test 
#

Spec 
ID

Freq 
(Hz)

Temp 
(F)

Spec Dia 
(in)

Nf or long 
crack(cycles) Comments

1 142-6 0.75 70 0.491 >2.0 E6 runout
2 142-5 0.75 70 0.492 260657
3 142-9 0.5 70 0.491 184669
7 178-3 0.75 70 0.492 843404

19 178-10 0.5 500 0.492 648181 proport 500 F
20 142-10 0.5 500 0.492 75107 proport 500 F

4 142-8 0.25 70 0.492 59432 R=-1 Box contact simulation
5 142-11 0.33 70 0.492 182149 Reps=-3, Rgam=-1 box
6 178-7 0.25 70 0.492 72360 R=-1 Box contact simulation
8 178-8 0.25 70 0.491 212337 Reps=-3, Rgam=-1 box
9 178-12 0.25 70 0.492 50,568 check mark,R=0

12 178-1 0.25 70 0.491 36920 check mark,R=0
14 178-11 0.25 70 0.492 109848 check mark,R=0
15 178-5 0.25 70 0.492 99418 check mark,R=0
21 142-4 0.25 500 0.492 13859 box, R=-1 500F
22 178-2 0.25 500 0.492 30720 box, R=-1 500F

Blocks to fail
10 142-7 0.25 70 0.491 19470 miss 2b, r=-1 box w/50 subcycles

11 178-4 0.25 70 0.491 44544 miss 7, chck w/ 50 sub up

13 178-6 0.25 70 0.492 21422 miss 2b, r=-1 box w/50 subcycles

16 142-3 0.25 70 0.491 49776 miss 7, chck w/ 50 sub up

17 142-1 0.25 70 0.492 48787 miss 2b, r=-1 box w/5 subcycles

18 178-9 0.25 70 0.492 39,480 miss 2b, r=-1 box w/5 subcycles
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Table C2. Life Results for Ti-6-4 and Ti-17- β (Continued) 

 
Ti-17-β, Phase 2 (new data) 

Test 
#

Spec 
ID

Freq 
(Hz)

Temp 
(F)

Spec Dia 
(in)

Nf or long 
crack(cycles) Comments

1 4B29K 0.5 70 0.492 46132
2 4B25K 0.75 70 0.492 80268
3 5B12K 0.5 70 0.491 36004
4 5B36K 0.5 70 0.492 53182
5 5B16k 0.5 70 0.492 47212
6 5B4K 0.5 70 0.491 386505 outside gage section failure
9 5B13K 0.5 70 0.491 49491

10 5B24K 0.5 70 0.492 122988
11 5B28K 0.5 70 0.492 95845 outside gage section failure

7 5B8K 0.5 70 0.491 152285 Check mark
8 5B20K 0.5 70 0.492 159844 check mark  

 
 

Table C3. UDRI-Ti-6-4 and Ti-17-β Biaxial Deformation-Life Data 
 

Ti-6-4, Phase 1 (old data) 

Test 
#

Spec 
ID

Freq 
(Hz)

Temp 
(F)

Spec Dia 
(in) E (ksi) G (ksi)

εmin 
(%) εmax (%)

σmin 
(ksi)

σmax 
(ksi)

γ min 
(%)

γ max 
(%)

τmin 
(ksi)

τmax 
(ksi)

Cycle 
Count E (ksi) G (ksi)

εmin 
(%)

εmax 
(%)

σmin 
(ksi)

σmax 
(ksi)

γ min 
(%)

γ max 
(%)

τmin 
(ksi)

τmax 
(ksi)

1 156-11 0.5 70 0.492 16881 6338 -0.751 0.756 122.3 119.07 0 0 0 0
2 21-11 0.5 70 0.492 17287 6323 0 0 0 0 -0.868 0.866 -55.4 55.98
3 21-6 1 70 0.491 17157 6294 0 0 0 0 -0.61 0.614 -38.43 38.58
4 156-10 0.5 70 0.492 17447 6352 0 0 0 0 -0.563 0.559 -35.82 36.11
5 21-7 0.5 70 0.492 17041 6367 0.166 1.81 -13.78 87.02 0 0 0 0 0.166 1.81 -26.54 72.37
6 156-5 0.5 70 0.491 17056 6396 0.09 1.21 3.92 75.7 0 0 0 0 0.09 1.21 1.16 71.64
7 156-4 0.5 70 0.491 17462 6367 0.15 1.36 1.09 77.44 0 0 0 0 0.15 1.36 -8.7 66.42
8 156-1 0.5 70 0.492 16896 6323 0 0 0 0 0.086 0.958 5.9 61.49
9 21-4 0.5 70 0.492 17447 6323 0.815 1.96 17.4 89.49 0 0 0 0 0.815 1.96 2.75 73.53

10 21-8 0.5 70 0.492 17433 6338 0.089 0.091 14.94 15.81 -0.665 0.666 -41.77 41.91
12 21-3 0.5 70 0.491 17476 6335 0.089 0.090 14.65 15.37 -0.666 0.666 -42.2 42.49
13 21-10 0.5 70 0.492 17448 -0.091 -0.089 -16.82 -15.8 -0.664 0.665 -43.51 40.9
14 156-7 0.5 70 0.492 17475 6367 -0.091 -0.089 -16.53 -15.95 -0.667 0.663 -42.64 42.35
15 21-1 0.5 70 0.491 17331 6352 -0.312 0.312 -54.39 52.94 -0.418 0.416 -27.12 26.83
16 156-9 0.5 70 0.492 0 17447 6352 0.049 0.462 8.37 78.75 0.055 0.616 4.046 40.03
17 156-3 0.5 70 0.491 17462 6381 0.048 0.464 8.02 77.73 0.055 0.621 4.12 40.61

18 156-8 0.5 70 0.492 17070 6381 -0.302 0.303 -51.48 51.77 -0.409 0.406 -25.82 26.4
19 156-2 0.33 70 0.491 17346 6338 -0.373 0.362 -64.25 62.8 -0.476 0.471 -29.87 29.29 -0.373 0.362 -65.11 61.92 -0.476 0.471 -34.37 25.09
20 21-2 0.33 70 0.492 17389 6338 -0.372 0.364 -65.84 62.36 -0.477 0.471 -30.76 29.73
21 156-6 0.5 70 0.492 17200 6323 -0.361 0.363 -63.09 61.78 0.004 0.476 0.81 30.31
22 21-9 0.5 70 0.491 17462 6323 -0.364 0.364 -64.68 63.37 0.004 0.475 1.32 30.6
23 21-5 0.5 70 0.492 17302 6352 -0.363 0.365 -63.09 62.65 -0.005 -0.475 -31.47 -0.7

first cycle properties if significasntly different than half-life half life properties at 70F

 
 

Half Life Values for paths

156-2 time pt ε (%) σ (ksi) γ (%) τ (ksi)
0 0.362 61.92 0.000 0.00
1 -0.373 -65.11 0.471 25.09
2 -0.373 -64.23 -0.476 -34.57

21-2 time pt ε (%) σ (ksi) γ (%) τ (ksi)
0 0.364 62.36 0.000 0
1 -0.372 -65.48 0.471 29.73
2 -0.372 -65.84 -0.477 -30.76  
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Table C3. UDRI-Ti-6-4 and Ti-17-β Biaxial Deformation-Life Data (Continued) 
 

Ti-6-4, Phase 2 (new data) 

Test 
#

Spec 
ID

Freq 
(Hz)

Temp 
(F)

Spec Dia 
(in) E (ksi) G (ksi)

εmin 
(%) εmax (%)

σmin 
(ksi)

σmax 
(ksi) γ min (%)

γ max 
(%)

τmin 
(ksi)

τmax 
(ksi)

Cycle 
Count E (ksi) G (ksi)

εmin 
(%)

εmax 
(%)

σmin 
(ksi)

σmax 
(ksi)

γ min 
(%)

γ max 
(%)

τmin 
(ksi)

τmax 
(ksi)

1 142-6 0.75 70 0.491 16370 6300 0 0 0 0 0.0844 0.99 5.3 62.8 200000 6300 0 0 0 0 0.085 0.98 6.41 62.87
2 142-5 0.75 70 0.492 16530 6330 0 0 0 0 -0.626 0.623 -39.95 39.56 131000 6350 0 0 0 0 -0.62 0.62 -38.46 40.35
3 142-9 0.5 70 0.491 16646 6367 0 0 0 0 0.125 1.263 7.5 79.89 81920 6354 0 0 0 0 0.125 1.25 0.18 71.93
7 178-3 0.75 70 0.492 16715 6390 0 0 0 0 -0.565 0.564 -36.19 36.27 393220 6396 0 0 0 0 -0.559 0.56 -34.37 37.29

19 178-10 0.5 500 0.492 14710 5731 0.0504 0.5313 5.14 77.91 0.0672 0.698 0 36.05 327000 14881 5634 0.051 0.511 1.623 69.95 0.0687 0.687 -9.45 25.36
20 142-10 0.5 500 0.492 14960 5730 0.0544 0.567 -1.2 78.94 0.071 0.733 -2.06 36.08 32768 15050 5691 0.056 0.55 -7.92 66.63 0.0729 0.72 -14.03 23.26

4 142-8 0.25 70 0.492 16570 6370 -0.304 0.292 -51.04 47.6 -0.419 0.418 -26.91 27.36 30720 16565 6394 -0.305 0.306 -51.6 50.15 -0.418 0.418 -27.05 27.01
5 142-11 0.33 70 0.492 16515 6360 -0.462 0.142 -77.43 22.85 -0.419 0.418 -27.15 26.91 88064 16630 6398 -0.459 0.161 -77.27 26.07 -0.417 0.418 -27.36 26.62
6 178-7 0.25 70 0.492 16330 6330 -0.306 0.283 -50.47 45.58 -0.419 0.417 -26.93 26.84 32768 16340 6350 -0.311 0.311 -52.55 49.09 -0.418 0.418 -26.73 27.03
8 178-8 0.25 70 0.491 16500 6385 -0.456 0.149 -76.34 24.01 -0.419 0.417 -27.31 27.06 106500 16632 6405 -0.455 0.156 -79.18 22.92 -0.418 -0.418 -28.4 25.75
9 178-12 0.25 70 0.492 16480 6343 0 0.299 0.03 47.81 0 1.225 -0.14 77.53 25600 15970 6340 0.007 0.298 -0.2 46.58 0.007 1.218 -6.38 70.56

12 178-1 0.25 70 0.491 16380 6375 0 0.298 0.46 46.82 -0.004 1.225 -0.25 77.85 18432 15560 6346 0.004 0.298 8.26 54.37 0.006 1.219 -6.22 70.64
14 178-11 0.25 70 0.492 16605 6485 0 0.238 0 36.61 0 0.963 -0.44 62.93 53248 15253 6492 0.004 0.239 -1.11 34.96 0.005 0.958 5.46 67.34
15 178-5 0.25 70 0.492 16560 6430 0 0.238 0.13 36.34 0 0.962 -0.57 62.2 49152 15080 6451 0.004 0.239 -1.72 34.1 0.006 0.958 3.96 65.47
21 142-4 0.25 500 0.492 15170 5745 -0.3495 0.3370 -54.74 53.14 -0.482 0.479 -30.22 26.16 6144 14840 5515 -0.353 0.354 -56.73 48.35 -0.481 0.48 -28.93 25.3
22 178-2 0.25 500 0.492 14870 5890 -0.3240 0.3110 -50.09 47.4 -0.451 0.449 -28.2 26.18 14336 14595 5781 -0.327 0.328 -49.39 46.46 -0.45 0.449 -30.5 22.58

10 142-7 0.25 70 0.491 16460 6380 -0.305 0.306 -51.03 49.91 -0.419 0.417 -26.94 26.94 9728 16433 6364 -0.308 0.307 -54.09 47.66 -0.418 0.415 -26.19 27.49
50 subcycle 0.3 0.3 45.96 46.62 -0.11 0.399 -5.78 26.56

11 178-4 0.25 70 0.491 16710 6385 0 0.3 0 47.65 0 1.222 0.2 78.83 22784 17060 6379 0.007 0.298 -1.23 44.75 0.007 1.22 -8.32 68.78
50 subcycle 0.153 0.277 19.47 41.16 0.853 1.21 48.74 68.48

13 178-6 0.25 70 0.492 16495 6400 -0.305 0.308 -50.75 50.34 -0.418 0.416 -27.12 26.96 10240 16470 6384 -0.308 0.306 -51.05 50.34 -0.419 0.415 -26.14 27.84
50 subcycle 0.299 0.301 48.64 48.88 -0.107 0.396 -5.49 26.5

16 142-3 0.25 70 0.491 16680 6430 0 0.296 0 44.59 -0.001 1.223 0.25 78.81 32768 17380 6396 0.003 0.298 -4.87 40.19 0.006 1.215 -8.97 68.96
50 subcycle 0.151 0.278 14.56 37.51 0.8719 1.201 48.83 69.68

17 142-1 0.25 70 0.492 16400 6370 -0.308 0.312 -51.12 50.73 -0.42 0.419 -26.86 27.32 24576 16390 6400 -0.309 0.307 -54.04 47.46 -0.42 0.416 -26.45 27.6
5 subcycle 0.301 0.302 45.86 46.54 -0.107 0.399 -5.82 26.39

18 178-9 0.25 70 0.492 16570 6400 -0.305 0.308 -51.13 50.58 -0.42 0.418 -27.15 27.13 20480 16560 6430 -0.308 0.306 -54.22 48.12 -0.42 0.416 -27.05 27.28
5 subcycle 0.3 0.302 46.29 46.96 -0.106 0.4 -6.14 26.17

first cycle properties half life properties at 70F

 
 

 
 

Half Life Paths,Major cycle-Missions Half Life Paths

142-7 time pt ε (%) σ (ksi) γ (%) τ (ksi) 178-12 time pt ε (%) σ (ksi) γ (%) τ (ksi) 142-8 time pt ε (%) σ (ksi) γ (%) τ (ksi)
box 0 0.3004 46.29 0.4135 27.39 chk 0 0.0094 0.262 0.0083 -5.31 box 0 0.3045 49.46 0.4174 26.83

1 -0.3071 -53.69 0.4148 27.36 1 0.2970 46.48 0.8205 45.41 1 -0.3044 -51.49 0.4154 26.59
2 -0.3055 -52.97 -0.4175 -26.00 2 0.1563 21.98 1.2170 70.56 2 -0.3038 -50.9 -0.4155 -26.84
3 0.3052 47.52 -0.4171 -25.61 1a 0.2976 46.58 0.8254 46.09 3 0.3063 50.11 -0.4158 -26.11

178-6 time pt ε (%) σ (ksi) γ (%) τ (ksi) 178-1 time pt ε (%) σ (ksi) γ (%) τ (ksi) 178-7 time pt ε (%) σ (ksi) γ (%) τ (ksi)
box 0 0.2999 49.37 0.4142 27.55 chk 0 0.0090 9.013 0.0085 -5.51 box 0 0.3080 48.36 0.4153 26.64

1 -0.3070 -50.61 0.4136 28.85 1 0.2976 54.33 0.8217 45.59 1 -0.3090 -52.37 0.4159 26.42
2 -0.3060 -50.48 -0.4167 -25.85 2 0.1521 29.47 1.2190 70.63 2 -0.3079 -51.94 -0.4138 -26.43
3 0.3051 50.25 -0.4163 -25.62 1a 0.2979 54.34 0.8257 46.27 3 0.3103 49.02 -0.4159 -25.99

178-8 time pt ε (%) σ (ksi) γ (%) τ (ksi)
178-4 time pt ε (%) σ (ksi) γ (%) τ (ksi) 178-11 time pt ε (%) σ (ksi) γ (%) τ (ksi) box 0 0.1545 22.23 0.4169 25.55
chk 0 0.0095 -1.005 0.0076 -7.28 chk 0 0.0070 -0.59 0.0056 6.06 1 -0.4545 -79.1 0.4168 25.22

1 0.2977 44.66 0.8244 44.5 1 0.2390 35.05 0.6400 46.57 2 -0.4539 -78.52 -0.4162 -28.24
2 0.1530 19.26 1.2162 69.58 2 0.1200 13.96 0.9570 67.2 3 0.1558 22.86 -0.4161 -27.62

1a* 0.2769 41.05 0.8912 48.65 1a 0.2380 34.96 0.6410 47.1
1a* is where the subcycles start in this test 142-11 time pt ε (%) σ (ksi) γ (%) τ (ksi)

box 0 0.1598 25.53 0.4165 26.3
142-3 time pt ε (%) σ (ksi) γ (%) τ (ksi) 178-5 time pt ε (%) σ (ksi) γ (%) τ (ksi) 1 -0.4583 -77.21 0.4163 26.13
chk 0 0.0045 -1.84 0.0084 -6.71 chk 0 0.0075 -0.83 0.0054 4.58 2 -0.4578 -76.78 -0.4165 -27.2

1 0.2990 41.42 0.8140 44.95 1 0.2390 34.1 0.6400 45.32 3 0.1605 25.99 -0.4163 -26.75
2 0.1530 14.8 1.2150 70.32 2 0.1223 13.14 0.9560 65.45

1a* 0.2776 37.51 0.8719 48.83 1a 0.2385 33.97 0.6460 45.79
142-4 time pt ε (%) σ (ksi) γ (%) τ (ksi)

142-1 time pt ε (%) σ (ksi) γ (%) τ (ksi) box 0 0.3500 47.72 0.4768 25.01
box 0 0.3010 45.88 0.4064 27.07 500F 1 -0.3500 -56.81 0.4759 24.27

1 -0.3080 -53.99 0.4150 27.15 2 -0.3493 -55.85 -0.4791 -28.6
2 -0.3058 -52.99 -0.4156 -26.25 3 0.3529 48.06 -0.4783 -27.59
3 0.3061 47.39 -0.4183 -25.68

178-2 time pt ε (%) σ (ksi) γ (%) τ (ksi)
178-9 time pt ε (%) σ (ksi) γ (%) τ (ksi) box 0 0.3250 46.13 0.4430 22.09
box 0 0.3010 46.47 0.4140 27.04 500F 1 -0.3250 -49.15 0.4480 21.7

1 -0.3080 -54.43 0.4140 26.79 2 -0.3230 -48.23 -0.4420 -30.27
2 -0.3050 -53.59 -0.4170 -26.68 3 0.3270 46.56 -0.4460 -29.01
3 0.3060 47.75 -0.4160 -26.17  
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Table C3. UDRI-Ti-6-4 and Ti-17-β Biaxial Deformation-Life Data (Continued) 
 

Ti-17-β, Phase 2 (new data) 
G

6281

Test 
#

Spec 
ID

Freq 
(Hz)

Temp 
(F)

Spec Dia 
(in) E (ksi) G (ksi)

εmin 
(%) εmax (%)

σmin 
(ksi)

σmax 
(ksi)

γ min 
(%)

γ max 
(%)

τmin 
(ksi)

τmax 
(ksi)

Cycle 
Count E (ksi) G (ksi)

εmin 
(%)

εmax 
(%)

σmin 
(ksi)

σmax 
(ksi)

γ min 
(%)

γ max 
(%)

τmin 
(ksi)

τmax 
(ksi)

Ε εmin 
(%)

1 4B29K 0.5 70 0.492 16596 6468 0 0 0 0 -0.91 0.909 -58.94 59.22 16384 6464 0 0 0 0 -0.899 0.899 -58.17 58.35 0.0
2 4B25K 0.75 70 0.492 16550 6440 0 0 0 0 -0.838 0.834 -54.03 53.77 32768 6452 0 0 0 0 -0.83 0.83 -53.42 53.67 0.0
3 5B12K 0.5 70 0.491 16980 6376 0 0 0 0 0.166 1.685 7.16 103.8 16404 6332 0 0 0 0 0.168 1.667 3.23 98.28 0.0
4 5B36K 0.5 70 0.492 16750 6450 0 0 0 0 0.134 1.363 8.69 88.36 16384 6451 0 0 0 0 0.136 1.35 8.825 87.36 0.0
5 5B16k 0.5 70 0.492 16728 6400 0 0.363 -0.07 58.52 0 0.99 0 64.02 16384 16168 6408 0 0.36 0.08 58.25 0.004 0.98 1.43 64.39 0.0
6 5B4K 0.5 70 0.491 16400 6450 -0.002 0.3332 -0.11 53.44 -0.007 0.888 -0.08 57.99 163840 16065 6481 1E-04 0.33 1.6 54.57 -2E-04 0.879 3.15 60.5 0.0
9 5B13K 0.5 70 0.491 16640 6505 0 0.373 0.07 59.47 -0.007 0.939 -0.15 61.85 16384 15923 6541 0 0.37 -0.32 58.57 -1E-04 0.93 -0.42 60.63 0.0

10 5B24K 0.5 70 0.492 16680 6475 0 0 0 0 0.121 1.233 7.93 80.2 65536 6450 0 0 0 0 0.122 1.221 9.08 79.9 0.0
11 5B28K 0.5 70 0.492 16700 6423 0 0 0 0 0.121 1.236 7.9 79.98 49152 6426 0 0 0 0 0.123 1.222 9.06 79.76

7 5B8K 0.5 70 0.491 16690 6447 0 0.269 -0.23 43.86 -4E-04 1.083 -0.009 70.64 75785 16305 6473 0.007 0.268 1.94 44.78 0.0068 1.078 1.64 71.14
8 5B20K 0.5 70 0.492 16440 6540 0 0.268 -0.15 42.68 -4E-04 1.082 -0.032 71.77 75776 15887 6565 0.006 0.269 -0.35 41.99 0.0074 1.08 1.73 72.13

70
70

first cycle properties half life properties at 70F

 
 

Half Life Values for paths

5B8K time pt ε (%) σ (ksi) γ (%) τ (ksi)
0 0.0098 2.48 0.0170 2.56
1 0.2680 44.76 0.7191 47.91
2 0.1367 22.37 1.0779 71.14

1a 0.2678 44.77 0.7216 48.14

5B20K time pt ε (%) σ (ksi) γ (%) τ (ksi)
0 0.0095 0.524 0.0194 2.44
1 0.2689 41.98 0.7167 48.29
2 0.1360 19.47 1.0784 72.12

1a 0.2686 41.96 0.7278 49.59
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Figure C4.  Normal distribution of axial modulus check data. 
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Figure C5. Normal distribution of shear modulus check data. 
 
 

In order to consider torsional plastic deformation it was necessary to assume a 

plasticity algorithm.  An Armstrong-Frederick based model subsequently refined by Jiang 

and Kurath [2-6] was implemented.  Even the existing uniaxial LCF data did not provide 

adequate data to fit the modeling constants.  A uniaxial specimen was machined from 

remnants of the forging used for the biaxial specimens.  A summary of the deformation 

results is shown in Figure C6.  Notable is the cyclic softening which occurs rapidly after the 

initial plastic deformation in the first cycle.  Both the initial half cycle and half-life data 

(cycle 1024) were used to obtain two sets of plasticity constants.  Note the half-life linear 

elastic modulus is lower than the initial cycle value in Figure C6. 
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Figure C6.  Uniaxial deformation data. 
 

Without laboring over the details in the derivation, the following simple procedure 

for determining c(i) and r(i) for an A-F type model is forwarded.  Select M points from the 

σa - εa
p curve from the uniaxial experiment (refer to Figure C7) so that the stress range, σa(i), 

and plastic strain range, εa(i)
p , are known for any point i. Generally, half of a representative 

hysterisis loop is employed to represent the stress strain curve shown in Figure C7.  Note that 

εa(i)
p  denotes the plastic strain range and σa(i) is the stress range corresponding to εa(i)

p .  The 

quantities, c(i) and r(i) are determined by the following two equations respectively, 

c(i) = 2
3

  1
εa(i)

p     (i=1, 2, ..., M) (C1) 

 
r(i) = 2

3
 
H(i) - H(i+1)

c(i)
    (i=1, 2, ..., M) (C2) 

 
In the previous two equations, 
 

H(i) =  
σa(i) - σa(i-1)

εa(i)
p  - εa(i-1)

p     (i=1, 2, ..., M) (C3) 
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σa(0)= σy = 3 k     ;      ∆ε(0)
p  = 0     ;    H(M+1)  = 0 (C4) 

 
The slope between point (i-1) and point i is H(i) (Figure C7), and is often termed the plastic 

modulus.  The yield stress σy in Equation C4 is the linear elastic portion in Figure C7.  The 

constant k is the yield stress in pure shear and is related to uniaxial loading via the von Mises 

criterion.  The maximum stress range, ∆σ(M), satisfies the following condition, 

σa(M) = σmax = 3
2

 r(i)�
i=1

M
 + σy (C5) 

where σmax is the maximum stress range that the model is intended to simulate.  For a non-

Massing material, the determination of c(i) and r(i) is more complex and involves a series of 

hysterisis loops, or a "step" test.  The constants utilized in the plasticity model are 

summarized in Table C3 (an M=10 expansion of the backstress was utilized). 

 
   

Figure C7. Fitting plasticity modeling constants. 
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Comparison of the half-life deformation and the model is shown in Figure C8.  

Coincidence of this data is anticipated since it was employed to fit the plasticity constants.  
While most of the cyclic biaxial data appears linear elastic when viewed on a cycle by cycle 
basis, there is appreciable plasticity on the first cycle of many R=0.1 and 0.5 tests.  Figure C9 
shows a typical torsion only test, showing experimental and analytical results.  It should be 
noted that the y-axis on this plot is torque. The plasticity algorithm is run in “strain” control, 
and the stresses integrated to give a nominal torque.  If the torque values compare favorably, 
the author implies that the stresses calculated are a reasonable estimate.   Table C4 lists the 
stabilized half-life deformation predicted for all Ti-6-4 multiaxial stress paths. 
 

Table C4. Plasticity Modeling Constants 
 

c(i) R(i) (MPa) 
Cycle 1  

K= 260 (MPa)

r(i) (MPa) 
Half-life 

k= 205 (MPa) 
3265 150 127 
1637 77.7 63.2 
820 82.3 63.8 
411 85.3 62.4 
206 86.4 59.0 
103 85.5 54.1 
51.8 82.9 48.3 
26.0 78.5 42.0 
13.0 72.9 35.8 
6.53 120 50.9 
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Figure C8.  Comparison of modeling and uniaxial data. 
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Figure C9.  Typical R=0.1 torsion only data. 
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Figure C10. Typical R=0.1 plasticity modeling of torsion only data. 
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Figure C11. Typical plasticity modeling of triangle path. 
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Figure C12. Typical plasticity modeling of box path. 
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Figure C13. Typical plasticity modeling of axial mean stress box path. 
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Figure C14. Typical plasticity modeling of check path. 
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Table C5. Predicted Deformation/Life For Ti-6-4 
 

Measured
εz (%) γ  (%) σθ (ksi) σz (ksi) τ (ksi) θ cycles θ cycles lifespan Findley SWT Comment

21-11 1 0.5 0.000 0.000 0.866 0.00 0.00 50.66 10 3.045E+04 44 2.224E+05 7.214E+04 0.42 3.08 fully reversed torsion
2 0.000 0.000 -0.868 0.00 0.00 -50.82
3 0.000 0.000 0.866 0.00 0.00 50.73

21-6 1 1 0.000 0.000 0.614 0.00 0.00 38.25 -10 3.231E+06 -- r/o 2.413E+05 fully reversed torsion
2 0.000 0.000 -0.610 0.00 0.00 -38.06
3 0.000 0.000 0.614 0.00 0.00 38.25

156-10 1 0.5 0.000 0.000 0.559 0.00 0.00 34.96 10 1.473E+08 -- r/o 9.618E+05 fully reversed torsion
2 0.000 0.000 -0.563 0.00 0.00 -35.21
3 0.000 0.000 0.559 0.00 0.00 34.96

21-7 1 0.5 0.000 0.000 1.810 0.00 0.00 71.64 -74 2.583E+04 -46 6.455E+04 2.490E+04 1.04 2.59 R=0.1 torsion
2 0.000 0.000 0.166 0.00 0.00 -28.30
3 0.000 0.000 1.810 0.00 0.00 69.12

156-5 1 0.000 0.000 1.210 0.00 0.00 62.41 -72 8.836E+05 -46 3.149E+06 1.503E+05 R=0.1 torsion
2 0.000 0.000 0.090 0.00 0.00 -7.73
3 0.000 0.000 1.210 0.00 0.00 62.31

156-4 1 0.5 0.000 0.000 1.360 0.00 0.00 65.56 -72 2.095E+05 -46 5.931E+05 1.516E+05 1.38 3.91 R=0.1 torsion
2 0.000 0.000 0.150 0.00 0.00 -10.58
3 0.000 0.000 1.360 0.00 0.00 65.06

156-1 1 0.5 0.000 0.000 0.958 0.00 0.00 54.76 -18 2.370E+10 -- r/o 8.148E+05 R=0.1 torsion
2 0.000 0.000 0.086 0.00 0.00 0.20
3 0.000 0.000 0.958 0.00 0.00 54.74

21-4 1 1 0.000 0.000 1.960 0.00 0.00 73.03 -20 2.034E+05 -46 3.415E+05 1.412E+05 1.44 2.42 R=0.5 torsion
2 0.000 0.000 0.815 0.00 0.00 1.35
3 0.000 0.000 1.960 0.00 0.00 72.96

21-1 1 0.5 -0.109 0.312 0.416 0.09 52.15 25.70 12 7.308E+04 -22 1.197E+05 6.797E+04 1.08 1.76 fully reversed tension-torsion
2 0.109 -0.312 -0.418 -0.09 -52.15 -25.81
3 -0.109 0.312 0.416 0.09 52.16 25.71

156-9 1 0.5 -0.166 0.462 0.616 0.28 72.16 35.26 4 2.236E+05 -22 1.776E+05 6.051E+04 3.70 2.94 R=0.1 tension-torsion
2 -0.021 0.049 0.055 0.29 2.28 0.15
3 -0.166 0.462 0.616 0.29 72.11 35.24

156-3 1 0.5 -0.166 0.464 0.621 0.29 72.36 35.49 4 2.093E+05 -10 3.627E+00 8.792E+04 2.38 0.00 R=0.1 tension-torsion
2 -0.020 0.048 0.055 0.30 1.97 0.06
3 -0.166 0.464 0.621 0.30 72.30 35.46

156-2 1 0.333 -0.127 0.362 0.000 0.00 61.14 0.00 0 3.637E+04 -8 1.407E+05 3.836E+04 0.95 3.67 non-proportional tension-torsion 
2 0.132 -0.373 0.471 -0.20 -60.40 28.51 (triangular path)
3 0.132 -0.373 -0.476 -0.37 -58.92 -29.68

21-2 1 0.333 -0.128 0.364 0.000 0.00 61.48 0.00 -2 3.774E+04 8 1.405E+05 4.301E+04 0.88 3.27 non-proportional tension-torsion
2 0.131 -0.372 0.471 -0.20 -60.27 28.51 (triangular path)
3 0.132 -0.372 -0.477 -0.37 -58.78 -29.74

21-9 1 0.5 -0.128 0.364 0.004 0.00 61.48 0.25 -24 4.467E+04 8 1.467E+05 7.136E+04 0.63 2.06 non-proportional tension-torsion 
2 0.128 -0.364 0.475 -0.08 -60.33 27.70 (top segment of triangular path)
3 -0.128 0.364 0.004 0.02 61.87 -1.64

21-5 1 0.5 -0.128 0.365 -0.005 0.00 61.65 -0.28 24 4.315E+04 -6 1.468E+05 7.937E+04 0.54 1.85 non-proportional tension-torsion
2 0.128 -0.363 -0.475 -0.08 -60.19 -27.70 (bottom segment of triangular path)
3 -0.128 0.365 -0.005 0.02 62.01 1.60

21-8 1 0.5 -0.032 0.091 0.666 0.05 15.06 40.66 -10 8.394E+04 -42 7.492E+08 7.212E+04 1.16 non-proportional tension-torsion
2 -0.031 0.089 -0.665 0.31 12.80 -40.77
3 -0.032 0.091 0.666 0.33 13.03 40.82

21-3 1 0.5 -0.032 0.090 0.666 0.05 14.89 40.66 -12 8.590E+04 -44 1.226E+09 7.373E+04 1.17 reversed torsion + mean tension
2 -0.031 0.089 -0.666 0.31 12.81 -40.82
3 -0.032 0.090 0.666 0.32 12.87 40.82

21-10 1 0.5 0.031 -0.089 0.665 -0.05 -14.73 40.61 80 5.369E+05 -- r/o 3.291E+05 1.63 reversed torsion + mean compression
2 0.032 -0.091 -0.664 -0.32 -13.15 -40.72
3 0.031 -0.089 0.665 -0.32 -12.71 40.77

156-8 0 0.5 0.000 0.000 0.406 0.00 0.00 25.39 0 2.400E+05 -- r/o 1.118E+05 2.15 90 deg phase shifted tension-torsion
0.1 -0.033 0.094 0.386 0.00 15.88 24.14 (circle)
0.2 -0.062 0.178 0.328 0.00 30.07 20.51
0.3 -0.085 0.245 0.239 0.00 41.38 14.95
0.4 -0.099 0.288 0.125 0.00 48.64 7.82
0.5 -0.106 0.303 0.000 0.00 51.18 0.00
0.6 -0.099 0.288 -0.126 0.00 48.64 -7.88
0.7 -0.085 0.245 -0.240 0.00 41.38 -15.01
0.8 -0.062 0.178 -0.331 0.00 30.07 -20.70
0.9 -0.033 0.094 -0.389 0.00 15.88 -24.33
1 0.000 0.000 -0.409 0.00 0.00 -25.58

1.1 0.032 -0.093 -0.389 0.00 -15.71 -24.33
1.2 0.062 -0.178 -0.331 0.00 -30.07 -20.70
1.3 0.085 -0.244 -0.240 0.00 -41.21 -15.01
1.4 0.099 -0.287 -0.126 0.00 -48.48 -7.88
1.5 0.105 -0.302 0.000 0.00 -51.01 0.00
1.6 0.099 -0.287 0.125 0.00 -48.48 7.82
1.7 0.085 -0.244 0.239 0.00 -41.21 14.95
1.8 0.062 -0.178 0.328 0.00 -30.07 20.51
1.9 0.032 -0.093 0.386 0.00 -15.71 24.14
2 0.000 0.000 0.406 0.00 0.00 25.39

142-6 1 0.75 0.000 0.000 0.980 0.00 0.00 55.61 -18 5.222E+09 -- r/o > 2.0E+06 runout
2 0.000 0.000 0.085 0.00 0.00 -0.39
3 0.000 0.000 0.980 0.00 0.00 55.58

142-5 1 0.75 0.000 0.000 0.620 0.00 0.00 38.55 -10 2.435E+06 -- r/o 2.607E+05
2 0.000 0.000 -0.620 0.00 0.00 -38.55
3 0.000 0.000 0.620 0.00 0.00 38.55

Ratio (pred/meas)Findley lifespan SWT lifespan
Spec ID

Endpt 
Order

Freq 
(Hz)  εθ  (%)
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Measured
εz (%) γ  (%) σθ (ksi) σz (ksi) τ (ksi) θ cycles θ cycles lifespan Findley SWT Comment

142-9 1 0.5 0.000 0.000 1.250 0.00 0.00 63.33 -18 8.594E+05 -46 4.014E+06 1.847E+05
2 0.000 0.000 0.125 0.00 0.00 -7.13
3 0.000 0.000 1.250 0.00 0.00 63.23

178-3 1 0.75 0.000 0.000 0.560 0.00 0.00 35.02 -10 1.946E+08 -- r/o 8.434E+05
2 0.000 0.000 -0.559 0.00 0.00 -34.96
3 0.000 0.000 0.560 0.00 0.00 35.02

142-8 1 0.25 -0.107 0.305 0.417 0.07 51.00 25.85 22 1.581E+04 -22 1.306E+05 5.943E+04 0.27 2.20 R=-1 Box contact simulation
2 0.107 -0.304 0.415 -0.01 -51.34 25.49
3 0.108 -0.304 -0.416 -0.14 -51.27 -26.00
4 -0.107 0.306 -0.416 0.01 51.67 -25.46
5 -0.107 0.305 0.417 0.14 50.57 26.17

142-11 1 0.33 -0.056 0.160 0.417 0.00 26.99 26.05 24 3.102E+04 -26 1.539E+06 1.821E+05 0.17 8.45 Rgam=-1 box
2 0.164 -0.458 0.416 -0.29 -71.30 25.39
3 0.164 -0.458 -0.417 -0.43 -70.33 -26.17
4 -0.052 0.161 -0.416 -0.26 33.05 -25.53
5 -0.052 0.160 0.417 -0.11 31.98 26.06

178-7 1 0.25 -0.054 0.308 0.415 0.08 51.55 25.70 22 1.559E+04 -22 1.332E+05 7.236E+04 0.22 1.84 R=-1 Box contact simulation
2 0.163 -0.309 0.416 -0.02 -52.05 25.45
3 0.163 -0.308 -0.414 -0.15 -51.08 -25.97
4 -0.051 0.310 -0.416 0.03 52.24 -25.45
5 -0.051 0.308 0.415 0.15 51.06 26.06

178-8 1 0.25 -0.054 0.155 0.417 0.00 26.10 26.07 24 3.334E+04 -22 2.926E+06 2.123E+05 0.16 13.78 Rgam=-1 box
2 0.163 -0.455 0.417 -0.29 -70.80 25.51
3 0.163 -0.454 -0.416 -0.41 -69.94 -26.13
4 -0.051 0.156 -0.416 -0.26 32.15 -25.59
5 -0.051 0.155 0.417 -0.13 31.12 26.08

178-12 2 0.25 -0.106 0.297 0.821 0.34 46.56 47.10 -6 2.969E+04 -42 1.522E+05 5.057E+04 0.59 3.01 check mark,R=0
3 -0.057 0.156 1.217 0.69 19.08 62.15
4 -0.107 0.298 0.825 0.69 42.95 37.66
5 -0.006 0.009 0.008 0.67 -5.65 -13.25
2* -0.107 0.297 0.821 0.66 42.83 36.48
3* -0.057 0.156 1.217 0.67 18.96 60.80

178-1 2 0.25 -0.106 0.298 0.822 0.34 46.63 47.14 -4 2.857E+04 -40 1.547E+05 3.692E+04 0.77 4.19 check mark,R=0
3 -0.056 0.152 1.219 0.68 18.42 62.23
4 -0.107 0.298 0.826 0.68 43.05 37.63
5 -0.006 0.009 0.009 0.67 -5.67 -13.27
2* -0.107 0.298 0.822 0.65 42.99 36.50
3* -0.056 0.152 1.219 0.67 18.31 60.85

178-11 2 0.25 -0.084 0.239 0.640 0.18 39.01 38.46 -6 2.761E+05 -40 3.278E+07 1.098E+05 2.51 298.41 check mark,R=0
3 -0.043 0.120 0.957 0.32 17.38 54.45
4 -0.084 0.238 0.641 0.32 37.31 34.69
5 -0.003 0.007 0.006 0.32 -1.71 -5.05
2* -0.085 0.239 0.640 0.32 37.47 34.58
3* -0.043 0.120 0.957 0.32 17.37 54.40

178-5 2 0.25 -0.084 0.239 0.640 0.18 39.01 38.46 -6 2.630E+05 -42 3.180E+07 9.942E+04 2.64 319.90 check mark,R=0
3 -0.040 0.122 0.956 0.32 17.75 54.40
4 -0.084 0.239 0.646 0.32 37.38 35.01
5 -0.004 0.008 0.005 0.32 -1.64 -5.05
2* -0.085 0.239 0.640 0.32 37.45 34.59
3* -0.044 0.122 0.956 0.32 17.74 54.35

142-7 1 0.25 -0.107 0.300 0.414 0.06 50.97 25.63 -22 1.666E+04 -22 1.377E+05 1.947E+04 0.86 7.07 miss 2b, r=-1 box w/5 subcycles
2 0.108 -0.307 0.415 -0.02 -51.73 25.45
3 0.107 -0.306 -0.418 -0.14 -50.73 -26.16
4 -0.107 0.305 -0.417 0.02 51.46 -25.56
5 -0.105 0.300 0.414 0.12 50.00 25.98
6 -0.105 0.300 -0.110 0.12 49.93 -6.76
7 -0.105 0.300 0.399 0.12 49.93 25.07

178-4 2 0.25 -0.106 0.298 0.824 0.35 46.62 47.27 -6 2.895E+04 -40 1.559E+05 4.454E+04 0.65 3.50 miss 7, chck w/ 5 subcycles
3 -0.056 0.153 1.216 0.68 18.58 62.15
4 -0.100 0.277 0.853 0.68 39.52 39.44
5 -0.056 0.153 1.210 0.68 18.58 61.77
6 -0.107 0.298 0.824 0.68 42.90 37.65
7 -0.006 0.010 0.008 0.66 -5.59 -13.20

 2* -0.107 0.298 0.824 0.66 43.05 37.37
 3* -0.056 0.153 1.216 0.67 18.50 61.33
178-6 1 0.25 -0.105 0.300 0.414 0.05 50.34 25.71 -22 1.708E+04 -22 1.442E+05 2.142E+04 0.80 6.73 miss 2b, r=-1 box w/5 subcycles

2 0.108 -0.307 0.414 -0.03 -51.67 25.42
3 0.107 -0.306 -0.417 -0.14 -50.83 -26.10
4 -0.107 0.305 -0.416 0.01 51.46 -25.52
5 -0.105 0.300 0.414 0.12 49.93 26.02
6 -0.106 0.301 -0.107 0.12 50.11 -6.57
7 -0.104 0.298 0.396 0.12 49.61 24.88

142-3 2 0.25 -0.106 0.299 0.814 0.34 46.92 46.78 -8 2.961E+04 -42 1.586E+05 4.978E+04 0.59 3.19 miss 7, chck w/ 5 subcycles
3 -0.056 0.153 1.203 0.67 18.75 61.84
4 -0.100 0.278 0.863 0.67 39.86 40.59
5 -0.055 0.151 1.189 0.67 18.41 60.97
6 -0.107 0.278 0.863 0.67 43.41 37.50
7 -0.004 0.299 0.806 0.66 -6.29 -12.80

 2* -0.107 0.299 0.814 0.66 43.42 37.25
3* -0.056 0.153 1.203 0.67 18.69 61.21

142-1 1 0.25 -0.105 0.301 0.406 0.04 50.58 25.26 -22 1.692E+04 -22 1.460E+05 4.879E+04 0.35 2.99 miss 2b, r=-1 box w/5 subcycles
2 0.108 -0.308 0.415 -0.04 -51.77 25.53
3 0.107 -0.306 -0.416 -0.14 -50.79 -26.05
4 -0.107 0.306 -0.418 0.02 51.58 -25.63
5 -0.106 0.301 0.406 0.12 50.14 25.59
6 -0.106 0.302 -0.107 0.12 50.29 -6.52
7 -0.106 0.301 0.399 0.12 50.12 25.58

178-9 1 0.25 -0.106 0.301 0.414 0.06 50.51 25.69 -22 1.668E+04 -22 1.396E+05 3.948E+04 0.42 3.54 miss 2b, r=-1 box w/5 subcycles
2 0.108 -0.308 0.414 -0.03 -51.83 25.42
3 0.107 -0.305 -0.417 -0.14 -50.65 -26.14
4 -0.107 0.306 -0.416 0.02 51.58 -25.50
5 -0.106 0.301 0.414 0.13 50.09 26.00
6 -0.106 0.302 -0.106 0.13 50.24 -6.52
7 -0.106 0.300 0.400 0.13 50.07 25.99

Ratio (pred/meas)Findley lifespan SWT lifespan
Spec ID

Endpt 
Order

Freq 
(Hz)  εθ  (%)

 

Table C5.  Predicted Deformation/Life For Ti-6-4 (Continued) 
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C.3 LIFE PREDICTION AND DISCUSSION 

The goal of the experimental program was to identify a fatigue damage parameter 

useful for design.  While there are a multitude of fatigue damage models, two will be 

examined as part of this report.  Other researchers are conducting a more thorough review of 

fatigue damage models as another facet of this program.  Without undue generalization, there 

are basically two types of critical plane fatigue approaches: maximum principal stress or 

strain based and shear dominated.  A modified biaxial version of the Smith-Watson-Topper 

(SWT) principal stress-strain based parameter (a square root and normalization of the stress 

by dividing by the elastic modulus is the original form proposed by Smith-Watson and 

Topper (Ref. 7)) follows, 

  
∆ε
2

σ max = AN f
b + CNf

d = Damage . (C6) 

 
 
 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.E+03 1.E+05 1.E+07 1.E+09
Cycles to Failure

D
am

ag
e 

Pa
ra

m
et

er
 (k

si
)

R=-1
R=0.1
R=0.5
Predicted

0.05

0.1

0.15

0.2

0.25

0.3

1.E+04 1.E+05 1.E+06
Cycles to Failure

D
am

ag
e 

Pa
ra

m
et

er
 (k

si
)

Uniaxial
Box
Check
Torsion
Proportional
Triangle
90-OP

εaσmax = 223.5Nf
−0.6840 + 0.1861Nf

−0.0078

 
 

Figure C15.  SWT uniaxial and biaxial data (Kallmeyer). 
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Figure C16. Findley uniaxial and biaxial data (Kallmeyer). 
 
 
For a shear-based parameter, the Findley (Ref. 8-9) formulation was chosen. 
 

  
∆τ
2

+ kσ max = ANf
b + CN f

d = Damage  (C7) 

 
Both of the parameters are interpreted as the critical plane being that which has the 

highest value of damage, rather than the maximum of any individual term.  This has more 

implications when considering Equation C7 than the SWT approach.  Collapsing the uniaxial 

load ratio data is the approach employed to fit either parameter’s constants.  Constants 

obtained by Prof. Alan Kallmeyer from the experimental deformation and associated life 

predictions are shown in Figures C15 and C16.  These constants should not be confused with 

the traditional strain life constants.  As shown in Phase 1, a shear-based parameter provides a 

better representation for the range of data, even though the SWT parameter collapsed the 

uniaxial load ratio data very efficiently.  Furthermore, the SWT parameter provides non-

conservative life estimates for the majority of the multiaxial tests.   

Figures C15 and C16 are based on experimental deformation.  The predicted lives 

in Table C5 are based on the elastic-plastic deformation analysis reported in the same table, 

rather than the experimental deformation.  These data are not identical to that plotted in 

Figures C15 and C16, which are based on experimentally measured deformations.  Finally, 
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Figures C17 and C18 view various data sets within the context of a lognormal distribution.  

The basis for comparison for these calculations was the ratio of predicted to experimental 

values of the damage parameter.  Tests that were predicted as runouts in Table C5 are not 

included in the comparison. 
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Figure C17. Lognormal presentation biaxial data with SWT parameter. 
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Figure C18. Lognormal presentation biaxial data with Findley parameter. 
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Current computational capabilities finally make implementation of the critical plane 

approach reasonable for realistic loadings.  Of all the predictions, some of the most 

interesting are those for the “mission histories”.  The major cycle was chosen to be identical 

to those run at constant amplitude (~5 x104 cycles).  The subcycle levels were chosen to give 

a life of approximately 108 cycles per event.   With either 5 or 50 subcycles per block 

Miner’s linear damage accumulation algorithm would predict almost no change in life.  For 

the check path this hypothesis appears reasonable from the experimental data.  However, the 

box mission history was detrimentally impacted by the presence of the subcycles, above and 

beyond that attributable to scatter in the fatigue data.  This indicates that there are still some 

unresolved issues with regard to event interaction. 

Minimal elevated temperature testing has been conducted.  While the Findley 

critical plane parameter seems to provide the best overall representation of the experimental 

data at room temperature, its validity over the anticipated range of service (~0 to 450 oC) 

temperatures has not been ascertained.  It would be desirable to somehow normalize the 

damage with regard to temperature, so that thermal fluctuations could be accommodated 

within the current fatigue event identification (rainflow counting) and subsequent damage 

assignment based on the event identified. 
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APPENDIX D 

MULTIAXIAL MODELING 
 
 
D.1 INTRODUCTION 

Despite the substantial amount of research that has been devoted to understanding the 

mechanisms associated with fatigue damage and the development of methods for modeling 

the evolution of this damage, fatigue failures continue to be a significant concern in 

engineering design.  Historically, the majority of fatigue research has been directed towards 

experiments involving uniaxial stress states.  This research has resulted in an improved 

understanding of the mechanisms associated with fatigue crack nucleation and propagation, a 

wealth of uniaxial test data, and reasonably reliable fatigue life prediction models for uniaxial 

loadings.  However, many critical engineering components, such as crankshafts, axles, rotor 

and turbine blades, and notched components, are routinely subjected to multiaxial cyclic 

stress states.  In many cases the loading is non-proportional or may involve multidimensional 

mean stresses.  The successful design and analysis of such components requires that 

appropriate methods be available that can reliably estimate the fatigue life of materials under 

multiaxial states of stress. 

Recently, increased emphasis has been placed on the development of robust fatigue 

models that are applicable to multiaxial stress states.  Many of the classical multiaxial fatigue 

parameters utilize an effective-stress term with a possible modification for mean stress, 

which were developed in an era when the experiments were dominated by proportional 

loadings in the elastic regime (commonly referred to as high cycle fatigue, HCF).  More 

recently, a number of critical-plane fatigue models have been proposed in the technical 

literature.  However, most of these models were developed to fit data from common steel and 

aluminum alloys under loading conditions that result in significant plastic deformations 

(typically resulting in failures identified in the low cycle fatigue (LCF) regime) [1,2].  With 

the increasing use of high-performance materials in applications where high cycle fatigue 

conditions prevail and the loadings are often non-proportional, there is a pressing need to 

identify multiaxial fatigue models capable of predicting the long-term behavior of such 

materials.  Since different damage mechanisms may be present under HCF and LCF 
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conditions, the simple extrapolation of data and extension of models from the LCF to the 

HCF regime may not suffice.  A thorough and systematic effort is required to review, 

evaluate, and/or develop new or existing multiaxial fatigue models for use with advanced 

materials in the HCF regime. 

This appendix presents the findings of a comprehensive study into the applicability 

and accuracy of a variety of multiaxial fatigue models in predicting the fatigue damage or life 

of common aircraft engine materials under complex loading conditions.  A thorough review 

of the literature was conducted to identify multiaxial fatigue parameters that appeared 

promising for the types of load conditions experienced in aircraft engines.  These parameters, 

which included both equivalent (effective)-stress and critical-plane approaches, were 

evaluated by comparing fatigue life/damage predictions to experimental uniaxial and biaxial 

fatigue data from two common titanium alloys, generated as part of the HCF program.  The 

majority of the fatigue data used for model evaluations were obtained from Ti-6Al-4V at 

room temperature.  However, some data were also available for Ti-6Al-4V at 500°F and Ti-

17 at room temperature.  A small number of biaxial notched specimen tests and simulated 

mission history tests on Ti-6Al-4V were also conducted to further evaluate the applicability 

of certain models under more severe loading conditions (stress gradients or variable loading). 

 
D.2 MULTIAXIAL FATIGUE MODELS 

A robust fatigue model must be capable of providing accurate life predictions, or 

allowable design stresses, under complex cyclic stress states, including non-proportional 

loadings.  As the focus of this research was on HCF loading conditions, the multiaxial fatigue 

models considered here were primarily stress-based models, or models that could be 

modified to meet such conditions.  Based on these criteria, a total of 22 multiaxial fatigue 

algorithms were selected for evaluation in this study.  These models can be classified into 

two categories, which are described in the following paragraphs:  (1) equivalent (effective) 

stress models and (2) critical-plane models. 

The equivalent-stress models are essentially extensions of static yield criteria, such as 

the von Mises criterion, in which the multiaxial stresses are reduced to an equivalent cyclic 

scalar value.  The equivalent stress history is then used in conjunction with uniaxial stress-
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life data, along with an appropriate mean stress model (e.g., modified Goodman criterion), to 

predict the corresponding fatigue life.  However, a difficulty arises with this type of 

procedure in the definition of a mean stress, which becomes vague within a multiaxial stress 

state.  Consequently, these types of models have often had limited success when applied to 

complex loading histories.  Nevertheless, due to their popularity, familiarity, and ease of 

implementation, several equivalent-stress based models were evaluated in this study. 

The critical-plane models were developed in conjunction with phenomenological 

observations of fatigue crack development, where it has been found that fatigue cracks often 

nucleate on critical planes (such as planes of maximum alternating shear stress or strain).  It 

has also been observed that secondary quantities, such as the normal stress or strain on the 

critical plane, can have an influence on the nucleation and progression of fatigue cracks.  As 

a result, critical-plane damage parameters typically make use of some combination of normal 

and shear stresses or strains on a given plane.  The critical-plane approaches currently appear 

to be receiving the most attention among active researchers because of their good correlation 

with multiaxial test data.  Consequently, the majority of the models evaluated in this study 

were critical-plane models. 

The models selected for evaluation in this study are briefly described in the following 

sections, and are shown in equation form in Table D1.  The nomenclature used in these 

equations, and throughout the remainder of this report, is first summarized below. 

D.2.1 Nomenclature 

DP Damage parameter, relating stress/strain components to fatigue life 
Nf Fatigue life (cycles) 
A,b,C,d Fatigue-life curve-fitting parameters 
σx,σy,τxy,etc. Stress components, referred to specimen axes 
σ1,σ2,σ3 Principle stresses 
σeq Equivalent (effective) stress 
σh Hydrostatic stress 
σa Cyclic normal stress amplitude on critical plane or equivalent stress 

amplitude 
σm Cyclic normal mean stress on critical plane or equivalent mean stress 
σm,vm Multiaxial cyclic mean stress, using von Mises stress definition 
σm,h Multiaxial cyclic mean stress, using hydrostatic stress definition 
R Cyclic stress ratio (σmin/σmax or τmin/τmax) 
σy Tensile yield strength 
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σut Tensile ultimate strength 
fσ′  Axial fatigue strength coefficient 

fτ′  Torsional fatigue strength coefficient 
MF Multiaxiality factor 
TF Triaxiality factor 
∆σpsu Alternating “pseudostress” range for modified Manson-McKnight model 
β Term defining the sign of the mean stress in modified Manson-McKnight 

model 
τa Cyclic shear stress amplitude on critical plane 
τm Cyclic shear mean stress on critical plane 
τy Torsional (shear) yield strength 
τut Torsional (shear) ultimate strength 
σmax Maximum normal stress on critical plane 
τmax Maximum shear stress on critical plane 
γa Cyclic shear strain amplitude on critical plane 
εa Cyclic normal strain amplitude on critical plane 
k Adjustable material parameter for various fatigue models 

 
D.2.2 Equivalent-Stress Models 

 Most equivalent stress models utilize the von Mises definition in the calculation of 

the alternating component of equivalent stress from a multiaxial cyclic stress state: 
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τ+τ+τ+σ−σ+σ−σ+σ−σ=σ  (D1) 

 
where the alternating component of each stress term is used in calculating the equivalent 

stress amplitude.  This is the definition that causes the nuances of non-proportional loading to 

be neglected.  To account for mean stress effects, the equivalent mean stress component can 

also be defined from Eq. D1 using each mean stress rather than an alternating component.  

However, the von Mises mean stress defined via Eq. D1 will always be positive.  As it is well 

known that normal mean stresses are more damaging in tension than in compression, some 

have suggested the use of the hydrostatic component in the definition of the multiaxial mean 

stress [3]: 
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where σ1, σ2, and σ3 are the mean principle stresses.  Traditional uniaxial mean stress models 

include the Goodman, Gerber, and Soderberg relations [4].  These concepts are modified for 

multiaxial loadings by using both the von Mises definition for mean stress (models 1(a)-(c)) 

and the hydrostatic definition for mean stress (models 2(a)-(c)), as shown in Table D1.  

When using the von Mises definition, it is necessary to somehow differentiate between a 

tensile and compressive value of the equivalent multiaxial mean stress.  Extending a method 

suggested by Sines and Ohgi [3], the sign of the equivalent mean stress term in this study was 

dictated by the sign of the hydrostatic mean stress. 

 An improvement to this type of approach has been suggested by Manson and Jung [5], 

who proposed using a multiaxiality factor, MF, which is a function of the principle stresses, 

 

 
TF2

1MF
−

=     (TF ≤ 1)      or      MF = TF    (TF > 1) (D3) 

 
where 
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=  (D4) 

 
The quantities in Eq. D4 are maximum principle stresses.  The original paper is unclear as to 

which quantities to use in this equation.  Employing minimum principle or mean principle 

stresses in this equation changes the triaxiality factor, but not the overall trends of the 

method.  This approach is shown as model 3 in Table D1. 

 The final equivalent stress model considered here is the modified Manson-McKnight 

(MMM) model [6,7] (model 4 in Table D1).  This model uses an alternating “pseudostress” 

range, ∆σpsu, defined from Eq. D1 with the range of each stress component, and a maximum 

stress, σmax, defined as the mean stress plus 0.5∆σpsu.  The sign of the mean stress term in the 

MMM model is defined by multiplying Eq. D1 by the term β/2, where β is defined as 

 

 
( )
( )31

31
σ∑−σ∑
σ∑+σ∑

=β  (D5) 
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where Σσ1 and Σσ3 are the sum of the first and third principle stresses, respectively, at the 

maximum and minimum points in the cycle.  As shown in Table D1, the pseudostress range 

and maximum stress values are modified by an exponent, w.  This exponent is an adjustable 

material parameter that is optimally determined from a least-squares fit to the uniaxial data at 

all stress ratios tested; i.e., the value that best collapses all the uniaxial data into a single 

curve. 

D.2.3 Critical-Plane Models 

 The critical-plane models investigated in this study are also shown in Table D1.  For 

these models, all stress and strain components are defined on a particular (critical) plane.  

The critical-plane definition employed in this investigation is the plane experiencing the 

maximum value of the entire damage parameter, not an individual component. 

 The Morrow model, model 5, is a strain-based model commonly used to represent 

uniaxial data [8].  Although not originally intended for use as a critical-plane model, it can be 

interpreted as the critical plane being dependent on normal stress-strain quantities.  In this 

study, the model was modified into a stress-based form that uses the stress amplitude (σa) 

and mean stress (σm) calculated on a given orientation, as shown in Table D1.  The Smith, 

Watson, Topper (SWT) parameter [9], model 6, is another common strain-based uniaxial 

model.  A similar interpretation utilizing the normal strain amplitude (εa) and the maximum 

normal stress (σmax) as the relevant parameters in the calculation of the damage parameter 

was implemented.  Models 7(a)-(c) are the Goodman, Gerber, and Soderberg relations, 

defined in terms of the normal stress amplitude, σa, and mean stress, σm, calculated on a 

given plane, rather than in terms of equivalent stresses.  Conceptually they are similar to the 

Morrow model, except with an alternate measure of damage assigned to the mean stress.  

Models 8(a)-(c) mirror models 7(a)-(c), but are modified by replacing the normal stress 

components with shear stress components, τa and τm. 

 The rest of the critical-plane damage parameters investigated can be differentiated 

from the previously discussed models in that they involve stress and/or strain components 

from more than one direction for any given orientation.  In some sense these parameters 

reflect the premise that crack nucleation and small crack growth is a mixed-mode 
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phenomenon.  The Kandil, Brown, Miller (KBM) parameter [10], model 9, considers the 

maximum alternating shear strain (γa) to be the primary damage component on a plane, with 

the normal strain amplitude (εa) on this plane acting as a secondary damage component.  

Findley [11] considered the maximum alternating shear stress (τa) to be the primary damage 

component on a plane, with the maximum normal stress on this plane (σmax), modified by an 

adjustable material parameter (k), acting as a secondary damage component, shown as model 

10.  The McDiarmid parameter [12], model 11, is similar to the Findley parameter, with k 

defined as a constant in terms of the material’s ultimate strength (σut).  The Fatemi, Socie, 

Kurath (FSK) [13] model 12, assumes the maximum alternating shear strain (γa) is the 

primary damage component on a plane, with the maximum normal stress (σmax) on this plane 

(modified by an adjustable parameter, k, and the material’s yield strength, σy) acting as a 

secondary damage component.  The designation of primary or secondary damage variable 

has more to do with cycle counting for more complex histories, than their relative importance 

in the damage computation. 

 The Chu, Conle, Bonnen (CCB) parameter [14], is an extension of the SWT 

parameter, in which a shear term (2γaτmax) is added to the normal stress/strain term.  This 

parameter can be considered to represent a portion of the strain energy, as it involves the 

multiplication of corresponding stress and strain components.  In this study, a slight 

modification was made to the CCB hypothesis, model 13, by multiplying the second term 

(εaσmax) by an empirical factor, k, to allow for an adjustment in the influence of this term.  It 

was found that this modification significantly improved the accuracy of this model.  Another 

similar type of parameter, but one which considers only the shear component of energy, was 

defined by Glinka, Wang, and Plumtree (GWP), model 14 [15].  This parameter is defined as 

the product of the shear strain amplitude (γa) and shear stress amplitude (τa) on a plane, and a 

mean stress modification with terms involving the maximum shear and normal stresses (τmax 

and σmax) on that plane.  fσ′  and fτ′  are baseline strain-life fatigue constants obtained from 

uniaxial or torsional fatigue data. 
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Table D1.  Multiaxial Fatigue Models 
 

 
Model 

Damage Parameter 
DP = f(Nf) = A(Nf)b + C(Nf)d 

Equivalent-Stress Models 
1a) Goodman (v. Mises mean stress) [4] ( )[ ] )N(1 f

1
utvm,ma f=σσ−σ −  

1b) Gerber (v. Mises mean stress) [4] ( )[ ] )N(1 f
12

utvm,ma f=σσ−σ
−

 

1c) Soderberg (v. Mises mean stress) [4] ( )[ ] )N(1 f
1

yvm,ma f=σσ−σ −  

2a) Goodman (hydrostatic mean stress)[4] ( )[ ] )N(1 f
1

uth,ma f=σσ−σ −  

2b) Gerber (hydrostatic mean stress) [4] ( )[ ] )N(1 f
12

uth,ma f=σσ−σ
−

 

2c) Soderberg (hydrostatic mean stress)[4] ( )[ ] )N(1 f
1

yh,ma f=σσ−σ −  

3) Multiaxiality factor [5] d
f

b
fd/ba )N(

MF
C)N(

MF
A

+=σ  

4) Modified Manson-McKnight [6, 7] )N(
2
1

f
w
max

w1
psu f=σσ∆ −   (w = 0.433) 

Critical-Plane Models 
5) Morrow [8] ( )[ ] )N(1 f

1
fma f=σ′σ−σ −  

6) Smith-Watson-Topper [9] )N( fmaxa f=σε  

7a) Goodman (normal stress) ( )[ ] )N(1 f
1

utma f=σσ−σ −  

7b) Gerber (normal stress) ( )[ ] )N(1 f
12

utma f=σσ−σ
−

 

7c) Soderberg (normal stress) ( )[ ] )N(1 f
1

yma f=σσ−σ −  

8a) Goodman (shear stress) ( )[ ] )N(1 f
1

utma f=ττ−τ −  

8b) Gerber (shear stress) ( )[ ] )N(1 f
12

utma f=ττ−τ
−

 

8c) Soderberg (shear stress) ( )[ ] )N(1 f
1

yma f=ττ−τ −  

9) Kandil-Brown-Miller [10] )N( faa f=ε+γ  
10) Findley [11] )N(k fmaxa f=σ+τ  

11) McDiarmid [12] ( )[ ] )N(21 f
1

utmaxa f=σσ−τ −  

12) Fatemi-Socie-Kurath [13] ( )[ ] )N(k1 fymaxa f=σσ+γ  

13) Chu-Conle-Bonnen [14] )N(k2 fmaxamaxa f=σε+τγ  

14) Glinka-Wang-Plumtree [15] ( ) ( )[ ]1
fmx

1
fmxaa 11 −− σ′σ−+τ′τ−τγ  = f(Nf)
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The models shown in Table D1 were evaluated based on their ability to correlate both 

the uniaxial and multiaxial test data.  Note that each of these models is expressed in the form 

of a “damage parameter” (DP) that may include some mean stress modification.  This 

parameter is then related to the fatigue life, Nf, by a mathematical function that provides an 

adequate representation of the data.  Historically, fatigue data have often been fit with a 

power-law type of expression.  Due to the broad range of data (LCF and HCF) available for 

the titanium alloys considered in this study, a generic two-term power-law expression was 

adopted to provide greater flexibility in the fitting of the data.  This expression took the 

following form: 

 
 DP = A(Nf)b + C(Nf)d (D6) 

 
The constants A, b, C, and d are curve-fitting (least squares) parameters.  Although this 

expression is similar in form to the conventional strain-life equation, no attempt was made 

here to relate A, b, C, and d to the strain-life constants fσ′ , fε′ , b, and c.  The details of the 

fatigue data, implementation methodologies, and corresponding results and comparisons, are 

discussed in following sections. 

 
D.3 FATIGUE DATA (Ti-6Al-4V) 

 The models described in the previous section were initially evaluated using fatigue 

data generated in the HCF program for Ti-6Al-4V at room temperature (RT).  Subsequent 

model evaluations included Ti-6Al-4V data at 500°F and Ti-17 data at RT.  Details regarding 

microstructural aspects of the titanium alloys, specimen machining, and test procedures can 

be found elsewhere in the report.  A summary of the pertinent RT data for Ti-6Al-4V 

required for the model evaluations is included here. 

D.3.1 Uniaxial Data for Ti-6Al-4V at Room Temperature 

 Over 100 data points from uniaxial fatigue tests of Ti-6Al-4V at RT were obtained.  

These tests were conducted by P&W, GEAE, and ASE, and included both stress-controlled 

(HCF) and strain-controlled (LCF) tests at ratios of R = −1, 0.1, and 0.5.  The experimental 

fatigue lives ranged from approximately 5000 to 1×109 cycles.  Test frequencies ranged from 
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0.33 Hz (strain-controlled, short life tests) to 1000 Hz (load-controlled, long life tests).  

Although these frequencies are very high, minimal specimen heating was observed during 

testing.  Further, the data generated in this program suggest that the fatigue life of Ti-6Al-4V 

does not significantly depend on frequency within the range tested. 

 The uniaxial fatigue data are shown in Figure D1.  There is a very smooth transition 

between the strain-controlled and stress-controlled data, indicating primarily linear-elastic 

behavior within the region of data overlap.  The concurrence of the data in the overlap region 

also indicates that crack nucleation rather than long crack growth dominates in this region.  It 

is also worth noting that there is a distinct separation in the data between the stress ratios 

tested, particularly at longer fatigue lives.  Clearly, the presence of a tensile mean stress 

significantly alters the allowable stress amplitude for Ti-6Al-4V.  The fully-reversed uniaxial 

data were used to provide a baseline reference for comparison of the multiaxial fatigue 

models, and to further evaluate their capabilities when mean stresses occur.  Note that, in this 

study, no step-test data were used in evaluating the models. 
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Figure D1.  Uniaxial fatigue data for Ti-6Al-4V at RT. 
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D.3.2 Biaxial Data for Ti-6Al-4V at Room Temperature 

The RT biaxial fatigue data for Ti-6Al-4V, generated by the University of Illinois, are 

summarized in Table D2, grouped according to type of test.  For each test, the pertinent 

“corner” points of the cycle are included.  The first group of tests in the table (21-11 to 21-4) 

represents torsion-only experiments at various stress ratios.  These tests were performed to 

ascertain whether mean shear stresses influence fatigue lives.  A common assumption that 

torsional mean stresses do not affect fatigue lives was a result of investigations at loading 

levels close to the endurance limit for low carbon steels.  However, it has been reported that 

when the maximum shear stress (the mean plus alternating) exceeds about 80% of the 

torsional yield strength, the allowable stress amplitude in bending or torsion is reduced 

relative to the fully-reversed case.  For levels of maximum stress less than 80% of the 

torsional yield strength, a static or mean shear stress has little effect on the fatigue strength of 

metals [3].  To determine the effects of mean shear stresses on the fatigue behavior of Ti-

6Al-4V, torsion tests were conducted at stress ratios (τmin/τmax) of R = −1, 0.1, and 0.5. 

 The next three tests (21-1 to 156-3) represent proportional, combined axial-torsion 

experiments.  These tests were utilized to evaluate the combined mean stress performance of 

the damage parameters, where the torsional mean stresses would be considered damaging on 

the basis of the previous set of experiments.  The remaining tests are non-proportional and 

some include multidimensional mean stresses.  These load paths are illustrated in Figure D2.  

Specimen 156-8 was loaded 90 degrees out-of-phase (circle path); that is, a 90º sinusoidal lag 

between the shear and axial strain.  This load path is often considered to be critical with 

regard to deformation and fatigue damage [1, 16].  Specimens 156-2 through 21-10 were 

loaded in a triangle path (or certain segments), an out-of-phase approximation of service 

conditions.  Specimens 142-8 through 178-8 were loaded in a box path, which is 

representative of the stress state produced near the edge-of-contact region in fretting fatigue 

simulations.  The remaining specimens were loaded in a check path, another approximation 

of observed service events. 

 The definition of failure used in the biaxial test program was specimen separation, 

which was identical with that used in the uniaxial test program.  Examination of the 

load/torque response from the strain-controlled biaxial tests revealed that the life fraction at 



D-12 

which load shedding occurred at the end of the tests was less than 5% of the total life in all 

cases.  Torsion-only tests displayed the highest fraction (i.e., 5%), while combined loading 

tests were always lower.  While the onset of these compliance changes does not indicate that 

no cracks were present prior to fracture, it may at least be assumed that the cracks were small 

relative to the gage section diameter of the biaxial specimens.  Gage section diameters of the 

biaxial and uniaxial specimens were within a factor of two, indicating that small crack 

nucleation, rather than long crack growth, dominated the fatigue lives for both sets of 

specimens within the life regime considered. 

 The stresses and strains reported in Table D2 represent stabilized, half-life values on 

the outer surface of the specimen.  Most specimens experienced only elastic strains during 

the cyclic loading.  For these specimens, the values of σ and τ reported in Table D2 were 

obtained analytically from measured load and torque values.  However, a few specimens did 

incur plastic strains on the first reversal.  An elastic-plastic finite element analysis was 

performed for those tests.  This analysis used a multilinear kinematic hardening rule with a 

Ramberg-Osgood representation of the cyclic stress-strain curve.  The resulting stresses 

obtained from the finite element analysis, which were used in this study, are shown in Table 

D2.  The material properties used in the analysis are shown below. 

 
Modulus of elasticity E = 16,870 ksi 
Poisson’s ratio ν = 0.349 
Cyclic strain hardening coefficient K’ = 124 ksi 
Cyclic strain hardening exponent n’ = 0.0149 
Cyclic yield strength σy’ = 109.2 ksi 
Monotonic yield strength σy = 134.9 ksi 
Ultimate strength σut = 141.8 ksi 
 

It should be noted that the presence of an elastic-plastic boundary within the specimen 

induces additional stresses near the interface due to the difference in dilatation between the 

elastic and plastic regions in the material.  In the specimens tested in this study, the plastic 

deformations were small, and the finite element analysis took into account these additional 

stresses. 
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Table D2.  Biaxial Fatigue Data for Ti-6Al-4V at RT 
 
Spec ID ε (%) γ (%) σ (ksi) τ (ksi) Life (Nf) Test Type 
21-11 0.000 0.866 0.00 54.50 72,141 R = -1 Torsion 
 0.000 -0.868 0.00 -54.63   
21-6 0.000 0.614 0.00 38.64 241,250 R = -1 Torsion 
 0.000 -0.61 0.00 -38.39   
156-10 0.000 0.559 0.00 35.18 961,806 R = -1 Torsion 
 0.000 -0.563 0.00 -35.43   
142-5 0 0.62 0.00 39.02 260,657 R = -1 Torsion 
 0 -0.62 0.00 -39.02   
178-3 0 0.56 0.00 35.24 843,404 R = -1 Torsion 
 0 -0.559 0.00 -35.18   
142-9 0 1.25 0.00 64.40 184,669 R = 0.1 Torsion 
 0 0.125 0.00 -5.72   
21-7 0.000 1.810 0.00 65.93 30,007 R = 0.1 Torsion 
 0.000 0.166 0.00 -36.53   
156-5 0.000 1.210 0.00 64.17 150,293 R = 0.1 Torsion 
 0.000 0.090 0.00 -5.63   
156-4 0.000 1.360 0.00 65.02 151,598 R = 0.1 Torsion 
 0.000 0.150 0.00 -10.39   
156-1 0.000 0.958 0.00 60.29 814,753 R = 0.1 Torsion 
 0.000 0.086 0.00 5.41   
142-9 0 1.25 0.00 64.40 184,669 R = 0.1 Torsion 
 0 0.125 0.00 -5.72   
21-4 0.000 1.960 0.00 66.08 141,229 R = 0.5 Torsion 
 0.000 0.815 0.00 -5.28   
21-1 0.312 0.416 52.98 26.18 67,965 R = -1 Proportional 
 -0.312 -0.418 -52.98 -26.31   
156-9 0.462 0.616 78.45 38.77 60,514 R = 0.1 Proportional 
 0.0486 0.055 8.25 3.46   
156-3 0.464 0.621 78.79 39.08 87,920 R = 0.1 Proportional 
 0.0476 0.055 8.08 3.46   
156-2 0.362 0 61.47 0.00 38,355 Triangle Path 
 -0.373 0.471 -63.34 29.64   
 -0.373 -0.476 -63.34 -29.96   
21-2 0.364 0 61.81 0.00 43,009 Triangle Path 
 -0.372 0.471 -63.17 29.64   
 -0.372 -0.477 -63.17 -30.02   
21-9 0.364 0.004 61.81 0.25 71,358 Triangle Path (top leg) 
 -0.364 0.475 -61.81 29.89   
21-5 0.365 -0.0045 61.98 -0.28 79,367 Triangle Path (bottom leg) 
 -0.363 -0.475 -61.64 -29.89   
21-8 0.091 0.666 15.37 41.92 72,124 Triangle Path (right leg) 
 0.089 -0.665 15.16 -41.85   
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21-3 0.090 0.666 15.28 41.92 90,988 Triangle Path (right leg) 
 0.089 -0.666 15.11 -41.92   
21-10 -0.089 0.665 -15.11 41.85 329,058 Triangle Path (left leg) 
 -0.091 -0.664 -15.45 -41.79   
156-8 0.000 0.406 0.00 25.39 111,783 Circle Path 
 0.303 0.000 51.12 0.00   
 0.000 -0.409 0.00 -25.57   
 -0.302 0.000 -50.95 0.00   
142-8 0.3045 0.4174 51.70 26.27 59,432 Rε = Rγ = -1 Box Path 
 -0.3044 0.4154 -51.69 26.14   
 -0.3038 -0.4155 -51.59 -26.15   
 0.3063 -0.4158 52.01 -26.17   
178-7 0.308 0.4153 52.30 26.14 72,360 Rε = Rγ = -1 Box Path 
 -0.309 0.4159 -52.47 26.17   
 -0.3079 -0.4138 -52.28 -26.04   
 0.3103 -0.4159 52.69 -26.17   
142-11 0.1598 0.4165 27.13 26.21 182,149 Rε = -3, Rγ = -1 Box Path 
 -0.4583 0.4163 -77.82 26.20   
 -0.4578 -0.4165 -77.73 -26.21   
 0.1605 -0.4163 27.25 -26.20   
178-8 0.1545 0.4169 26.23 26.24 212,337 Rε = -3, Rγ = -1 Box Path 
 -0.4545 0.4168 -77.17 26.23   
 -0.4539 -0.4162 -77.07 -26.19   
 0.1558 -0.4161 26.45 -26.19   
178-12 0.0094 0.0083 -3.26 -12.17 50,568 R = 0 Check Path 
 0.297 0.8205 45.58 38.45   
 0.1563 1.217 21.68 63.16   
 0.2976 0.8254 45.68 38.76   
178-1 0.009 0.0085 -3.26 -12.21 36,920 R = 0 Check Path 
 0.2976 0.8217 45.75 38.48   
 0.1521 1.219 21.04 63.24   
 0.2979 0.8257 45.80 38.73   
178-11 0.007 0.0056 1.19 0.35 109,848 R = 0 Check Path 
 0.239 0.64 40.58 40.28   
 0.12 0.957 20.38 60.23   
 0.238 0.641 40.41 40.34   
178-5 0.0075 0.0054 1.27 0.34 99,418 R = 0 Check Path 
 0.239 0.64 40.58 40.28   
 0.1223 0.956 20.77 60.17   
 0.2385 0.646 40.50 40.66   
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Figure D2.  Non-proportional biaxial load paths. 
 
 
D.4 IMPLEMENTATION OF MODELS 

The multiaxial fatigue models were evaluated based on their ability to correlate both 

the uniaxial and multiaxial fatigue data.  This was accomplished by calculating the damage 

parameter for each model (shown as the left-hand side of the equations in Table D1), from 

the stress and strain values associated with each of the experimental tests.  The calculated 

damage parameters were then plotted vs. the corresponding experimental fatigue lives.  An 

effective fatigue model (damage parameter) can be considered to be one that essentially 

collapses all the data (i.e., uniaxial data at different stress ratios and multiaxial data) into a 

single curve, assumed here to be of the form shown in Eq. D6.  Traditionally, this curve 

would coincide with the uniaxial, fully-reversed (R = −1) fatigue data, which are often 

considered to represent the baseline fatigue behavior (zero mean stress).  Since a successful 

parameter collapses all the load ratio data, the definition of baseline data being fully reversed 

is not required.  Many critical plane parameters require data other than one stress state and/or 

load ratio to ascertain the adjustable constant.  However, it may be useful to have the baseline 

load ratio mimic the perceived service load conditions. 

D.4.1 Implementation for Uniaxial and Proportional Multiaxial Tests 

 The evaluation of the damage parameters for the uniaxial and proportional multiaxial 

tests was straightforward.  The pertinent stress or strain components were calculated at the 

maximum and minimum points (reversal points) in the cycle.  For the equivalent stress 

models, the principle stresses at the reversal points were calculated, from which the 

corresponding maximum and minimum equivalent stress values were determined.  Next, the 

alternating and mean components of the equivalent stresses were calculated in the 
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conventional manner.  The damage parameters were then calculated from the equivalent 

alternating and mean components using the equations in Table D1. 

 The critical plane models required implementation of stress and strain rotation 

procedures to identify the critical plane.  Since all stress states were uniaxial or biaxial, a 

two-dimensional transformation was used to rotate the stresses and strains within the plane.  

The use of this simplification assumes that cracks would propagate perpendicular to the 

surface, into the specimen.  This assumption was supported by observations made during the 

multiaxial test program [6]. 

 To perform the stress transformations, the half-life stresses at the reversal points in 

the cycle were rotated onto planes at 1º increments, from 0º to 90º, using the following set of 

equations: 
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To transform the strains, the y-component of strain was first calculated as εy = −νeffεx, where 

the effective Poisson’s ratio is used to account for plasticity, 
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The strains (at the reversal points in the cycle) were then rotated onto the same planes using 

the following equations: 
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2
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From the maximum and minimum stress and strain components on each plane, the amplitude 

and mean of the shear and normal stresses and strains were calculated.  The damage 

parameters for the critical plane models were then calculated on each plane, according to the 

equations in Table D1.  In this study, the critical plane was defined to be the plane 

experiencing the maximum value of the damage parameter, rather than the maximum value 

of a particular stress or strain component.  The value of the damage parameter on the critical 

plane was then used in the evaluation of the model. 

D.4.2 Implementation for Non-proportional Multiaxial Tests 

 The implementation of the fatigue models for the non-proportional multiaxial tests 

was more involved, since the individual stress and strain components did not reach maximum 

values at the same time (i.e., the principle stress directions rotated during the cycle).  As a 

result, a “time-stepping” or incremental procedure was implemented, in which each loading 

cycle was discretized into 20 to 30 increments.  At each increment, the applied stress and 

strain components were specified.  The applied stress histories were then used to calculate 

the damage parameters, as described below. 

For the equivalent stress models, the principle stresses were calculated at each 

increment.  The principle stresses were then used to calculate the equivalent stresses at each 

point.  Next, the maximum and minimum values of the equivalent stresses during the cycle 

were identified, and the alternating and mean values were then determined in the 

conventional manner.  In the calculation of the mean stress using the von Mises criterion, the 

sign of the stress was defined to be the same as the sign of the mean hydrostatic stress.  The 

damage parameters, as shown in Table D1, were then calculated from these alternating and 

mean components. 

 For the critical plane models, the same stress and strain transformation equations 

previously listed were used to calculate the stress and strain components on planes at 2° 

increments from 0° to 90° (rotated about a line perpendicular to the surface of the specimen).  

These components were calculated at each time-increment on each plane.  The maximum and 

minimum values of normal and shear stress and strain were determined on each plane, from 

which the alternating and mean components were calculated.  The damage parameters for 
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each of the critical plane models were then determined on each plane, and the critical plane 

was identified as the plane with the maximum value of the damage parameter. 

 
D.5 MODEL EVALUATIONS USING RT Ti-6Al-4V DATA 

D.5.1 Preliminary Model Comparisons 

 A preliminary assessment of the models listed in Table D1 was performed using the 

RT Ti-6Al-4V data listed in Section D.3.  This preliminary assessment was performed to 

identify the multiaxial parameters that possessed a reasonable ability to collapse both the 

uniaxial and biaxial data sets.  Those models would subsequently be considered for more 

detailed evaluation using additional data sets.  At the time the preliminary assessments were 

made, not all the biaxial data listed in Table D2 were available (only one of the non-

proportional check path tests had been performed).  Thus, the preliminary assessments 

evaluated the ability of the models to collapse the uniaxial data (at various stress ratios) and 

available biaxial data (torsion, proportional, and non-proportional) to the fully-reversed 

uniaxial baseline. 

 A broad qualitative summary of the results of the preliminary evaluation is provided 

in Table D3.  Three measures of the adequacy of each model at correlating the fatigue data 

are shown.  In the second column, the ability of each model to correlate the uniaxial data 

(i.e., collapse the data for each stress ratio onto the fully-reversed curve) is rated using a 

simple good/fair/poor scale.  The last two columns summarize the ability of the models to 

correlate the biaxial data to the baseline curve, in terms of two indicators.  The first indicator 

(mean) gives a measure of how well the data were centered about the baseline curve; i.e., if 

the data were roughly centered about the curve, or if the data tended to fall below (low) or 

above (high) the baseline curve.  This measure gives an indication of whether the model 

tends to be conservative (high) or non-conservative (low) when predicting the damage or 

fatigue life under a multiaxial state of stress.  The last indicator (scatter) provides a 

qualitative measure of the degree of scatter or spread in the biaxial data about the mean. 
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Table D3.  Preliminary Model Comparisons using RT Ti-6Al-4V Data 
 

Correlation of Biaxial 
Data 

 
Model 

Correlation 
of Uniaxial 

Data Mean Scatter 
Equivalent-Stress Models 
1a) Goodman (v. Mises mean stress) Fair Centered High 
1b) Gerber (v. Mises mean stress) Poor Centered High 
1c) Soderberg (v. Mises mean stress) Fair Centered High 
2a) Goodman (hydrostatic mean stress) Poor Centered High 
2b) Gerber (hydrostatic mean stress) Poor Centered High 
2c) Soderberg (hydrostatic mean stress) Poor Centered High 
3) Multiaxiality factor Poor Centered High 
4) Modified Manson-McKnight Good Centered Moderate 
Critical-Plane Models 
5) Morrow Fair Centered Moderate 
6) Smith-Watson-Topper Fair Low Moderate 
7a) Goodman (normal stress) Fair Low Moderate 
7b) Gerber (normal stress) Poor Low Moderate 
7c) Soderberg (normal stress) Fair Low Moderate 
8a) Goodman (shear stress) Fair High High 
8b) Gerber (shear stress) Poor Centered High 
8c) Soderberg (shear stress) Fair High High 
9) Kandil-Brown-Miller Poor High Moderate 
10) Findley Good Centered Low 
11) McDiarmid Poor Centered Moderate 
12) Fatemi-Socie-Kurath Fair Centered Low 
13) Chu-Conle-Bonnen Fair Centered Moderate 
14) Glinka-Wang-Plumtree Poor Centered High 

 
 
 It is evident from the results shown in Table D3 that the critical plane models, in 

general, were more successful at correlating the broader spectrum of fatigue data than the 

equivalent stress models.  Of the equivalent or effective stress models, only the modified 

Manson-McKnight formulation (model 4) provided a good correlation of the uniaxial data, 

and correlated the biaxial data with a moderate amount of scatter.  Conversely, several 

critical plane models demonstrated some desirable characteristics, such as good or fair 

correlation of the uniaxial data coupled with low to moderate scatter in the biaxial data.  The 

Findley, FSK, and modified CCB parameters all include a variable, k, which was taken to be 

a constant for the life range under consideration.  It has been shown over a broader range of 

lives that k may vary [13, 17].  In the preliminary analysis, the optimal values of k for each 
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model were determined by an incremental procedure.  For the Findley parameter, k was 

varied from 0.15 to 0.55, in increments of 0.05.  For the FSK parameter, k was varied from 

0.5 to 8.0 in increments of 0.1, while k was varied from 0.5 to 4.0, in increments of 0.1, for 

the modified CCB model.  The optimal k values, which provided the best overall correlation 

of both the uniaxial and biaxial data, were found to be 0.35 for the Findley model, 6.0 for the 

FSK model, and 2.7 for the modified CCB model. 

 Upon consideration of the results shown in Table D3, six of the multiaxial models 

were selected for more detailed study.  These models were chosen due to their good 

agreement with the experimental data, or because of their familiarity and frequent use in 

fatigue analysis.  They also include sufficient breadth to illustrate the rating system 

forwarded in Table D3.  The models selected for more detailed consideration were the 

modified Manson-McKnight (MMM) model (4), the SWT model (6), the Goodman critical 

plane model, based on normal stresses (7a), the Findley model (10), the FSK model (12), and 

the modified CCB model (13).  The fatigue life/damage predictions for these models, in 

comparison to the experimental data, are presented graphically in Figures D3 – D8.  Two 

plots are shown for each model, depicting (1) the uniaxial data for several stress ratios, and 

(2) the biaxial data compared to the uniaxial baseline.  These were essentially the criteria that 

were employed to evaluate the parameters.  Note that the curves in the plots represent the 

best fit to all of the stress ratios for the uniaxial data.  These curves were generated by a least-

squares fit to the entire set of uniaxial data, utilizing the two-term power law relationship 

between damage parameter and fatigue life shown in Eq. D6. 
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Figure D3.  Modified Manson-McKnight model applied to  
RT Ti-6Al-4V: (a) uniaxial data and (b) biaxial data. 
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Figure D4.  Smith-Watson-Topper (SWT) model  applied to 
RT Ti-6Al-4V: (a) uniaxial data and (b) biaxial data. 
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Figure D5.  Goodman critical plane model (normal stresses) applied  
to RT Ti-6Al-4V: (a) uniaxial data and (b) biaxial data. 
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Figure D6.  Findley model, with k = 0.35, applied to RT 
Ti-6Al-4V: (a) uniaxial data and (b) biaxial data. 
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Figure D7.  Fatemi-Socie-Kurath (FSK) model, with k = 6.0, applied  
to RT Ti-6Al-4V:(a) uniaxial data and (b) biaxial data. 
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Figure D8.  Modified Chu-Conle-Bonnen (CCB) model, with k = 2.7, 
applied to RT Ti-6Al-4V:  (a) uniaxial data and (b) biaxial data. 



D-27 

 As is evident from Figures D3 through D8, most of the models were fairly successful 

at correlating the uniaxial data over the various stress ratios, although there appears to be a 

bit more scatter with the Goodman model at the higher stress ratios.  However, there were 

significant differences in the abilities of the models to correlate the biaxial data.  The Findley 

parameter (Fig. D6) and FSK parameter (Fig. D7) provide the best overall correlation of the 

biaxial data, in that the uniaxial curves roughly pass through the center of the data and the 

scatter around the curves is relatively small.  The FSK model does appear to suffer from 

some “layering” of the uniaxial data by stress ratio, but the overall correlation can be 

considered to be quite good.  Considering the modified Manson-McKnight (Fig. D3) and 

modified CCB models (Fig. D8), the uniaxial curves are fairly well centered about the biaxial 

data, but there is more scatter around the curves.  For the SWT and Goodman models (Figs. 

D4 and D5), the uniaxial curves pass above the biaxial data, meaning the biaxial stress states 

are more damaging than the models would predict.  As both of these models are normal 

stress-based models, this would indicate that tensile-stress driven cracks did not dominate the 

initiation phase in the biaxial tests.  The success of the mixed-mode parameters (e.g., Findley 

and FSK) at correlating the biaxial data suggests that crack nucleation was driven by shear or 

mixed-mode cyclic stresses in this material. 

 Due to the nature of the loading, experimental verification of the cracking modes in 

the biaxial specimens cannot be reliably provided.  Small crack development and growth 

were not monitored during the tests.  Furthermore, for biaxial loadings with a torsional 

component, traditional fatigue fracture surface characteristics are not always evident, making 

identification of crack initiation sites and orientations difficult.  It has also been shown that 

classical long crack growth data (i.e., rates and orientations) often provide a poor 

representation of the behavior of small cracks [18, 19].  Compliance measurements made 

during the testing indicate that the vast majority of the fatigue lives were consumed by small 

crack nucleation and growth, which is assumed to be represented by the damage parameter 

vs. cycles approach presented here.  Thus, it would be unreasonable to attribute the final 

long-cracking pattern to short crack behavior in order to justify the use of a particular 

damage parameter. 

 Since qualitative observations can be misleading, a quantitative comparison between 

the models was made by considering the magnitude of the error between the experimental 
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and predicted values of the damage parameters at equivalent fatigue lives.  An experimental 

value of the damage parameter was calculated based on the elastic-plastic stresses and strains 

reported in Table D2, and the predicted value was taken from the baseline data curve at the 

experimental life.  For each model, the percent error between the experimental value of the 

damage parameter and the predicted value was determined for each data point as 

 

 100
DP

DPDP
(%)Error

exp

predexp ×
−

=  (D10) 

 
The mean and standard deviation of the error values were then determined, from both the 

uniaxial and biaxial data sets, for each model.  The results are shown in Table D4.  Using 

these criteria, the mean value provides an indication of the offset of the curve from the data 

set, while the standard deviation provides a measure of the degree of scatter in the data about 

the curve.  An optimal model would be one with small errors in the predicted damage 

parameters, resulting in small values for both the mean and standard deviation. 

 
Table D4.  Statistical Analysis of Percent Error 

in Predicted Values of Damage Parameters 
 

 Uniaxial Data Biaxial Data 
Model Mean Stand. Dev. Mean Stand. Dev. 

Modified Manson-McKnight -0.54 7.51 -5.91 11.75 
Smith-Watson-Topper -2.45 17.26 -41.46 26.11 
Goodman -1.64 12.70 -46.48 23.56 
Findley -0.68 8.37 -0.15 9.36 
Fatemi-Socie-Kurath -2.42 16.27 2.86 12.25 
Modified Chu-Conle-Bonnen -2.45 17.26 1.36 19.03 

 
 
 Although fatigue models have traditionally been evaluated based on comparisons of 

predicted and experimental fatigue lives, a comparison of damage parameters was used here 

because in most design situations, a required fatigue life would be specified and an allowable 

value of the design parameter would be calculated.  The value of the damage parameter in 

some sense reflects the allowable nominal loading.  Having statistical data for the damage 

parameter would allow probabilistic methods to be incorporated to assess the reliability under 

changes in nominal loading.  Thus, viewing how the data are utilized rather than generated is 
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the basis for this comparison, which allows the reader to contemplate the change in loading 

parameters for a given life. 

 The results shown in Table D4 verify the qualitative observations made previously.  

The mean error values for the uniaxial data were small in all cases, which is to be expected 

since the curves represent the best fit to the uniaxial data.  However, there is significant 

variation in the scatter in the data (represented by the standard deviation values) between the 

models, with the Findley and modified Manson-McKnight models showing the best 

correlation of the uniaxial data.  Considering the biaxial data, the Findley model produced the 

lowest scatter, followed by the FSK and modified Manson-McKnight models.  Note that the 

Goodman and SWT models, in addition to having a higher degree of scatter, also showed a 

significant mean offset between the biaxial data and uniaxial curve, as discussed previously. 

 It is also worth noting that, based on the results shown in Table D2, mean shear 

stresses do appear to have some effect on the fatigue life of Ti-6Al-4V.  This is evidenced by 

the fact that, at equivalent shear stress amplitudes (e.g., specimens 156-10 and 156-5), the 

presence of a mean shear stress (156-5) reduced the fatigue life relative to the fully-reversed 

case (156-10).  These tests were conducted at stress levels where Sines and Ohgi [3] predict 

the observed behavior. 

D.5.2 Effect of Critical Plane Definition 

 The question of how to define the critical plane has been raised by many in the field 

of multiaxial fatigue, and is rooted in the observations made by early researchers regarding 

the nature of fatigue crack nucleation.  It has been observed that fatigue cracks often tend to 

nucleate on planes in which either the normal stress/strain amplitude is a maximum or the 

shear stress/strain amplitude is a maximum, depending on the material.  This is easily seen in 

a uniaxial test, where fatigue cracks may nucleate on planes perpendicular to the axis of 

loading (maximum normal stress) or at 45º to this axis (maximum shear stress).  It was such 

observations that led to the development of critical-plane fatigue models for multiaxial 

loading; i.e., determine the plane with the maximum alternating normal or shear stress 

(strain), and this is defined as the critical plane, on which fatigue calculations should be 

carried out.  For example, Findley [11] proposed that his parameter (∆τ/2 + kσn
max) be 

defined on the plane of maximum shear stress amplitude.  On the other hand, the SWT 
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parameter [(∆ε/2)σn
max], when used as a critical plane parameter, would be defined on the 

plane of maximum normal strain amplitude. 

 The shortfall with this definition of the critical plane is the potential to underestimate 

the damage caused by a particular multiaxial stress state, by minimizing the impact of the 

secondary terms in the damage parameter (e.g., the maximum normal stress on the critical 

plane in the Findley and SWT models).  For example, considering the Findley parameter, a 

plane on which the shear stress amplitude is large (but not maximized), with a large tensile 

normal stress, may be more at risk for fatigue crack nucleation than the plane on which the 

shear stress amplitude is maximum, if that plane has a small or compressive normal stress.  

As a result, many researchers have advocated defining the critical plane as the one on which 

the damage parameter is maximized, and not necessarily the plane with the maximum normal 

or shear stress/strain amplitude.  The approach used in this study was based on the definition 

of the critical plane as the plane of maximum damage parameter. 

 To justify the approach taken here, the critical-plane models selected for detailed 

evaluation (Findley, FSK, Goodman, SWT, and CCB) were also analyzed based on the 

definition of the critical plane as the plane containing the appropriate maximum stress or 

strain amplitude.  By comparison of the results from the two methods, the latter definition of 

the critical plane (based on maximum stress/strain amplitude) reduced the accuracy of the 

damage calculations, for the most part.  For the Goodman and SWT models, the differences 

were negligible.  However, for the Findley and FSK parameters, the accuracy of the models 

at correlating the biaxial data was noticeably reduced.  In addition, for the CCB models, the 

latter definition of the critical plane (maximum shear strain amplitude) produced very poor 

correlation of the biaxial data.  This is likely due to the ambiguous choice of the shear strain 

amplitude as the primary damage-causing component.  This damage parameter involves both 

normal and shear strain amplitudes, and it is not clear which component should be used to 

define the critical plane.  Consequently, for this model, it is imperative that the critical plane 

be defined in terms of the maximum value of the damage parameter.  It is evident that the 

“maximum-damage-parameter” definition of the critical plane should be adopted when using 

the critical plane models for Ti-6Al-4V. 

 



D-31 

D.5.3 Detailed Model Evaluations 

Based on the results presented in Section D.5.1, four models were selected for 

detailed evaluation using the RT Ti-6Al-4V data, as well as using the other data sets for Ti-

6Al-4V and Ti-17.  In this final evaluation, one effective-stress model and three critical-plane 

models were considered, plus three additional variations of one critical-plane model.  The 

selected models are as follows: 

1) Modified Manson-McKnight (MMM) model.  This model represents the most 

promising of the “effective-stress” models considered in this program.  The damage 

parameter for this model is defined as: 

 

 DP = w
max

w1
psu2

1
σσ∆ −  (D11) 

 
2) Smith, Watson, Topper (SWT) critical-plane model.  Although this model has been 

shown to be in poor agreement with the experimental fatigue data for titanium alloys, 

it has been included in the final comparison because it is representative of the normal 

stress/strain based critical-plane models, and because it is a well-known, highly 

utilized parameter.  The damage parameter for this model has the form 

 
 DP = εaσmax (D12) 
 

3) Findley critical-plane model.  This shear-stress based model was found to possess the 

best agreement with experimental data of all the critical-plane models.  In addition to 

the original model, three other variations have been considered.  These variations 

involve modifications to the normal stress term in the damage parameter, 

 
 DP = τa + kσ (D13) 
 

 The original and modified models are as follows, with reference to Figure D9: 

a) σ = maximum algebraic normal stress over the entire cycle, on the critical plane; 

i.e., σ = σmax = σC (see Fig. D9).  This was the original definition of the Findley 

parameter. 
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b) σ = maximum normal stress at the two shear reversal points of the cycle, on the 

critical plane; i.e., σ = maximum algebraic value of σA and σB (σB in the example 

shown in Fig. D9). 

c) σ = average (integrated) normal stress over the entire cycle, on the critical plane; 

i.e., ∫ σ=σ T
0 dt

T
1 , where T is the elapsed time for 1 cycle (T = 1/ƒ where ƒ is the 

frequency). 

d) σ = average normal stress at the two shear reversal points, on the critical plane; 

i.e., σ = (1/2)(σA + σB) (see Fig. D9). 

4) Fatemi, Socie, Kurath (FSK) critical plane model.  This shear-strain based critical-

plane model also produced good agreement with experimental data, and provides an 

alternative to the stress-based models.  The damage parameter for this model is as 

follows: 

 

 DP = ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

σ
σ

+γ
y

max
a k1  (D14) 
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Figure D9. Example biaxial stress history over 1 cycle, showing different 

methods used to define the normal stress term in the Findley model. 
The dashed line is the shear stress and the solid line is the normal stress. 
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 As in the preliminary evaluations, the damage parameter for each model was assumed 

to be related to the fatigue life by an equation of the form 

 
 DP = A(N)b + C(N)d (D15) 

 
However, in this phase of the study, the optimal model and curve-fit parameters (A, b, C, d, 

and k where appropriate) for each model were determined by fitting only the uniaxial data, at 

all stress ratios.  This was a departure from the method used previously, in which both the 

uniaxial and biaxial data sets were utilized to optimize the model constants.  In this 

comparison, the uniaxial data were used exclusively because this provides a more realistic 

assessment of the models for practical situations.  Typically, uniaxial fatigue data (at various 

stress ratios) will be available for fitting model constants, while reliable multiaxial fatigue 

data are likely to be in limited supply.  Models that can accurately predict the multiaxial 

fatigue behavior of materials with only uniaxial data required as input are clearly desirable to 

those models that require extensive multiaxial data for fitting necessary constants.  The 

adjustable parameter for the MMM model (w), along with the damage parameter values for 

each test, were obtained directly from GEAE. 

 Algorithms were developed for each model to calculate the optimal parameters (A, b, 

C, d, k) using the least-squares minimization technique.  All parameters were simultaneously 

optimized by minimizing the sum of the squared errors between predicted and experimental 

values of the damage parameters at a given life.  The experimental damage parameters were 

calculated from the appropriate equation, D11 – D14, using the measured or calculated 

values of stress and strain for each test.  The predicted values were calculated from Eq. D15 

using the experimental fatigue life from each test.  For the critical-plane models, the “critical 

plane” itself also had to be identified; i.e., the plane on which the damage parameter was 

maximized.  Under general conditions of biaxial loading, this requires an iterative approach 

(the plane cannot be analytically determined).  However, under uniaxial loading conditions, 

the plane can be determined analytically by expressing stress and strain components on an 

arbitrary plane (at an angle of φ to the loading direction) as a function of the applied stress 

and strain (σ and ε), differentiating the damage parameter with respect to φ, and setting the 
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result equal to zero.  Using this procedure, the following equations can be derived for the 

critical plane orientation (φ) under a uniaxial loading (σ, ε) for each critical plane model: 

 
SWT Model: 0=φ  (D16) 
 

Findley Model, version (a) and (b): 
max

a
k

2tan
σ
σ

=φ  (D17) 

 

Findley Model, version (c) and (d): 
m

a

k
2tan

σ
σ

=φ  (D18) 

 

FSK Model: 
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σ
+
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σ
−=φ  (D19) 

 
 Note that, under uniaxial or proportional biaxial loading conditions, versions (a) and 

(b) of the Findley model are identical, as are versions (c) and (d).  These models only differ 

when the loading is non-proportional.  Also note that in the Findley and FSK models, the 

critical plane orientation depends on the value of k, which complicates the optimization 

procedure. 

 After analyzing the four variations of the Findley model, it was determined that neither 

of the average stress definitions for the normal stress term produced improved correlations 

for the uniaxial and biaxial data.  Consequently, the results for these versions are not 

included here.  The predictions from the remaining four models for the uniaxial Ti-6Al-4V 

data at RT are shown in Figures D10 – D13. 

 The predictions are presented in two formats for each model.  The DP vs. N curves 

show the experimental damage parameter, calculated from the measured stress or strain 

values, vs. experimental life, along with the best-fit curves using Eq. D15.  A sound model 

will collapse all the variable mean stress data into a single curve that can be adequately 

represented by this equation.  However, direct comparison of the models using these plots is 

difficult due to the widely differing definitions of the damage parameters.  Consequently, a 

second approach was devised to provide a direct comparison of the models for the uniaxial 

data.  In this approach, the maximum uniaxial cyclic stress level for a given stress ratio (R) 

was calculated from the predicted value of the damage parameter at a given fatigue life (N).  
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This value was then plotted against the actual (measured) value of the maximum stress at that 

life.  These results are shown in the form of plots of predicted σmax vs. actual σmax.  For some 

of the models, this latter approach required the assumption of elastic conditions for stress-

strain calculations; consequently, only the HCF (load-control) data were used for these 

comparisons. 
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Figure D10.  Modified Manson-McKnight (MMM) model applied to  
uniaxial Ti-6Al-4V RT data. 
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Figure D11.  Smith-Watson-Topper (SWT) model applied to uniaxial 
 Ti-6Al-4V RT data. 
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Figure D12.  Findley model applied to uniaxial Ti-6Al-4V RT data. 
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Figure D13.  Fatemi-Socie-Kurath (FSK) model applied to uniaxial Ti-6Al-4V RT data. 
 
 

As is evident from Figs. D10 – D13, all four models provided reasonable correlations 

of the uniaxial data.  A quantitative comparison between the models is included in Table D5.  

For each model, the ratio of actual to predicted σmax was calculated for every uniaxial data 

point.  The average and standard deviation of the group of data are shown in the table for 

each model.  As would be expected, the average value is very near unity for each model, 

since the predicted values were generated from a least-squares curve fit to the data.  The 

standard deviation values are more useful for comparison, as they represent the degree of 

scatter in the data about the predicted curve.  Note that the MMM, SWT, and FSK models all 
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have similar standard deviations, while the Findley model displays a slightly higher value.  

This is primarily due to the fact that the Findley model under-predicted the allowable stress 

levels for the R = 0.5 data, as can be seen in Fig. D12.  The MMM model also displayed the 

same tendency, although to a lesser degree (Fig. D10). 

 
Table D5.  Comparison of Models for Uniaxial Ti-6Al-4V RT Data: 

Actual/Predicted σmax 
 

Model MMM SWT Findley FSK 
A/P σmax (average) 1.002 1.008 1.008 1.009 
A/P σmax (stand. dev.) 0.056 0.056 0.072 0.058 

 
 
 The model predictions for the biaxial Ti-6Al-4V RT data are shown in Figs. D14 – 

D18.  The curve in each figure represents the best fit to the uniaxial data. 
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Figure D14.  MMM model applied to biaxial Ti-6Al-4V RT data. 
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Figure D15.  SWT model applied to biaxial Ti-6Al-4V RT data. 
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Figure D16.  Findley model, version (a), applied to biaxial Ti-6Al-4V RT data. 
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Figure D17.  Findley model, version (b), applied to biaxial Ti-6Al-4V RT data. 
 
 
 

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

1.E+04 1.E+05 1.E+06
Cycles to Failure

D
am

ag
e 

Pa
ra

m
et

er

Uniaxial
Box
Check
Torsion
Proportional
Triangle
90-OP

 
 

Figure D18.  FSK model applied to biaxial Ti-6Al-4V RT data. 
 
 
 The differences between the models are more pronounced when comparing the 

calculations for the biaxial data.  With the exception of the SWT model, the biaxial data are 

reasonably centered about the uniaxial baseline curves.  The SWT model is noticeably non-

conservative, in that the biaxial tests were more damaging than predicted by the uniaxial 

curve.  The MMM model had difficulty correlating the torsion data, and was highly non-
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conservative in its damage prediction of the circle (90–OP) path.  The Findley model, version 

(a), produced fairly good predictions for most of the load paths, with the notable exception of 

the box path, in which the damage estimates were highly conservative.  Version (b) of the 

Findley model produced substantially improved predictions for the box path; however, the 

predictions for the check and circle paths worsened.  Similar to version (a) of the Findley 

model, the FSK model was also found to be conservative in its damage predictions for the 

box path. 

Due to the complexity of the biaxial load paths and the differing definitions of 

damage parameter for each model, direct quantitative comparisons cannot be made between 

the models as was done for the uniaxial data.  Indirect comparisons can be made, however, 

by considering the average value and standard deviation of the set of actual/predicted damage 

parameter ratios from each model for the biaxial data.  These values are shown in Table D6, 

along with the curve-fit parameters for each model.  These results show that the two versions 

of the Findley model produced the lowest overall scatter in the data (lowest standard 

deviation in the actual/predicted DP values).  Of the two variations, version (b) produced 

significantly lower scatter about the mean than version (a) due to the improved predictions 

for the box path tests, as is evident by comparison of Figures D16 and D17.  The MMM and 

SWT models also produced reasonably low scatter, but the SWT model had a very low 

average value, indicating the model is non-conservative when used to predict biaxial fatigue 

damage. 

 
Table D6.  Curve-Fit Parameters and Model Comparisons for 

Biaxial Ti-6Al-4V RT Data:  Actual/Predicted Damage Parameter 
 

Model k A b C d A/P DP 
(avg.) 

A/P DP 
(std. dv.) 

MMM -- 3501.8 -0.5164 36.74 0.00068 0.953 0.122 
SWT -- 223.46 -0.6840 0.1861 -0.00783 0.737 0.121 
Find., v. (a) 0.379 7190.8 -0.6347 52.896 -0.0186 1.011 0.101 
Find., v. (b) 0.379 7190.8 -0.6347 52.896 -0.0186 0.967 0.079 
FSK 54.3 91.074 -0.6783 0.0795 -0.00695 1.025 0.229 

 
 

From a mechanistic perspective, the improved correlations using version (b) of the 

Findley parameter, relative to version (a), provide further evidence that shear stresses drive 
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the crack initiation process in Ti-6Al-4V.  In version (b), the maximum normal stress at a 

shear reversal point (when the shear stress is maximum) is used in the parameter, rather than 

the overall maximum normal stress in the cycle.  This indicates that it is not the peak normal 

stress that is driving the process, but rather the peak shear stress.  The tensile stress present at 

the point of maximum shear stress plays a secondary effect, in that it reduces frictional forces 

between crack surfaces, which accelerates the development and growth of small shear cracks.  

This argument is further supported by the poor predictions for the biaxial damage using the 

SWT parameter, which is a normal stress/strain based model. 

 
D.6 MODEL EVALUATIONS USING 500°F Ti-6Al-4V DATA 

A limited number of uniaxial and biaxial fatigue data points for Ti-6Al-4V at 500°F 

were also generated for model evaluations.  As with the RT evaluations, no uniaxial step-test 

data were included in this analysis due to the uncertainty associated with those results.  

Excluding the step-test data, 16 uniaxial data points at R = −1, 0.1, and 0.5 were available.  In 

addition, four biaxial tests were conducted:  two proportional tests at R = 0.1 and two non-

proportional box-path tests. 

Model correlations for both the uniaxial and biaxial 500°F data using the SWT, 

Findley [version (a)], and FSK critical-plane models are shown in Figures D19 – D21.  The 

solid curve in each figure represents the best fit to the uniaxial data assuming an equation of 

the form shown in Eq. D15.  In all cases, the model predictions were quite poor for this set of 

data.  The uniaxial data appear to exhibit an increasing slope with increasing life, which is 

not well accounted for by any of the models.  A complication with this data set was the lack 

of measured strain values from the uniaxial tests.  As a result, all strains were estimated from 

elastic relations, which likely introduced significant errors in the analysis for the FSK and 

SWT models. 

Note that the Findley model (Fig. D20) generated relatively good damage predictions 

for this data set, with the exception of the box path data.  In this case, the damage predictions 

were made using version (a) of the Findley model, rather than version (b).  Based on the 

results of the RT Ti-6Al-4V model predictions, it would be anticipated that the box path 

calculations for this data set would improve substantially using the latter definition of the 
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Findley damage parameter.  It should also be noted that the SWT model provided better 

predictions for the biaxial data than either the Findley or FSK models.  However, more 

accurate strain calculations would be required before greater confidence could be placed in 

these analyses. 
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Figure D19.  SWT model applied to uniaxial and biaxial Ti-6Al-4V 500°F data. 
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Figure D20.  Findley model, v. (a) applied to uniaxial and biaxial Ti-6Al-4V 500°F data. 
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Figure D21.  FSK model applied to uniaxial and biaxial Ti-6Al-4V 500°F data. 
 
 
D.7 MODEL EVALUATIONS USING RT Ti-17 DATA 

The three critical-plane fatigue models (Findley v. (a), FSK and SWT) were also 

evaluated using a set of uniaxial and biaxial fatigue data for Ti-17 at room temperature (RT).  

As before, no step data were included in the evaluations.  The uniaxial set consisted of strain-

controlled (LCF) and stress-controlled (HCF) data at stress ratios of R = −1, 0.1, 0.5, and 0.8.  

The biaxial set included torsion data (R = −1, 0.1), proportional tension-torsion data (R = 0), 

and non-proportional check path data.  The results of the model correlations are shown in 

Figures D22 – D24.  The curves shown in each plot represent a best fit to the uniaxial data, 

assuming an equation of the form shown in Eq. D15. 

As with the Ti-6Al-4V RT data, all three models adequately collapsed the variable 

mean stress uniaxial data, although there appears to be a little more separation of the data by 

stress ratio, most noticeably between R = −1 and R = 0.1 data at longer lives.  When applied 

to the biaxial data, the SWT critical plane model was again generally non-conservative, 

indicating that fatigue crack initiation may be driven primarily by shear stresses in Ti-17.  

The Findley and FSK models produced better overall damage predictions for the biaxial data, 

although both models tended to underestimate the fatigue damage caused by the torsion tests. 
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Figure D22.  SWT model applied to uniaxial and biaxial Ti-17 RT data. 
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Figure D23.  Findley model applied to uniaxial and biaxial Ti-17 RT data. 
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Figure D24.  FSK model applied to uniaxial and biaxial Ti-17 RT data. 
 
D.8 MULTIAXIAL FATIGUE LIFE PREDICTION METHODS FOR 

 NOTCHED BARS OF Ti-6Al-4V 

 The prediction of fatigue lives for notched components presents additional challenges 

that must be overcome.  It is generally recognized that in a notched component, both the 

maximum (notch-root) stresses as well as the stress gradients affect the fatigue behavior.  A 

number of methodologies have been proposed to account for the influence of the stress 

gradients under uniaxial loadings.  Probably the most common approach is based on the use 

of a fatigue stress concentration factor, Kf, which is defined in terms of a notch-sensitivity 

factor, q.  In general, the sharper a notch, the higher the stress concentration factor (Kt), but 

the steeper the elastic stress-strain gradient.  In essence, these concepts assume the maximum 

principle stress is the relevant damage parameter and serve to reduce the maximum value of 

the damage parameter (due to the stress gradient), such that Kf ≤ Kt.  While these techniques 

have been successfully applied to uniaxially-loaded notched components, the extension to 

multiaxial loadings is ambiguous.  

 More recently, a number of investigators have proposed notched fatigue prediction 

methods that rely on an averaging or weighting of the stresses or damage parameter over 

some critical region, or the calculation of the appropriate damage parameter at some 

specified distance below the notch root [20, 21].  These techniques, collectively referred to as 

“critical-distance” methods, are more readily extendable to multiaxial loadings since there is 

no reliance on a particular stress component (as there is in the definition of Kf).  In this study, 
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the multiaxial models considered previously for smooth specimens were also applied to 

evaluate their abilities at predicting the fatigue lives of notched bars of Ti-6Al-4V.  These 

models were applied within the general framework of the critical-distance methodology. 

D.8.1 Experimental Program 

Five circumferentially notched round bars with a notch net section diameter of 0.5 in. 

(12.5 mm), a notch depth of 0.128 in. (3.25 mm), and a notch radius of 0.098 in. (2.5 mm) 

were biaxially loaded along the load paths shown in Figure D25.  Theoretical stress 

concentration factors of Kσ = 1.85 (axial) and Kτ = 1.35 (torsion) are associated with this 

geometry [22].  Specimen preparation was identical to the uniaxial and multiaxial smooth 

specimens tested previously.  The individual test data are summarized in Table D7. 
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Figure D25.  Load paths for notched specimen tests. 
 
 
 

Table D7.  Notched Specimen Test Conditions and Fatigue Lives 
 

Spec/Path Pmax (lb) Pmin (lb) Tmax (lb-in) Tmin (lb-in) Nf (cycles) 
132-4/A 2000 2000 750 −750 369,700 
132-3/B −2000 −2000 750 −750 >1.8×106 
132-1/C 0 0 1500 75 627,000 
132-2/D 9000 1000 750 90 123,800 
132-5/E 6500 −6500 550 −550 416,200 
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D.8.2 Notch Fatigue Analysis and Results 

 Based on the results of the smooth-specimen evaluations discussed previously, four 

models were selected for consideration in the notch study: the MMM effective-stress model, 

and the Findley, FSK, and modified CCB critical-plane parameters.  Application of the 

critical-distance methods requires that the full stress and strain distributions (gradients) be 

calculated below the notch root.  Consequently, a finite element analysis was performed for 

each of the five specimens listed in Table D7.  In this study, ANSYS was utilized with a 

tetrahedral 10-node element.  A sensitivity analysis was conducted to ensure convergence of 

the stress solutions, using meshes that varied from approximately 5,000 to over 17,000 

elements for the entire specimen.  In the final mesh, shown in Figure D26, the average 

element side length in the notch root was approximately 20 mil (0.5 mm).  The results of the 

elastic analyses indicated that one of the tests (test C in Table D7) experienced plastic 

deformation during the loading.  For this test, an elastic-plastic analysis was conducted in 

ANSYS using a multilinear kinematic hardening rule, assuming the plastic deformation was 

restricted to the first reversal.  The Ramberg-Osgood relation was used to model the cyclic 

stress-strain curve, using the material properties listed in Section D.3.2.  Figure D27 shows a 

typical von Mises contour stress plot for test A, while Figure D28 shows the stress 

components as a function of radial position through the notch section for tests A and C.  

These stress components were used to calculate a value for each damage parameter. 

 

 
 

Figure D26.  Finite element mesh of notched specimen. 
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Figure D27.  Sample plot of von Mises stress distribution (test A). 
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Figure D28.  Plots of stress distribution vs. depth under the notch 
for tests A (left) and C (right). 

 
 

Figures D29 through D32 show the radial damage predicted for each damage 

algorithm utilizing the individual stress-strain components determined from the finite 

element analysis.  The solid point on each curve shows the location of the damage parameter 

calculated using the experimental life and the baseline damage curve.  The fact that these 

points are all located subsurface indicates that the damage predicted employing surface 

stresses and strains is conservative.  They also render some insight as to a depth over which 

the damage needs to be assessed.  Using 2 mil (0.05 mm) increments, the subsurface damage 

was calculated, and Eq. D10 was utilized to calculate a percent error for each test.  The 
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optimized depth, which best correlates all the notched specimen data to the uniaxial baseline 

curve, was chosen to minimize the percent error.  In other words, the mean of the notched 

data was chosen to correspond to the baseline uniaxial data.  These results, along with the 

surface damage calculations, are shown in Figures D33 through D36 for each of the damage 

parameters under consideration. 

0

10

20

30

40

50

60

0 0.05 0.1 0.15 0.2 0.25

Radial Distance from Central Axis (in)

D
am

ag
e 

Pa
ra

m
et

er
 (k

si
) .

Test A
Test B
Test C
Test D
Test E
Calculated Depth

 
 

Figure D29.  Damage parameter vs. depth under notch for the modified Manson-
McKnight model, and depth at which damage parameters correspond 
with experimental lives. 
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Figure D30.  Damage parameter vs. depth under notch for the Findley model, and 
depth at which damage parameters correspond with experimental lives. 
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Figure D31.  Damage parameter vs. depth under notch for the Fatemi-Socie-Kurath 
model, and depth at which damage parameters correspond with 
experimental lives. 
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Figure D32.  Damage parameter vs. depth under notch for the modified Chu-Conle-
Bonnen model, and depth at which damage parameters correspond with 
experimental lives. 
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Figure D33.  Comparison of damage parameters from the modified Manson-
McKnight model calculated at the surface and a depth of  
9.8 mil (0.25 mm). 
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Figure D34.  Comparison of damage parameters from the Findley model  
calculated at the surface and a depth of 13.8 mil (0.35 mm). 
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Figure D35.  Comparison of damage parameters from the Fatemi-Socie-Kurath model 
calculated at the surface and a depth of 17.7 mil (0.45 mm). 
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Figure D36.  Comparison of damage parameters from the modified 
Chu-Conle-Bonnen model calculated at the surface and a 
depth of 17.7 mil (0.45 mm). 

 
 

Notch acuity was shown to be influential in uniaxial experiments and theories 

previously presented.  The observation that, in these tests, the torsional and axial stress 

concentrations differ could cause some of the “depth” discrepancy observed here.  
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Depending on the parameter evaluated, the optimal “damage depth” varied from 9.8 mil 

(0.25 mm) to 17.7 mil (0.45 mm).  While these dimensions seem large compared to prior 

values assigned in the literature, it should be noted that the stress concentration factors in the 

current experiments were lower than most considered in the literature.  The low value of Kt 

also tends to cause the stress-strain gradient to be shallow, but cover a significant portion of 

the net section of the specimen (Fig. D28).  Hence, the dimensions cited here should be 

interpreted in the context of the geometry of notches tested. 

Rather than assign a specific depth value to the damage, another methodology 

involves integrating the value of the damage parameter over a depth beneath the surface, r*, 

to obtain an averaged damage. 

 

 D amage =
1

r *
Damage( )

ro −r *

ro

∫ dr  (D20) 

 
where ro is the outer radius at the notch section.  The results of this analysis are presented in 

Figures D37 through D40, and closely resemble the results of the point-depth analysis.  A 

similar increment in depth and methodology to place the mean notched life on the uniaxial 

baseline curve was employed in this analysis.  The depths, or r*, ranged from 15.8 mil (0.4 

mm) with the modified Manson-McKnight parameter to 47.2 mil (1.2 mm) for the Fatemi-

Socie-Kurath parameter.  Again these are somewhat higher than those reported in the 

literature.  A statistical comparison of the point and line depth averaging techniques is 

summarized in Table D8.  As before, lower values of the mean and standard deviation are 

desirable. 

 
 

Table D8.  Statistical Comparison of Multiaxial Models for Notched Specimen Data 
 

DP calculated at notch 
root surface (% Error) 

DP calculated at critical 
depth (% Error) 

DP averaged over 
critical length (% Error) 

 
Model 

Mean St. Dev. Mean St. Dev. Mean St. Dev. 
Mod. M-M 8.84 8.47 0.51 11.24 0.043 10.45 
Findley 16.3 6.39 0.47 7.44 1.1 8.06 
FSK 32.04 12.77 -0.67 20.93 -0.75 19.39 
Mod. CCB 31.06 12.45 0.003 18.84 -1.37 21.69 
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Figure D37.  Comparison of damage parameters from the modified Manson-
McKnight model calculated at the surface and averaged over 
15.8 mil (0.4 mm) depth. 
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Figure D38.  Comparison of damage parameters from the Findley model calculated 
at the surface and averaged over 35.4 mil (0.9 mm) depth. 
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Figure D39.  Comparison of damage parameters from the Fatemi-Socie-Kurath model 
calculated at the surface and averaged over 47.2 mil (1.2 mm) depth. 
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Figure D40.  Comparison of damage parameters from the modified Chu-Conle-
Bonnen model calculated at the surface and averaged over  
39.4 mil (1 mm) depth. 

 
 

 While the line-averaged results look similar to the point results, the line-average 

method has the conceptual advantage of somewhat accounting for the differences in axial and 

torsional stress concentration factors that result in different stress and strain gradients.  The 
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stress state of the geometry tested is two dimensional at the surface, but three dimensional 

below the surface.  Neglecting the circumferential stress would have introduced significant 

errors in the calculations, but the effects of the radial stress below the surface were 

negligible.  Due to the symmetry of the loading and stress state near the notch, the critical 

plane orientation remained approximately constant over the depths considered here.  For 

more complex loading and a general geometry, an averaging scheme over a “critical” volume 

of dimension V* may be required.  However, it seems that averaging or integrating the value 

of the damage parameter has inherent advantages over modifying the stress-strain state, 

especially for more complex loading.  A major drawback at this juncture is that no overall 

methodology has been developed to determine the critical distance, line length or volume for 

a general multiaxial loading and geometry. 

 
D.9 LCF/HCF INTERACTIONS AND FATIGUE DAMAGE ASSESSMENTS FOR 

MULTIAXIAL MISSION LOADINGS 

The interaction between LCF (high damage) and HCF (low damage) cycles in a 

variable load history, or “mission” history, is another area of concern when developing 

fatigue damage assessment methods for turbine engine materials.  The consideration of such 

interaction effects within multiaxial loadings gives rise to some additional challenges.  For 

example, the definition of a cyclic event can be ambiguous when different components of the 

stress tensor are cycling out-of-phase of one another.  Furthermore, the use of a critical-plane 

model for damage assessment can add additional complications when different events in the 

history cause maximum damage on different planes. 

Past research has demonstrated that damage summation methods utilizing traditional 

multiaxial fatigue damage parameters and linear damage accumulation rules are often highly 

non-conservative, indicating an interaction effect between LCF and HCF cycles.  These 

effects are more pronounced when out of phase loading comprises one of the cyclic events.  

Similar LCF/HCF interaction effects have been observed under uniaxial loading conditions.  

A variety of techniques have been proposed to accommodate experimental observations, 

including non-linear damage rules, modification of the baseline damage curve, and extended 

interpretation of the damage parameter. 
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In an attempt to better understand the potential interaction effects between LCF and 

HCF cycles in Ti-6Al-4V under a multiaxial stress state, several biaxial mission tests were 

conducted on similar specimens as used in the previous biaxial testing.  The mission histories 

were constructed from the non-proportional load paths discussed previously, and consisted of 

a relatively small number of high damage (LCF) cycles coupled with a larger number of low 

damage (HCF) cycles.  Based on the results of the previous analyses, the Findley model 

[version (b)] was selected to predict the damage caused by each cycle.  To evaluate the 

LCF/HCF interaction effect, mission lives were subsequently calculated and compared to 

experimental results.  In this study, two damage summation algorithms were used, the first 

based on the assumption of linear damage accumulation, and the second using a nonlinear 

cumulative damage rule. 

The damage predictions using version (b) of the Findley model are repeated for the 

smooth bar data in Figure D41, with the uniaxial data shown in the upper plot and the biaxial 

data in the lower plot.  There are two additional features that need clarification in the uniaxial 

(top) figure.  First, the “step-test” data located at the higher end of the failure life are shown 

on this plot, but were not included in the calculation of the best-fit curve.  It was noted that 

these tests appeared to result in slightly higher stress levels at long life than the single-load 

tests.  Second, a “threshold” line is shown on the plot.  This line indicates the level of the 

Findley parameter below which the applied loadings are assumed to have negligible effect on 

the fatigue life of the specimen.  As can be seen from the figure, the prediction curve 

continues to drop at higher life, even though there are no data to suggest the continued trend 

above 109 cycles.  This results in overly conservative life predictions when extrapolating the 

curve to long-life regions.  Examining the calculated Findley parameters and observing that 

no failure occurred below 34 ksi, a lower bound to failure was established at this level. 
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Figure D41.  Findley model, version (b), applied to Ti-6Al-4V uniaxial data (top) 
and biaxial data (bottom). 

 
 
D.9.1 Mission Histories: Results and Model Comparisons using Linear Damage Rule 

Two variations of mission histories were tested, each designed to represent the effects 

a component could experience while in service.  In these histories, a relatively few high-

damage (LCF) cycles were applied periodically within a larger number of low-damage 

(HCF) cycles.  The LCF load path is what gives rise to the mission type.  As illustrated in 

Figure D42, the two mission histories were based on the box path and the check path (LCF 
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cycles).  The HCF cycles were defined as small portions of the LCF cycles.  The differences 

between the LCF and HCF cycle shapes and amplitudes generated different critical planes 

within a loading cycle, as predicted by the Findley model, and provided a differentiation 

among the fatigue damage produced by each cycle.  The stress levels were applied to produce 

LCF lives in the range of 104 to 105 cycles, while the HCF stress levels were selected to 

produce lives on the order of 108 to 109 cycles, as per the Findley model predictions. 
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Figure D42.  Simulated mission histories, showing LCF and HCF cycles 
for the box path and the check path. 

 
 

Three sets of mission history tests were conducted, two based on the box path and one 

based on the check path.  Two samples were run at each load level.  Each mission history 

consisted of one LCF cycle followed by a larger number of HCF cycles.  For the two box 

path histories, one consisted of 50 HCF subcycles (Box 1) and the other consisted of 5 HCF 

subcycles (Box 2).  It should be noted the same subcycle was utilized in both missions.  The 

check path consisted of 50 subcycles in addition to the LCF cycle.  These mission histories 

were repeatedly applied to round bar specimens of Ti-6Al-4V until fracture.  The number of 

LCF cycles completed before failure is defined as the mission life. 

 The experimental results for the mission histories are shown in Table D9, along with 

the corresponding mission life predictions using the Findley model in conjunction with a 

linear cumulative damage rule.  As is evident from these results, the predicted mission lives 

were essentially identical to the predicted LCF lives in all cases, when a linear damage 

assumption was used.  This is not surprising, since the HCF lives were predicted to be 

roughly four orders of magnitude larger than the LCF lives.  Thus, utilizing a linear damage 
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rule, a substantial number of HCF cycles would need to be applied before they would begin 

to influence the mission life. 

 The experimental data, however, indicate different results.  For the two box missions, 

the HCF cycles substantially influenced the mission lives.  Specifically, when 50 HCF cycles 

were applied (Box 1), the mission lives decreased by a factor of three relative to the LCF 

lives.  When only 5 HCF cycles were applied, the mission lives still decreased by roughly 

33%.  This indicates a significantly nonlinear damage accumulation rate in the box path.  

However, in the case of the check path, 50 HCF cycles did not produce any reduction in the 

mission life, even though they were predicted to cause similar damage levels as the subcycles 

in the box path.  Thus, it is evident that the damage accumulation rate, and the effects of 

LCF/HCF interactions, are load path dependent. 

 
 

Table D9.  Mission History Results and Model Comparisons 
using the Findley Parameter with Linear Cumulative Damage Rule 

 
Mission Histories 

Box 1 Box 2 Check 
 

Cycle/Mission 
1 LCF/50 HCF 1 LCF/5 HCF 1 LCF/50 HCF 

Experimental LCF Lives 
Average 

59,432 / 72,360 
65,900 

59,432 / 72,360 
65,900 

50,568 / 36,920 
43,700 

Predicted LCF Life (Plane) 66,900 (122°) 65,500 (122°) 66,900 (12°) 
Predicted HCF Life (Plane) 3.0 × 108 (10°) 2.3 × 108 (10°) 1.9 × 108 (48°) 
Experimental Mission Life 

Average 
19,420 / 21,422 

20,400 
48,787 / 39,480 

44,100 
44,544 / 49,776 

47,200 
Pred. Mission Life (Plane) 66,900 (122°) 65,400 (122°) 66,600 (12°) 

 
 
 
 By consideration of the results in Table D9, it is evident that two factors merit further 

attention.  The first pertains to the observed effect of the load path dependence on the 

damage accumulation rate; i.e., the HCF cycles are much more damaging in the case of the 

box path than in the check path.  The second factor relates to the damage accumulation 

method itself; i.e., a nonlinear cumulative damage rule is required to account for the 

nonlinear nature of the LCF/HCF interactions. 
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D.9.2 Load Path Dependence on LCF/HCF Interactions 

To address the issue of load path dependence, an evaluation was performed for both 

the box path and check path to determine which plane experiences the most damage from the 

combined LCF and HCF cycles, according to the Findley model.  As illustrated in Figure 

D43, the box path exhibits four LCF maxima representing approximately the same damage 

value.  Thus, it is reasonable to expect that there would be an equal probability that a crack 

may initiate on any of these four planes.  When incorporated into a mission history 

containing LCF and HCF cycles, it would subsequently be expected that the plane of 

maximum damage potential would be the LCF critical plane experiencing the maximum 

damage from the HCF subcyles.  From Figure D43, it is evident that the LCF critical plane at 

12° also nearly coincides with an HCF critical plane; i.e., the LCF and HCF damage curves 

experience a peak at roughly the same plane orientation. 

A similar evaluation was performed with the check mission, shown in Figure D44.  In 

this instance there were only two peaks associated with the LCF parameter.  Note, however, 

that the peak in the HCF curve did not correspond closely to a peak in the LCF curve.  

Further examination revealed that the maximum HCF Findley parameter on an LCF critical 

plane was only 32.6 ksi.  This value falls below the prescribed threshold of 34 ksi determined 

earlier.  Therefore, the damage associated with the HCF subcycles would be predicted to 

have a negligible effect on the fatigue life of the specimen. 

This distinction of the applied HCF damage on the LCF critical plane validates the 

experimental evidence showing a load path dependence on the influence of the HCF cycles.  

In other words, even though both HCF cycles were predicted to cause the same degree of 

damage on their corresponding critical planes, the fact that the HCF critical plane for the box 

path coincided with an LCF critical plane caused the box missions to be much more 

influenced by the HCF cycles than the check mission, where the LCF and HCF critical planes 

did not coincide.  It should be noted that a multiaxial parameter that does not identify critical 

plane orientations would not be capable of recognizing the load path dependence of HCF 

damage observed in this study.  This is an important point in regard to equivalent-stress 

based multiaxial parameters, which do not distinguish critical plane orientations with respect 

to fatigue damage. 
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Figure D43.  Variation of the Findley Parameter with plane orientation for 
the box path (LCF and HCF cycles). 
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Figure D44.  Variation of the Findley Parameter with plane orientation for 
the check path (LCF and HCF cycles). 
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D.9.3 Nonlinear Damage Accumulation Rule 

The manner in which damage was initially determined for the multiaxial loadings was 

to sum up all of the LCF and HCF cycles as per the Palmgren-Miner Rule.  However, the 

discrepancy between experimental and predicted mission lives for the box path indicates the 

damage likely accumulates nonlinearly.  Recent work [23, 24] has expressed the possibility 

of two models that possess the likelihood of reducing this difference, the Double Linear 

Damage Rule (DLDR) and the Damage Curve Approach (DCA).  The DLDR proposes to 

create two separate linear damage relations; one for Phase I and one for Phase II crack 

growth.  The difficulty in utilizing this model is the failure to distinguish between crack 

initiation and crack propagation.  Consequently, in this study the DCA model was 

implemented.  This model makes use of relative damage and employs the concept of 

remaining life for a specimen.  The DCA approach can be seen in its general form in Eq. 

D21, where n is the number of applied cycles, Nf is the number of cycles to failure, Nref is the 

life level at which damage accumulates linearly, and α is a material parameter.  Since the 

point at which damage accumulates in a linear manner is an unknown, Nref can be taken as 1, 

which has the added effect of simplifying the general equation [24]. 
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The following form of the DCA equation, Eq. D22, describes a two-level loading 

condition in which one cycle experiences a stress of a given magnitude followed by another 

cycle(s) of different (either larger or smaller) stress magnitude.  As can be seen, this 

expression predicts greater nonlinearity in damage accumulation as the difference between 

N1 and N2 increases.  In this equation, n1 and n2 are the number of applied cycles for one 

mission.  N1 and N2 are the number of cycles to failure corresponding to the first and second 

loading blocks (in this case the number of LCF and HCF cycles), respectively.  Again, α is a 

material property that needs to be determined.  According to McGaw [24], α is generally 

taken to be 0.4 based on two-level load testing of steel and titanium alloys.  However, 
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analysis of the DCA approach in this study yielded an α of 0.72 when applied to the box and 

check missions. 
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Figure D45(a) illustrates the general DCA model.  Notice that damage develops 

earlier and at a faster rate when N is smaller, which is indicative of an LCF loading block.  

Also shown is the DCA for a two-level loading history, Fig. D45(b).  As the difference 

between N1 and N2 decreases the damage accumulation becomes more linear until, when N1 

equals N2, the DCA reduces to the Palmgren-Miner Rule. 
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Figure D45.  Graphical interpretation of the DCA model. 
 
 

An important feature of the DCA model is the manner in which the loads are applied.  

McGaw [24] evaluated the effects on damage for both a two-level single-block loading and a 

two-level multi-block loading (Figure D46).  The result indicated the multi-block loading 

experienced a more nonlinear rate of damage accumulation.  Note that the testing conditions 

for the box and check path mission histories consisted of this two-level multi-block loading.  
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Therefore, these histories would be expected to exhibit significant nonlinear damage 

accumulation. 

 

           
 (a) (b) 
 

Figure D46.  Loading patterns: (a) two-level single-block loading, and 
(b) two-level multi-block loading. 

 
 
 The results of the mission-history life predictions, using the Findley model with the 

threshold stress level in conjunction with the DCA model, are shown in Table D10 along 

with the experimental results.  As previously noted, a value of α = 0.72 was found to provide 

the best correlation with experimental results.  It can be seen that the predicted mission lives 

for the two box histories are in excellent agreement with the experimental lives using the 

DCA model. 

In the case of the check mission, since the HCF Findley parameter on the LCF critical 

plane was less than the threshold value, the HCF life on that plane was taken as infinite.  

Thus, the DCA model predicted no effect of the HCF cycles on the check mission life.  

Although the predicted and experimental mission lives for the check history were not in as 

good agreement as for the box history, the discrepancy was due to the LCF life prediction, 

not due to the failure of the nonlinear damage model.  Nevertheless, it should be noted that 

all the life predictions using the Findley model and Damage Curve Approach are within 

reasonable bounds. 
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Table D10.  Mission History Results and Model Comparisons using 
Findley Parameter with Nonlinear Cumulative Damage Rule (DCA) 

 
Mission Histories 

Box 1 Box 2 Check 
 

Cycle/Mission 
1 LCF/50 HCF 1 LCF/5 HCF 1 LCF/50 HCF 

Experimental LCF Lives 
Average 

59,432 / 72,360 
65,900 

59,432 / 72,360 
65,900 

50,568 / 36,920 
43,700 

Predicted LCF Life (Plane) 66,900 (12°) 65,500 (12°) 66,900 (12°) 
Pred. HCF Life on LCF Plane 3.0 × 108 2.3 × 108 ∞ 

Experimental Mission Life 
Average 

19,420 / 21,422 
20,400 

48,787 / 39,480 
44,100 

44,544 / 49,776 
47,200 

Pred. Mission Life (Plane) 18,260 (12°) 45,880 (12°) 66,900 (12°) 
 
 
 
D.10 SUMMARY AND CONCLUSIONS 

 Twenty-two multiaxial fatigue algorithms were initially evaluated in their ability to 

correlate uniaxial mean stress and biaxial fatigue data for Ti-6Al-4V.  Both equivalent-stress 

and critical-plane parameters were considered.  Based on the results of the initial evaluation, 

a smaller number of models were selected for more detailed study.  The majority of the 

selected multiaxial fatigue models were reasonably successful at predicting mean stress 

effects in Ti-6Al-4V and Ti-17 under uniaxial loading conditions.  However, significant 

differences were noted between models in their ability to predict multiaxial fatigue lives or 

damage.  Of the equivalent-stress models, only the modified Manson-McKnight model 

provided reasonably good multiaxial predictions.  The Findley critical-plane model provided 

the best overall correlations with experimental data for multiaxial loadings; however, the 

definition of the maximum normal stress in the cycle is important, and affects the 

correlations.  Since the normal (tensile) stress based critical-plane models were all highly 

non-conservative in their multiaxial predictions, it can be inferred that fatigue crack 

development in these titanium alloys is driven primarily by cyclic shear stresses. 

 The application of multiaxial fatigue methodologies to notched components presents 

some additional challenges.  It was demonstrated here that methods based on the critical-

distance concept, in conjunction with a variety of multiaxial parameters, hold potential.  
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However, a significant limitation involves the determination of the critical distance, or depth 

at which the damage parameter should be calculated or averaged. 

 The limited data pertaining to LCF/HCF interactions in Ti-6Al-4V indicate that small 

(HCF) cycles can cause significantly more damage than predicted by a linear cumulative 

damage rule, but the effect of the HCF cycles on the LCF mission life is dependent on the 

load path.  When used in conjunction with a linear damage rule, none of the multiaxial 

models were successful at predicting the observed experimental behavior.  However, a 

nonlinear damage rule was evaluated (Damage Curve Approach), and produced very good 

results when used with the Findley critical-plane parameter.  It was noted that, in order to 

account for the observed load-path dependence on LCF/HCF interactions, the relationships 

between the LCF and HCF critical planes must be taken into account.  This finding poses a 

severe limitation in the use of equivalent-stress models, which are incapable of distinguishing 

such nuances in the load path. 
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APPENDIX E 

CLOSED-FORM EQUATIONS FOR CRITICAL PLANE 
ORIENTATION AND PARAMETERS 

 

E.1 INTRODUCTION  

In an effort to make critical plane calculations more efficient, P&W developed 

closed-form equations for determining the orientations of the critical planes and also the 

values of the critical plane parameters.  We have focused on two different critical plane 

parameters: 

(i) Smith-Watson-Topper (SWT) and  

(ii) Findley (FIN).   

 The SWT parameter is more suited to model normal stress induced cracking while 

the FIN parameter is more suited for modeling shear stress dominated cracking.  Currently, 

these parameters (like all critical plane parameters) are evaluated by using a search algorithm 

in which the “critical plane” is determined by sweeping through plane orientations between 0 

– 180 degrees (in increments of either 1, 2, or 5 degrees) for each time step in the fatigue 

cycle.  This procedure can be implemented in a computer program.  However, conducting 

such a calculation at each Gauss point in a finite element structural analysis for large mission 

loadings, encountered in engine components, could lead to very large computer run times.  

The closed-form solutions presented in this report are expected to alleviate this problem and 

lead to an efficient implementation of critical plane theories in the life analysis of aero-

engine components. 

E.2 THE SWT PARAMETER 

 The SWT parameter is calculated as the product of the maximum normal strain 

amplitude, εa, on a ‘critical plane’ and the maximum normal stress, σmax, on the critical 

plane:   

ESWT aεσ max=  (E1) 

where, E is the Young’s modulus.   
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E.2.1 SWT Parameter and Critical Plane Using the Double Search Algorithm 

The ‘double search’ algorithm computes the critical plane by computing the SWT 

parameter (for all time steps in the fatigue cycle) along planes with orientation angles ranging 

from 0 – 180 degrees with respect to the axial loading direction.  Along each plane the max 

normal εa and the max normal σmax are computed over the entire fatigue cycle, using 

appropriate transformation equations for stress and strain.  The plane on which the SWT 

parameter is the maximum (for all time steps of the loading cycle) is then the ‘critical plane’ 

for the given loading cycle.  

E.2.2 SWT Parameter and Critical Plane Using Closed-Form Equations 

A more efficient way to calculate the SWT parameter is by using closed-form equations.  For 

the case of two dimensional, proportional, in-phase loading consisting of σx, σy, and τxy 

stresses, it is possible to derive direct equations to calculate the SWT parameter and the 

critical plane. 

Consider a general state of stress in which the material is being subjected to cyclic 

loading in all the three stress components σx, σy, and τxy.  Each of the stress components are 

in-phase and consist of a sinusoidal wave form described by a stress amplitude given by σxa, 

σya, and τa and a mean stress given by σxm, σym, and τm.  Further, consider that the material is 

subjected to cyclic strain amplitudes given by εxa, εya, and γa and mean strains given by εxm, 

εym, and γm.  For this applied stress and strain state, the critical plane, θSWT, can be derived by 

maximizing the strain amplitude, εxa(θ), as function of the orientation angle θ.  It is assumed 

that the plane on which the strain amplitude is maximized will provide a good approximation 

for the plane on which the SWT parameter peaks.  Maximizing the strain amplitude, εya(θ), 

also provides the same equation for the critical plane which is given by: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
= −

yaxa

a
SWT εε

γθ 1tan
2
1  (E2) 

The SWT parameter is then computed on this critical plane, θSWT.  Since both σx and σy, 

could be acting in a general stress state, the required SWT parameter needs to be computed 

using both the stress and strain components as: 
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where, εxa,max and εya,max are the max x and y strain amplitudes on the critical plane, θSWT.   

σx,max and σy,max are the max normal x- and y-stresses on the critical plane, θSWT.  The max 

strain amplitudes and max normal stresses on the critical plane are given by the following 

equations: 
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E.3 THE FINDLEY (FIN) PARAMETER 

The FIN parameter is calculated using the maximum shear stress amplitude, τa, on a 

‘critical plane’ and the maximum normal stress, σmax, on the critical plane: 

maxστ kFIN a +=  (E5) 

where, k is a fitting parameter.  For the present study, k = 0.28 was used. 

Findley Parameter and Critical Plane Using the Double Search Algorithm: 

The ‘double search’ algorithm can be used to compute the critical plane and the maximum 

Findley parameter over the fatigue cycle using the same procedure described above for the 

SWT parameter.  

E.3.1 Findley Parameter and Critical Plane Using Closed-Form Equations: 

A more efficient way to calculate the Findley parameter is by using closed-form 

equations.  For the case of two dimensional, proportional, in-phase loading consisting of σx, 

σy, and τxy stresses, it is possible to derive direct equations to calculate the FIN parameter 

and the critical plane. 
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Consider the cyclic stress state in which each of the stresses consists of a sinusoidal 

wave form described by a stress amplitude given by σxa, σya, and τa and a mean stress given 

by σxm, σym, and τm.  For this applied in-phase stress state, the critical planes, θFIN1, and, 

θFIN2, can be derived by maximizing the Findley parameters, FIN1(θ) and FIN2(θ), as 

functions of the orientation angle θ.  The two critical planes result from the stress 

components σx and σy, which may be present on a critical plane in a general stress state.  The 

closed-form equation for the critical angle, θFIN1, is given by: 
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The corresponding equation for the Findley parameter, FIN1, is: 
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The closed-form equation for the critical angle, θFIN2, is given by: 
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The corresponding equation for the Findley parameter, FIN2, is:  
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For the general state of stress considered above, the maximized Findley parameter, FIN, is 

given by: 

( )2,1max FINFINFIN =  (E10) 
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E.4 RESULTS AND DISCUSSION 

The above closed form equations were used to compute the critical angles and 

parameters for the proportionally loaded, in-phase tension-torsion test cases from the PRDA 

V test program.  The details of the stress states analyzed are given in Table E1.  The results 

from the closed-from equations are compared with the results from the double search 

algorithm in Table E2. 

For the SWT parameter, using the maximum strain amplitude to search for the 

critical plane was found to be adequate in determining the appropriate critical planes for the 

cases analyzed.  For the Findley parameter, there was excellent agreement between the 

closed-form equation results for the critical plane and the maximized parameter. 

 

Table E1. Tension-Torsion Proportionally Loaded Test Cases from the  
 PRDA V Program 
 

Multiaxial In-phase Loading Cases 
Spec. ID σxa σxm τa τm εxa εxm γa γm 

156-11/S 120.67 -1.60 0.00 0.00 0.00754 0.00002 0.00000 0.00000

21-11/S 0.00 0.00 54.55 -0.05 0.00000 0.00000 0.00867 -0.00001

21-6-S/L 0.00 0.00 38.50 0.10 0.00000 0.00000 0.00612 0.00002

156-10-S 0.00 0.00 35.30 -0.10 0.00000 0.00000 0.00561 -0.00002

21-7/S 0.00 0.00 34.78 31.13 0.00000 0.00000 0.00822 0.00988

156-5S 0.00 0.00 34.92 29.29 0.00000 0.00000 0.00560 0.00650

156-4-S 0.00 0.00 37.70 27.30 0.00000 0.00000 0.00605 0.00755

156-1 0.00 0.00 32.86 27.45 0.00000 0.00000 0.00436 0.00522

21-4-S/L 0.00 0.00 35.69 30.41 0.00000 0.00000 0.00573 0.01388

21-1-S 53.00 0.00 26.25 -0.05 0.00312 0.00000 0.00417 -0.00001

156-9-S 35.08 43.33 17.67 21.13 0.00207 0.00255 0.00281 0.00336

156-3/S 35.36 43.44 17.82 21.28 0.00208 0.00256 0.00283 0.00338
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Table E2. Comparison of the Closed-form Equation Results with the Double  
 Search Algorithm 

 
 Double Search Closed-Form Double Search Closed-Form 

Spec. ID θcr SWT θcr SWT θcr Findley θcr Findley 

156-11/S 45.00 123.03 0.00 123.03 37.00 79.26 -37.28 79.26 

21-11/S 45.00 63.19 45.00 63.13 8.00 56.65 7.81 56.64 

21-6-S/L 45.00 44.64 45.00 44.64 98.00 39.99 7.84 39.99 

156-10-S 45.00 40.93 45.00 40.81 98.00 36.66 7.80 36.65 

21-7/S 45.00 67.60 45.00 67.60 14.00 39.37 13.98 39.37 

156-5S 45.00 55.07 45.00 55.07 14.00 39.27 13.62 39.27 

156-4-S 45.00 57.59 45.00 57.59 13.00 41.86 12.88 41.86 

156-1 45.00 47.09 45.00 47.09 14.00 36.94 13.60 36.94 

21-4-S/L 45.00 56.50 45.00 56.50 14.00 40.20 13.71 40.20 

21-1-S 112.0 65.41 26.60 66.71 75.00 46.16 -14.82 46.16 

156-9-S 112.0 64.93 26.81 66.24 83.00 40.39 -6.56 40.39 

156-3/S 113.0 65.37 26.83 66.69 173.00 40.66 -6.57 40.66 
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APPENDIX F 

COMPARISON OF APPROXIMATE ELASTIC-PLASTIC 
NOTCH ANALYSIS METHODS 

 
 
F.1 INTRODUCTION 
 

The ability to assess the effect of a notch or other stress concentration on the fatigue 

resistance of components is largely dependent on the ability to accurately determine the 

stress/strain distributions or gradients in the vicinity of the notch.  Although elastic stress and 

strain distributions can be efficiently generated using finite element techniques, localized plastic 

deformation often occurs in the vicinity of sharp notches and discontinuities.  The inclusion of 

nonlinear elastic-plastic material behavior into finite element models requires significantly 

greater computational resources (i.e., memory and time), particularly in cases in which cyclic 

plasticity must be accounted for.  Furthermore, the models often require greater attention to 

details such as mesh refinement, element shape, and nonlinear solution procedures.  Due to the 

added complexities and computational requirements involved in elastic-plastic finite element 

analysis, approximate methods that can efficiently and accurately model the stress redistribution 

resulting from plastic deformation near notches are highly desirable.  However, such methods 

must be validated using proven and reliable techniques. 

Two approximate elastic-plastic notch analysis codes have been independently 

developed as part of the HCF Damage Tolerance Program.  The first code, developed by Prof. G. 

Glinka at the University of Waterloo, was designed to approximate the multiaxial elastic-plastic 

stress and strain fields in notched, isotropic components subjected to proportional and non-

proportional cyclic loadings (see Sec. 3.3.4).  The second code, developed by Southwest 

Research Institute (SwRI), extended the Glinka code to include the consideration of anisotropic 

materials, but in the delivered form is more restrictive in the types of component geometries and 

load histories that can be analyzed (see Sec. 3.3.5). 

In this Appendix, an independent assessment and comparison of the two approximation 

codes, hereafter referred to as the Glinka and SwRI codes, is presented. The codes were 

evaluated by comparing the approximate elastic-plastic stresses obtained from each code to the 

results obtained from elastic-plastic finite element analyses of several notched component 
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geometries subjected to a variety of loading conditions.  In each case, the elastic stress-strain 

distributions from the FEA analysis served as input to the codes.  The elastic-plastic stress-strain 

distributions on the notch section were then compared and used as validation measures. 

Presented here are more complete details of the finite element procedure discussed briefly in Sec. 

3.3.3 as well as comparisons between approximation codes and FEM results briefly outlined in 

Sec. 3.3.6. This Appendix compares the results from the Glinka and SwRI codes under a wide 

variety of geometry and loading conditions. 

F.2 ELASTIC-PLASTIC FEA OF NOTCHED COMPONENTS 

All finite element analyses of notched components were conducted using the 

commercial software ANSYS.  A multilinear kinematic hardening rule was used in conjunction 

with the cyclic stress-strain curve for Ti-6Al-4V at room temperature obtained from half-life 

LCF data generated in this program.  Applying a Ramberg-Osgood fit to the data, the cyclic 

stress-strain curve for Ti-6Al-4V can be expressed as 
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where σ has units of ksi, and the cyclic yield strength was taken as σy = 109.2 ksi.  From this 

equation, cyclic stress-strain values were calculated and used as input for the models.  The stress-

strain values are shown in Table F1. 

Table F1.  Stress/Strain Values used in ANSYS Elastic-Plastic Analyses 
(Kinematic Hardening) 

 
Stress (ksi) 109.22 113.0 114.0 115.5 116.3 116.8 117.2 117.6 118.3 119.7 121.0 
Strain (in/in) .006474 .008659 .01030 .01536 .02043 .02497 .02965 .03551 .04951 .1007 .2004 
 

All models were constructed using 8-node, three-dimensional structural solid elements 

with extra displacement shapes included for better accuracy.  A mesh refinement study was 

performed on each model to verify that the discretization error was sufficiently small.  For each 

of the elastic-plastic analyses in which cyclic plasticity was anticipated, 10 to 20 cycles were run 

to ensure the local (notch-root) plastic strains reached a cyclically stable state.  This was verified 

by examining the equivalent plastic strain and the largest principal plastic strain at the root of the 
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notch at the end of each load cycle.  In most cases, it was found that negligible changes in these 

values occurred after the fifth cycle, and the analysis was subsequently terminated after 10 

cycles.  In a few cases involving large-scale, nonproportional plastic straining, 20 cycles were 

completed to ensure a stable state had been reached. 

Four notched component geometries were selected to evaluate the elastic-plastic 

approximation methods developed by Glinka and SwRI.  These geometries were selected with 

the intent of providing a variety of loading conditions to thoroughly evaluate the accuracy and 

limitations of the approximation methods.  Loading combinations and levels were chosen to 

produce an array of cyclic elastic-plastic stress/strain states, ranging from small scale, first-

reversal proportional plasticity to large scale, non-proportional cyclic plasticity.  For each of the 

models, both elastic and elastic-plastic finite element analyses were conducted.  The elastic stress 

and strain distributions across the notch section were used as inputs to the approximation codes, 

and the resulting elastic-plastic approximate solutions were compared to the elastic-plastic finite 

element results for accuracy. 

Of the two codes evaluated in this program, the Glinka code is more versatile in its 

present form, as it is not restricted by notch or component geometry or type of loading; i.e., it can 

be used to analyze proportional or non-proportional cyclic loading applied to any notched 

component.  While the SwRI methodology is not restricted on its theoretical basis to certain 

notched component geometries or loadings, the delivered code was limited to the analysis of a 

rectangular cross-section under monotonic loading (not cyclic).  Consequently, different notch 

geometries and loadings were used in the evaluation of each code. 

 
F.3 NOTCHED COMPONENT GEOMETRIES AND LOADING 
 

Four notched component geometries were analyzed for the purposes of model 

validation.  The Glinka code was evaluated against geometries 1 – 3, while the SwRI code was 

evaluated against geometries 1 and 4.  The details of the component geometries, loading, and FE 

models are summarized below. 
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F.3.1 Geometry 1: Flat Plate with Center Hole (Uniaxial Tension) 
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Figure F1. Geometry 1 for Glinka and SwRI code validation: flat plate with center hole in 

uniaxial tension. 
 
 

This geometry was selected to provide a baseline validation test for both the Glinka and 

SwRI approximation methods.  The stress gradients around the hole are not too severe, and 

typical of those found in many service components.  The notch plasticity levels were controlled 

by varying the magnitude of the remote axial load, P.  In all cases, the loading was applied 

cyclically at R = 0 (R = Pmin/Pmax, Pmin = 0).  The following nominal stress levels (σ = Pmax/A, 

with A defined as the gross cross-sectional area) were used for this analysis: 

Pmax/A = 20 ksi (elastic loading, scaleable to any level) 
Pmax/A = 40 ksi (local plasticity at notch root on first reversal, followed by elastic cycling) 
Pmax/A = 60 ksi 
Pmax/A = 80 ksi 
Pmax/A = 100 ksi (full notch section plasticity with local cyclic plasticity) 

 
In the finite element analysis, symmetry on three planes was used to reduce the model 

to a 1/8 section of the full component.  The final model was comprised of 6,720 elements.  A 

close-up view of the elements in the notch region is shown in Figure F2.  For this geometry, the 

elastic-plastic stress gradients were compared along a line through the notch section at both the 

midplane and outer surface of the specimen. 
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Figure F2. Element plot of notch region for geometry 1. 
 
 
F.3.2 Geometry 2: Large Circumferential Notch in a Round Bar (Tension/Torsion 

Loading) 
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Figure F3. Geometry 2 for Glinka code validation: round bar with large  
 circumferential notch in tension/torsion. 
 

 
This geometry represents the notched tension/torsion specimen tested by the University 

of Illinois as part of the HCF program.  This component provides a more thorough validation of 

the multiaxial capabilities of the approximation methods.  A variety of multiaxial stress/strain 

gradients were produced in the notch section by varying the relative axial and torsion load levels.  

Four cyclic loading cases were considered for this geometry: 

1) Axial loading only (R = 0) 
2) Torsion loading only (R = 0) 
3) Proportional loading (R = 0, with σmax ≈ τmax at notch root) 
4) Non-proportional loading (box path with R = −1) 
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The box path consists of a four-point cycle, with load levels ordered as follows:  (1) 

Pmax, Tmax,  (2) −Pmax, Tmax,  (3) −Pmax, −Tmax,  (4) Pmax, −Tmax.  For each load case, one elastic 

analysis and three elastic-plastic analyses were performed.  Plasticity levels ranged from first-

reversal local yielding with elastic cycling to large-scale yielding with local cyclic plasticity.  

The specific load levels are shown in Table F2. 

 

Table F2. Load Levels for Geometry 2 
 

Load Case Elastic Elastic-Plastic 
Pmax (lb) 8,000 18,000 23,000 28,000 Axial 
Tmax (lb-in) 0 0 0 0 
Pmax (lb) 0 0 0 0 Torsion 
Tmax (lb-in) 800 1,200 1,600 2,000 
Pmax (lb) 4,000 6,400 8,200 10,000 Proportional 
Tmax (lb-in) 700 1,120 1,435 1,750 
Pmax (lb) 4,000 6,400 8,200 10,000 Box Path 
Tmax (lb-in) 700 1,120 1,435 1,750 

 
 
 
For the finite element analysis, a small “wedge” was created as shown in Figure 4.  The 

wedge consisted of a 4º sector with the nodal displacements on adjacent surfaces coupled to take 

advantage of the axisymmetric geometry.  The final model was comprised of 11,420 elements.  

A close-up view of the elements in the notch region is shown in Figure F4.  For this geometry, 

the elastic-plastic stress gradients were compared along a radial line through the notch section. 
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Figure F4. Element plot of notch region for geometry 2. 
 
 
 
F.3.3 Geometry 3: Small Circumferential Notch in a Round Bar (Tension/Torsion 

Loading) 
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Figure F5. Geometry 3 for Glinka code validation: round bar with small 
circumferential notch in tension/torsion. 

 
 

This component is similar to geometry 2, except the circumferential notch is smaller 

and sharper.  This geometry was designed to produce stress gradients similar to those 

experienced near edge of contact (EOC) fretting locations.  Based on a previous analysis by 

GEAE, typical EOC stress magnitudes and gradients were achieved in the notch section by 

applying certain combinations of axial and torsional loads coupled with a radial pressure applied 
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normal to the notch surface.  For the present study, the radial pressure term was not included due 

to potential differences in how ANSYS and the approximation module may treat this boundary 

condition.  However, the nature of the stress gradients in the notch region due to the axial and 

torsional loads are still similar to those found near EOC conditions.  This geometry is intended to 

provide a more critical validation of the approximation module under loading conditions 

commonly experienced in aircraft turbine engines. 

Two cyclic loading conditions were considered for this geometry: 

1) Proportional loading (R = 0, with τmax ≈ 0.6σmax at notch root) 
2) Non-proportional loading (box path with R = −1) 

 
For each load case, one elastic analysis and three elastic-plastic analyses were performed.  

Plasticity levels ranged from first-reversal local yielding with elastic cycling to large-scale 

yielding with local cyclic plasticity.  The specific load levels are shown in Table F3. 

 
Table F3. Load Levels for Geometry 3 

 
Load Case Elastic Elastic-Plastic 

Pmax/A (ksi) 12 30 40 60 Proportional 
Tmax (lb-in) 0.018 0.045 0.06 0.09 
Pmax/A (ksi) 12 30 40 60 Box Path 
Tmax (lb-in) 0.018 0.045 0.06 0.09 

 
 
For the finite element analysis, a small “wedge” was created in the same manner as was 

done for the previous model.  The wedge consisted of a 4º sector with the nodal displacements 

on adjacent surfaces coupled to take advantage of the axisymmetric geometry.  The final model 

was comprised of 11,840 elements.  A close-up view of the elements in the notch region is 

shown in Figure F6.  For this geometry, the elastic-plastic stress gradients were compared along 

a radial line through the notch section. 
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Figure F6. Element plot of notch region for geometry 3. 
 
 
 
F.3.4 Geometry 4: Rectangular Bar with Edge Notch (Tension/Torsion Loading) 
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Figure F7. Geometry 4 for SwRI code validation: rectangular bar with edge  
 notch in tension/torsion. 

 
 

This geometry was created and analyzed to evaluate the SwRI approximation module, 

due to the aforementioned geometric restrictions of the code.  The small edge notch in the 

component produced much steeper stress gradients than those encountered in Geometry 1.  Two 

monotonic loading conditions were considered for this geometry: 

1) Axial loading 
2) Combined axial/torsion (proportional) loading 

 
For each load case, one elastic analysis and three elastic-plastic analyses were 

performed.  The specific load levels are shown in Table F4. 
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Table F4. Load Levels for Geometry 4 
 

Load Case Elastic Elastic-Plastic 
Axial Pmax/A (ksi) 15 40 60 80 

Pmax/A (ksi) 10 20 30 40 Axial/Torsion 
Tmax (lb-in) 1.5 3.0 4.5 6.0 

 
 
The finite element model for this geometry was comprised of 95,088 elements.  A 

close-up view of the elements in the notch region is shown in Figure F8.  For this geometry, the 

elastic-plastic stress gradients were compared along a line through the notch section at both the 

midplane and outer surface of the specimen. 

 

      
 

Figure F8. Element plot of notch region for geometry 4. 
 
 
 
F.4 ASSESSMENT OF GLINKA CODE 
 

Comparisons between the elastic-plastic stresses obtained from the finite element 

analyses and the Glinka approximation code for Geometries 1 – 3 are shown in Figures F9 – F40.  

For Geometry 1 (Figures F9 – F16), the y-axis corresponds to the axial (loading) direction, while 

the x-axis is directed along the notch section and the z-axis is directed through the thickness (see 

Figure F1).  For Geometry 2 (Figures F17 – F31), x represents the tangential (hoop) direction, y 
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represents the radial direction, and z represents the longitudinal (axial) direction.  The same 

coordinate system applies for geometry 3 (Figures F32 – F40). 

F.4.1 Summary of Glinka Results: Geometry 1 
 

The comparisons between the Glinka code and FEA results for geometry 1 are shown 

in Figures F9 – F16.  Even at low loads, there were noticeable discrepancies between the Glinka 

stresses and FEA stresses for this geometry.  In general, the Glinka code predicted a greater yield 

zone depth near the notch than FEA.  In some cases, the depth of the plastic zone predicted by 

Glinka was approximately twice the depth calculated by FEA (see Figures F11 – F14, for 

example).  Although the stresses at the notch root were, in most cases, reasonably accurate, the 

sub-surface stresses were often in disagreement.  The errors become particularly significant at 

minimum load (unloading), even at low loads.  For example, in Figures F9 and F11 (P/A = 40 

and 60 ksi, respectively), the subsurface residual stresses calculated by the Glinka code are much 

greater than those calculated by FEA.  It is also interesting to observe that, at high loads, the 

errors change in sign from the center of the notch section to the outer edge.  Note that, in Figures 

F15 and F16 (P/A = 100 ksi), while the equivalent stress (σeqv) is in good agreement, the 

individual components (σx, σy, and σz) calculated by the Glinka code are less than the FEA 

stresses at the center of the notch section, but greater than the FEA stresses at the edge of the 

notch section. 

The errors in the Glinka code for geometry 1 are likely due to the method by which this 

code redistributes the stresses across the notch section.  The Glinka code utilizes the elastic 

equivalent stress distribution along a single line through the notch section, rather than 

considering the elastic stress distribution over the entire cross-section.  If stress gradients only 

exist in one direction, such as under axisymmetric loading, this method is sufficient.  However, 

for this notch geometry, the stress distribution on the notch section varies not only along the 

width of the component but also through the thickness of the component, due to the constraint 

near the notch.  In this case, the stress redistribution due to yielding must take into account the 

gradients in two directions.  The Glinka code, in the current form, cannot fully account for bi-

directional stress gradients. 
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F.4.2 Summary of Glinka Results: Geometry 2 
 

The comparisons between the Glinka code and FEA results for geometry 2 are shown 

in Figures F17 – F31.  In general, the Glinka stress approximations for this geometry were in 

much better agreement with FEA results than those for geometry 1.  For the cases of pure 

tension, pure torsion, and proportional (combined tension/torsion) loading (Figures F17 – F19, 

F20 – F22, and F23 – F25, respectively), the approximate stresses from the Glinka code are, in 

most cases, in quite good agreement.  However, some discrepancies appear at the higher load 

levels.  For example, the hoop stress (σx) is underpredicted by the Glinka code at higher levels of 

axial loading.  Under torsion and proportional loading, the depth of the yield zone is 

underpredicted at the highest load levels (Figures F22 and F25), resulting in substantial errors in 

the estimated subsurface residual stresses upon unloading. 

The non-proportional box path proved to be a greater challenge for the Glinka code.  At 

low load levels (Figures F26 – F27), where the extent of plasticity was very localized, the Glinka 

stress approximations were in good agreement with FEA.  However, as the load levels were 

increased (Figures F28 – F31), the Glinka stresses deviated from the FEA stresses at certain 

points.  This is especially noticeable in the axial stress (σz).  Also, at the highest load level, the 

yield depth is underpredicted by the Glinka code, and the error in the radial stress (σy) at the 

notch root appears to increase at each successive point in the cycle (the radial stress should be 

zero at the notch root). 

F.4.3 Summary of Glinka Results: Geometry 3 
 

The comparisons between the Glinka code and FEA results for geometry 3 are shown 

in Figures F32 – F40.  This geometry was similar to geometry 2, although the notch was much 

sharper.  This resulted in steeper stress gradients near the notch root, making the stress 

redistribution due to yielding more difficult to calculate.  For the case of proportional (combined 

tension/torsion) loading (Figures F32 – F34), there were slight discrepancies noted between the 

Glinka and FEA results for some stress components even at lower loads (for example, the hoop 

stress, σx, near the notch root).  At the highest load level (Figure 34), the subsurface stresses 

deviated considerably, and the yield zone depth was again underpredicted by the Glinka code. 

Similar discrepancies were found for the non-proportional box path load cycle (Figures 

F35 – F40).  At the lowest load level, slight errors between the Glinka and FEA stresses are 
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evident near the notch root (note, however, that the notch root stresses for the Glinka code shown 

in Figure F36 are unreasonable, and may be due to an error in the analysis).  At the highest load 

level (Figures F39 and F40), the differences between the Glinka and FEA results are severe, even 

subsurface.  At this load level, the Glinka code failed to generate stress results near the notch 

root.  However, it should be noted that this loading case represents a very severe state of plastic 

deformation that would not likely be encountered in aircraft engine components. 
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Figure F9. Comparisons between FEA and Glinka stresses for geometry 1, P/A = 40 ksi, center 

of notch section at maximum load (top) and minimum load (bottom). 
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Figure F10. Comparisons between FEA and Glinka stresses for geometry 1, P/A = 40 ksi, edge 

of notch section at maximum load (top) and minimum load (bottom). 
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Figure F11. Comparisons between FEA and Glinka stresses for geometry 1, P/A = 60 ksi, center 

of notch section at maximum load (top) and minimum load (bottom). 
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Figure F12. Comparisons between FEA and Glinka stresses for geometry 1, P/A = 60 ksi, edge 

of notch section at maximum load (top) and minimum load (bottom). 
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Figure F13. Comparisons between FEA and Glinka stresses for geometry 1, P/A = 80 ksi, center 

of notch section at maximum load (top) and minimum load (bottom). 
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Figure F14. Comparisons between FEA and Glinka stresses for geometry 1, P/A = 80 ksi, edge 

of notch section at maximum load (top) and minimum load (bottom). 
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Figure F15. Comparisons between FEA and Glinka stresses for geometry 1, P/A = 100 ksi, 

center of notch section at maximum load (top) and minimum load (bottom). 
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Figure F16. Comparisons between FEA and Glinka stresses for geometry 1, P/A = 100 ksi, edge 

of notch section at maximum load (top) and minimum load (bottom). 
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Figure F17. Comparisons between FEA and Glinka stresses for geometry 2, axial loading (P = 

18,000 lb) at maximum load (top) and minimum load (bottom). 
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Figure F18. Comparisons between FEA and Glinka stresses for geometry 2, axial loading (P = 

23,000 lb) at maximum load (top) and minimum load (bottom). 
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Figure F19. Comparisons between FEA and Glinka stresses for geometry 2, axial loading (P = 

28,000 lb) at maximum load (top) and minimum load (bottom). 
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Figure F20. Comparisons between FEA and Glinka stresses for geometry 2, torsion loading (T = 

1200 lb-in) at maximum load (top) and minimum load (bottom). 
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Figure F21. Comparisons between FEA and Glinka stresses for geometry 2, torsion loading (T = 

1600 lb-in) at maximum load (top) and minimum load (bottom). 
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Figure F22. Comparisons between FEA and Glinka stresses for geometry 2, torsion loading (T = 

2000 lb-in) at maximum load (top) and minimum load (bottom). 
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Figure F23. Comparisons between FEA and Glinka stresses for geometry 2, proportional loading 

(P = 6400 lb, T = 1120 lb-in) at maximum load (top) and minimum load (bottom). 
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Figure F24. Comparisons between FEA and Glinka stresses for geometry 2, proportional loading 

(P = 8200 lb, T = 1435 lb-in) at maximum load (top) and minimum load (bottom). 
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Figure F25. Comparisons between FEA and Glinka stresses for geometry 2, proportional loading 

(P = 10,000 lb, T = 1750 lb-in) at maximum load (top) and minimum load (bottom). 
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Figure F26. Comparisons between FEA and Glinka stresses for geometry 2, box path (P = 6400 

lb, T = 1120 lb-in) at point 1 (top) and point 2 (bottom). 
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Figure F27. Comparisons between FEA and Glinka stresses for geometry 2, box path (P = 6400 

lb, T = 1120 lb-in) at point 3 (top) and point 4 (bottom). 
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Figure F28. Comparisons between FEA and Glinka stresses for geometry 2, box path (P = 8200 

lb, T = 1435 lb-in) at point 1 (top) and point 2 (bottom). 



 F-34

 

-80
-60
-40
-20

0
20
40
60
80

100
120

0.00 0.05 0.10 0.15 0.20 0.25
Distance from notch root (in)

St
re

ss
 (k

si)
Sx (Glinka)
Sx (FEA)
Sy (Glinka)
Sy (FEA)
Sz (Glinka)
Sz (FEA)
Seqv(Glinka)
Seqv(FEA)
Sxz(Glinka)
Sxz(FEA)

 
 
 

-80
-60
-40
-20

0
20
40
60
80

100
120

0.00 0.05 0.10 0.15 0.20 0.25
Distance from notch root (in)

St
re

ss
 (k

si)

Sx (Glinka)
Sx (FEA)
Sy (Glinka)
Sy (FEA)
Sz (Glinka)
Sz (FEA)
Seqv(Glinka)
Seqv(FEA)
Sxz(Glinka)
Sxz(FEA)

 
 
 
Figure F29. Comparisons between FEA and Glinka stresses for geometry 2, box path (P = 8200 

lb, T = 1435 lb-in) at point 3 (top) and point 4 (bottom). 
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Figure F30. Comparisons between FEA and Glinka stresses for geometry 2, box path (P = 10,000 

lb, T = 1750 lb-in) at point 1 (top) and point 2 (bottom). 
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Figure F31. Comparisons between FEA and Glinka stresses for geometry 2, box path (P = 10,000 

lb, T = 1750 lb-in) at point 3 (top) and point 4 (bottom). 
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Figure F32. Comparisons between FEA and Glinka stresses for geometry 3, proportional loading 

(P/A = 30 ksi, T = 0.045 lb-in) at maximum load (top) and minimum load (bottom). 
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Figure F33. Comparisons between FEA and Glinka stresses for geometry 3, proportional loading 

(P/A = 40 ksi, T = 0.06 lb-in) at maximum load (top) and minimum load (bottom). 
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Figure F34. Comparisons between FEA and Glinka stresses for geometry 3, proportional loading 

(P/A = 60 ksi, T = 0.09 lb-in) at maximum load (top) and minimum load (bottom). 
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Figure F35. Comparisons between FEA and Glinka stresses for geometry 3, box path (P/A = 30 

ksi, T = 0.045 lb-in) at point 1 (top) and point 2 (bottom). 
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Figure F36. Comparisons between FEA and Glinka stresses for geometry 3, box path (P/A = 30 

ksi, T = 0.045 lb-in) at point 3 (top) and point 4 (bottom). 
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Figure F37. Comparisons between FEA and Glinka stresses for geometry 3, box path (P/A = 40 

ksi, T = 0.06 lb-in) at point 1 (top) and point 2 (bottom). 
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Figure F38. Comparisons between FEA and Glinka stresses for geometry 3, box path (P/A = 40 

ksi, T = 0.06 lb-in) at point 3 (top) and point 4 (bottom). 
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Figure F39. Comparisons between FEA and Glinka stresses for geometry 3, box path (P/A = 60 

ksi, T = 0.09 lb-in) at point 1 (top) and point 2 (bottom). 
 



 F-45

 

-100

-60

-20

20

60

100

140

0.000 0.002 0.003 0.005 0.006 0.008 0.009

Distance from notch root (in)

St
re

ss
 (k

si)
Sx (Glinka)
Sx (FEA)
Sy (Glinka)
Sy (FEA)
Sz (Glinka)
Sz (FEA)
Seqv(Glinka)
Seqv(FEA)
Sxz(Glinka)
Sxz(FEA)

 
 
 

-80

-40

0

40

80

120

160

200

0.000 0.002 0.003 0.005 0.006 0.008 0.009

Distance from notch root (in)

St
re

ss
 (k

si)

Sx (Glinka)
Sx (FEA)
Sy (Glinka)
Sy (FEA)
Sz (Glinka)
Sz (FEA)
Seqv(Glinka)
Seqv(FEA)
Sxz(Glinka)
Sxz(FEA)

 
 
 
Figure F40. Comparisons between FEA and Glinka stresses for geometry 3, box path (P/A = 60 

ksi, T = 0.09 lb-in) at point 3 (top) and point 4 (bottom). 
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F.5 ASSESSMENT OF SWRI CODE 

As previously mentioned, the SwRI code, in the delivered form, was limited to the 

analysis of a rectangular cross-section under monotonic loading (not cyclic).  Consequently, the 

assessment and validation of this code was more limited than for the Glinka code.  Only 

geometries 1 and 4 could be analyzed by this code, as geometries 2 and 3 contained circular 

cross-sections at the notch.  Furthermore, the applied load cases were restricted to tension, 

torsion, and proportional combined tension-torsion, with comparisons only made at the point of 

maximum load (no unloading or cyclic loading). 

Comparisons between the elastic-plastic stresses obtained from the finite element 

analyses and the SwRI approximation code for geometries 1 and 4 are shown in Figures 41 – 49.  

For geometry 1 (Figures F41 – F43), the z-axis corresponds to the axial (loading) direction, 

while the x-axis is directed along the notch section and the y-axis is directed through the 

thickness (note the y and z axes have been interchanged relative to the Glinka comparisons).  

The same coordinate system applies for geometry 4 (Figures F44 – F49). 

F.5.1 Summary of SwRI Results: Geometry 1 
 

The comparisons between the SwRI code and FEA results for geometry 1 are shown in 

Figures F41 – F43.  The results shown are for tensile loading with P/A ranging from 40 to 80 ksi.  

Due to the extensive yielding on the notch section that occurred at P/A = 100 ksi, the code was 

not able to generate an elastic-plastic stress approximation at the highest load.  However, at the 

lower load levels, the stress calculations from the SwRI code were in much better agreement 

with the FEA results than those from the Glinka code.  Some discrepancies in σy and σz near the 

notch root were observed along the specimen centerline, but the depth of the plastic zone was 

reasonably well approximated, and the stresses along the edge of the component were in fairly 

close agreement with FEA results. 

The better accuracy for geometry 1 displayed by the SwRI code, relative to the Glinka 

code, is likely due to the method by which the SwRI code redistributes the stresses on the notch 

section.  In approximating the elastic-plastic stresses from the elastic solution, the SwRI code 

takes into account the full stress distribution on the entire component cross-section, rather than 

along a single line as the Glinka code does.  Thus, full equilibrium is maintained as the stresses 

are redistributed across the section due to yielding.  As a result, the stress gradient through the 
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thickness of the part (from the centerline to the edge), which affects the magnitudes of the stress 

components and the depth of the plastic zone, is better accounted for by the SwRI code, leading 

to more accurate elastic-plastic stress estimates in components with a rectangular cross-section.  

For axisymmetric components, in which a stress gradient occurs in only one direction (radial), 

the differences between the two codes would likely be much less.  This could not be verified, 

however, as the SwRI code was not formulated to analyze such components. 

F.5.2 Summary of SwRI Results: Geometry 4 
 

The comparisons between the SwRI code and FEA results for geometry 4 are shown in 

Figures F44 – F49.  As with geometry 1, the stresses predicted by the SwRI code were in 

reasonable agreement with FEA results in most cases, although there were slightly larger 

discrepancies found in certain stress components at higher loads.  For example, under axial 

loading (Figures F44 – F46), the through-the-thickness stress (σy) predicted by the SwRI code 

along the centerline was substantially smaller than the FEA value near the notch root, while the 

axial stress (σz) was also slightly underpredicted at the higher load levels.  However, the depth of 

the plastic zone was in good agreement with FEA.  Under combined axial/torsional loads 

(Figures F47 – F49), similar results were found at the higher loads, with σz and σy 

underpredicted along the centerline near the notch root.  With the exception of σx, the stress 

predictions along the edge of the component were in very good agreement with FEA results at all 

load levels. 
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Figure F41. Comparisons between FEA and SwRI stresses for geometry 1, P/A = 40 ksi, center 

of notch section (top) and edge of notch section (bottom). 
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Figure F42. Comparisons between FEA and SwRI stresses for geometry 1, P/A = 60 ksi, center 

of notch section (top) and edge of notch section (bottom). 
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Figure F43. Comparisons between FEA and SwRI stresses for geometry 1, P/A = 80 ksi, center 

of notch section (top) and edge of notch section (bottom). 
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Figure F44. Comparisons between FEA and SwRI stresses for geometry 4, axial loading (P/A = 

40 ksi), center of notch section (top) and edge of notch section (bottom). 
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Figure F45. Comparisons between FEA and SwRI stresses for geometry 4, axial loading (P/A = 

60 ksi), center of notch section (top) and edge of notch section (bottom). 
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Figure F46. Comparisons between FEA and SwRI stresses for geometry 4, axial loading (P/A = 

80 ksi), center of notch section (top) and edge of notch section (bottom). 
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Figure F47. Comparisons between FEA and SwRI stresses for geometry 4, proportional loading 

(P/A = 20 ksi, T = 3.0 lb-in), center of notch section (top) and edge of notch section 
(bottom). 
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Figure F48. Comparisons between FEA and SwRI stresses for geometry 4, proportional loading 

(P/A = 30 ksi, T = 4.5 lb-in), center of notch section (top) and edge of notch section 
(bottom). 
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Figure F49. Comparisons between FEA and SwRI stresses for geometry 4, proportional loading 

(P/A = 40 ksi, T = 6.0 lb-in), center of notch section (top) and edge of notch section 
(bottom). 
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F.6 SUMMARY AND CONCLUSIONS 
 

The two approximate elastic-plastic notch analysis methods considered here both 

displayed promising results under certain conditions.  The Glinka code provided reasonable 

stress estimates for axisymmetric components (such as circumferentially notched round bars), in 

which the stress gradients are limited to one direction.  However, for non-axisymmetric 

components, in which the stress gradients may be bi-directional, the Glinka approximations were 

much less accurate.  The SwRI code provided better overall stress approximations for 

components with a rectangular cross-section.  However, in the current form, the SwRI program 

is more limited in its versatility, as it has not been coded to analyze non-rectangular sections or 

handle loading conditions that result in cyclic plasticity.  In addition, some problems were 

encountered in running the SwRI code under loading conditions that produced very large-scale 

plasticity.  This should not be considered a serious drawback, however, as the primary intent of 

the approximation code is to analyze notched components under conditions of fairly localized 

yielding. 
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APPENDIX G 

SMALL NOTCH MODELING USING Fs 
 
 
G.1 INTRODUCTION 

The prediction of the fatigue life or fatigue limit loading for notched components 

has received considerable attention over the years.  It has long been recognized that the use 

of the peak notch-root stress, calculated using the theoretical stress concentration factor Kt, 

results in overly conservative life-predictions.  Even when localized plasticity at the notch 

root (resulting in shakedown) is taken into account, the peak stress alone is still insufficient 

to predict the fatigue life or limiting stress from smooth bar data.  Although there are a 

number of contributing factors, it is generally acknowledged that the stress gradients in the 

vicinity of the notch play a significant role.  Evidence has shown that the steeper the stress 

gradient, the more non-conservative the prediction using Kt.  This phenomenon can be 

explained by recognizing that, under equivalent peak stress conditions, a steeper stress 

gradient results in a smaller area (volume) of material subjected to the high stress levels.  

Utilizing a stochastic viewpoint of the fatigue process, cracks would be less likely to initiate 

from a smaller highly-stressed volume of material, than in a larger (highly-stressed) volume 

such as found in smooth, axially loaded specimens. 

A common design methodology that has been used to account for the observed 

behavior defines a “fatigue notch factor,” Kf, where Kf ≤ Kt.  Kf is often defined in terms of a 

“notch sensitivity factor,” q, which is dependent on the material and the notch root radius 

(which affects the stress gradients).  As the notch radius decreases, q decreases, reflecting a 

greater deviation between Kt and Kf.  Although this approach has been successfully applied 

to some common notch geometries under uniaxial loading conditions, the definition of q and 

Kf are ambiguous for more complex notch/component geometries or under multiaxial loading 

conditions. 

An alternative technique for analyzing the fatigue characteristics of notched 

components makes use of the amount of highly stressed surface area in the vicinity of a notch 

[1].  The stressed-surface-area, or Fs approach, accounts for the stress gradient effect through 

consideration of the stress distribution on the surface of a component in the vicinity of the 
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notch.  In applying this method, a factor is calculated that provides a correction to the peak 

notch root stress as determined by theoretical, numerical (e.g., FEA) or experimental 

techniques.  The corrected notch root stress may then be used in conjunction with 

conventional fatigue life/strength prediction methods employed for unnotched components. 

The Fs method has been successfully used to predict the fatigue life or fatigue limit 

loads for a variety of notched components containing mild to moderate stress gradients [1, 2].  

However, one area of particular concern in the design of aircraft engines is foreign-object 

damage (FOD), which can result in very small, sharp notches (with severe stress gradients) 

on the leading edges of fan or turbine blades.  To evaluate the capabilities of the Fs method 

in predicting allowable fatigue-limit (threshold) stress levels for components containing 

FOD-like notches, the method was used to estimate the threshold (long-life) stress levels for 

the small, sharp-notch Ti-6Al-4V specimens tested by SwRI.  The details regarding the 

implementation of this method, and the resulting threshold stress predictions, are discussed in 

this appendix. 

G.2 STRESSED-SURFACE-AREA (Fs) METHOD 

The Fs method makes use of a geometry dependent factor (Fsnotch), which provides 

a measure of the amount of highly stressed surface area in the vicinity of a notch [1, 2].  In 

the general case, this factor is calculated by integrating the ratio of the maximum principle 

stress to the peak notch-root stress (raised to a power) over the surface area of the 

component.  When calculated from a finite element model, the integral is replaced by a 

summation over the elements adjacent to a free surface on the component, resulting in the 

following expression 
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where σ1,i is the first principle stress on the free surface of element i (averaged at the nodes), 

Ai is the free-surface area of element i, σmax is the maximum notch root stress (first principle 

stress), and α is a material constant obtained by correlating smooth and notched test data.  

Since Fsnotch is calculated from a ratio of stresses, it does not change appreciably with load 



G-3 

level provided notch root yielding is small.  Thus, σmax is often calculated from an elastic 

analysis. 

The factor Fsnotch is then used to determine the adjusted notch root stress, 
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where Fsref is the value of Fs for a baseline axial specimen and peak

notchσ  is the peak notch root 

stress at a particular load level.  The peak stress in Eq. G2 must take into account localized 

yielding, and must therefore be calculated from an elastic-plastic analysis.  The adjusted 

notch root stress can then be used in conjunction with conventional stress-life data to 

estimate the corresponding fatigue life or fatigue limit load for a particular notched specimen. 

G.3 FINITE ELEMENT MODELING OF SMALL-NOTCH SPECIMENS 

The small-notch Ti-6Al-4V specimens tested by SwRI and modeled in this analysis 

consisted of a double-edge notched specimen with rectangular cross-section, with gross-

section dimensions of 0.235 in × 0.125 in.  The notch geometry is illustrated in Fig. G1.  For 

this analysis, notch dimensions (ρ and b) were chosen to correspond to the average measured 

notch dimensions of the specimens tested by SwRI.  These notch dimensions correspond to 

the eleven configurations of notch-type 1 originally identified for testing by SwRI.  The 

notch dimensions and associated elastic stress concentration factors (obtained from elastic 

FEA solutions) for the notched specimens considered in this study are shown in Table G1.  

Two values of Kt are included in the table for each specimen, one based on the net-section 

area through the notch (the traditional definition of Kt), and the other based on the gross-

section area (0.235 in × 0.125 in).  The net-section Kt values range from approximately 2.7 to 

5. 
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b
 

 
Figure G1.  Small notch details. 

 
 

Table G1.  Small Notch Dimensions and Elastic Stress Concentration Factors 
 

 
Notch ID 

 
ρ (in) 

 
b (in) 

Kt 
(net section) 

Kt 
(gross section) 

1 0.0047 0.0041 2.94 3.04 
2 0.0049 0.0080 3.59 3.86 
3 0.0035 0.0023 2.70 2.76 
4 0.0038 0.0085 4.07 4.39 
5 0.0054 0.0040 2.77 2.87 
6 0.0064 0.0080 3.24 3.48 
7 0.0062 0.0230 4.56 5.67 
8 0.0064 0.0490 4.99 8.55 
9 0.0090 0.0090 2.96 3.21 
10 0.0090 0.0240 3.94 4.95 
11 0.0090 0.0500 4.27 7.43 

 
 

For each of the notched specimens identified in Table G1, three-dimensional elastic 

and elastic-plastic finite element analyses were conducted using the commercial software 

ANSYS.  All of the FE models were constructed using 8-node, three-dimensional structural 

solid elements with extra displacement shapes included for better accuracy.  Symmetry of the 

specimens (on three planes) was taken advantage of to reduce the size of the FE models.  A 

mesh refinement study was performed on each model to verify that the discretization error 

was sufficiently small.  To facilitate the collection of the free-surface stresses required by the 

Fs model (Eq. G1), special 3-D Structural Surface Effect Elements (SURF154 in ANSYS) 

were overlaid on all the solid elements adjacent to a free surface.  These additional elements 

did not affect the results of the analyses, but simply provided a convenient mechanism for 

identifying the surface stresses and surface area of each element along a free-surface of the 
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component.  Sample FE meshes for specimens 6 and 11 (Table G1) are shown in Figures G2 

and G3. 

 

    
 

Figure G2.  Finite element mesh for specimen #6. 
 
 

    
 

Figure G3.  Finite element mesh for specimen #11. 
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A static, linear-elastic analysis was first performed on each specimen to determine 

the Kt values shown in Table G1 and to calculate the geometry factor Fsnotch from Eq. G1.  

The material properties used in this analysis were E = 16,780 ksi and ν = 0.349.  To calculate 

the adjusted notch root stresses from Eq. G2, a cyclic elastic-plastic analysis was required for 

each specimen.  For these analyses, a multilinear kinematic hardening rule was used in 

conjunction with the cyclic stress-strain curve for Ti-6Al-4V at room temperature obtained 

from half-life LCF data generated in the HCF program.  Applying a Ramberg-Osgood fit to 

the data, the cyclic stress-strain curve for Ti-6Al-4V can be expressed as 
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where σ has units of ksi, and the cyclic yield strength was taken as σy = 109.2 ksi.  From this 

equation, cyclic stress-strain values were calculated and used as input for the models.  The 

stress-strain values are shown in Table G2.  For each of the elastic-plastic analyses, 10 load 

cycles were run to ensure the local (notch-root) plastic strains reached a cyclically stable 

state.  This was verified by examining the equivalent plastic strain and the largest principle 

plastic strain at the root of the notch at the end of each load cycle. 

 
Table G2.  Stress/Strain Values used in Ansys Elastic-Plastic Analyses 

 
Stress (ksi) 109.22 113.0 114.0 115.5 116.3 116.8 117.2 117.6 118.3 119.7 121.0 
Strain (in/in) .006474 .008659 .01030 .01536 .02043 .02497 .02965 .03551 .04951 .1007 .2004 

 

The purpose of this study was to determine the nominal threshold stress levels for 

the notched specimens corresponding to a fatigue life of 107 cycles at a stress ratio of               

R = 0.5.  Due to the biaxial stress state occurring at the center of the notch root, the peak and 

adjusted notch root stresses in Eq. G2 were calculated in terms of an equivalent stress, with         

α = 35 and Fsref = 0.161 [1].  For the cyclic loading condition, the equivalent stress was 

incorporated into the modified Manson-McKnight (MMM) model [2].  The MMM parameter 

was related to the fatigue life of Ti-6Al-4V using the following function, with w = 0.42: 

 
 0.5(∆σpsu)w(σmax)1-w = 3501.8N-0.5164 + 36.74N0.00068 (G4) 
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To determine the threshold stress levels corresponding to N = 107 cycles, an 

iterative study was needed.  That is, an initial load level was applied, the adjusted notch-root 

stresses were calculated from Eqs. G1 and G2, and the fatigue life was then determined from 

Eq. G4.  This process was repeated until a value sufficiently close to N = 107 was found. 

G.4 RESULTS AND COMPARISONS TO EXPERIMENTAL DATA 

The predicted threshold stress levels for the 11 notched specimens, based on the 

gross cross-section dimensions, are shown in Table G3.  Also included in this table, where 

applicable, are the experimentally determined values obtained by SwRI for notches of similar 

dimensions.  The experimental values represent the 107-cycle notch fatigue strength at            

R = 0.5 obtained using a step-test approach.  Due to experimental difficulties, not all notch 

configurations originally planned were tested.  It should also be noted that, in most cases, the 

measured notch dimensions deviated somewhat from the values used in this study.  Thus, 

direct comparison between the experimental and predicted threshold stress levels must be 

done with caution. 

 
Table G3.  Threshold Stress Estimates for Notched Specimens using the Fs Approach 

 
Predicted Experimental 

No. ρ (in) b (in) σmax (ksi) ∆σ (ksi) ∆σ (ksi) Spec. ID ρ (in) b (in) 
1 0.0047 0.0041 51.0 25.5     
2 0.0049 0.0080 39.6 19.8     
3 0.0035 0.0023 57.4 28.7     
4 0.0038 0.0085 35.0 17.5     
5 0.0054 0.0040 53.0 26.5     
6 0.0064 0.0080 43.2 21.6 16.3 153-39 0.0064 0.0089 
7 0.0062 0.0230 26.2 13.1 11.1 153-42 0.0060 0.0236 

6.0 153-43 0.0064 0.0495 8 0.0064 0.0490 17.5 8.75 7.9 153-44 0.0064 0.0484 
9 0.0090 0.0090 45.4 22.7     
10 0.0090 0.0240 29.5 14.75     
11 0.0090 0.0500 19.9 9.95     

 

Although limited in number, the comparisons between experimental and predicted 

threshold stress levels provide some useful information concerning the capabilities and 
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accuracy of the Fs approach.  In all cases, the predicted threshold stress levels exceeded the 

experimental values.  However, the differences between the actual and modeled notch 

dimensions may have contributed to the discrepancies to some degree.  For example, the 

actual (experimental) notch depth for specimen #6 was approximately 10% greater than the 

modeled value, and the actual notch for specimen #7 was slightly sharper and deeper than 

modeled.  These effects would increase the effective stress concentration factors (peak notch 

root stresses), thereby reducing the nominal threshold stress levels for these specimens. 

The limited results presented in this study indicate that the Fs method is slightly 

non-conservative when applied to components containing very small, sharp notches resulting 

in severe stress gradients, such as may arise from foreign object damage to fan and 

compressor blades.  However, this may possibly be corrected by modifying the material 

dependent parameter α used in the Fs model; i.e., the value of α used for moderate stress 

gradients may not be adequate for notches with steep stress gradients.  Nevertheless, the 

predicted threshold stress levels obtained here can be considered to be reasonably close to the 

experimental values, indicating that the Fs method, with some modification, has the potential 

to account for the severe stress gradients encountered in the vicinity of small, sharp notches. 
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APPENDIX H 

AN ANALYSIS OF ELASTO-PLASTIC STRAINS AND STRESSES IN 
NOTCHED BODIES SUBJECTED TO NON-PROPORTIONAL 

LOADING 
 
 

H.1 INTRODUCTION 

The report contains the theoretical principles of the equivalent strain energy density 

method developed for the elasto-plastic stress-strain analysis of notched bodies subjected to 

multiaxial non-proportional loading paths and results of its experimental and numerical 

validation.  

The first module (NEU34) developed within the project dealt with stresses and 

strains at the notch tip only enabling to reduce the analysis to two dimensional stress (three 

non-zero stress components) state because it was assumed that the surface of the notch tip 

contour was stress free. 

The second module (NPC30) was developed for complete three dimensional stress 

states making it possible to analyze six non-zero stress components. 

Each module was extensively validated using independent numerical data. 

 
H.2 NOTATION 

E - modulus of elasticity  

ESED - equivalent strain energy density 

eij
a          - actual elastic-plastic strains at the notch tip 

eij
e          - hypothetical elastic strains at the notch tip 

G           - shear modulus of elasticity 

K’ - cyclic strength coefficient 

KF - stress concentration factor due to axial load 

KT - stress concentration factor due to torsional load 

k, n - load increment number 

n’ - cyclic strain hardening exponent 

δij - Kronecker delta, δij = 1 for i = j and δij = 0 for i ≠ j 
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∆εij
p - plastic strain increments 

∆εij
e - elastic strain increments 

∆εij
a - actual elastic-plastic strain increments  

∆εeq
pa     - equivalent plastic strain increment  

∆σij
e - pseudo-elastic stress components 

∆σij
a - actual stress components  

∆σeq
a - actual equivalent stress increment  

Sij
e - deviatoric stresses of the elastic input 

Sij
a - actual deviatoric stresses 

εeq
pa - actual equivalent plastic strain  

εij
a                - actual elasto-plastic notch-tip strains  

εij
e - elastic notch tip strain components  

εn - nominal strain 

ν - Poisson's ratio 

σeq
a - actual equivalent stress at the notch tip 

σij
a - actual stress tensor components in the notch tip 

σij
e         - notch tip stress tensor components of the elastic input 

σo - parameter of the material stress-strain curve  

P - axial load 

T - torque 

R - radius of the cylindrical specimen 

 

H.3 THEORETICAL BASIS FOR THE TWO-DIMENSIONAL  (2-D) ELASTO-
PLASTIC NOTCH TIP MODEL 

 
Notches and other geometrical irregularities cause significant stress concentration. 

Such an increase of stresses results often in localized plastic deformation, leading to 

premature initiation of fatigue cracks. Therefore, the fatigue strength and durability 

estimations of notched components require detail knowledge of stresses and strains in such 

regions. The stress state in the notch tip region is in most cases multiaxial in nature. Axles 

and shafts may experience, for example, combined out of phase torsion and bending loads. 
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Although modern Finite Element commercial software packages make it possible to 

determine notch tip stresses in elastic and elastic plastic bodies with a high accuracy for short 

loading histories such methods are still impractical in the case of long loading histories 

experienced by machines in service. A representative cyclic loading history may contain 

from a few thousands to a few millions of cycles. Therefore incremental elastic-plastic finite 

element analysis of such a history would require prohibitively long computing time. For this 

reason more efficient methods of elastic-plastic stress analysis are necessary in the case of 

fatigue life estimations of notched bodies subjected to lengthy cyclic stress histories. One 

such a method, suitable for calculating multiaxial elastic-plastic stresses and strains in 

notched bodies subjected to proportional and non-proportional loading histories, is proposed 

below. 

H.3.1 Loading Histories 

The notch tip stresses and strains are dependent on the notch geometry, material 

properties and the loading history applied to the body. If all components of a stress tensor 

change proportionally, the loading is called proportional. When the applied load causes the 

directions of the principal stresses and the ratio of the principal stress magnitudes to change 

after each load increment, the loading is termed non-proportional.  If plastic yielding takes 

place at the notch tip then almost always the stress path in the notch tip region is non-

proportional regardless whether the remote loading is proportional or not. The non-

proportional loading/stress paths are usually defined by successive increments of load/stress 

parameters and all calculations have to be carried out incrementally. In addition the material 

stress-strain response to non-proportional cyclic loading paths has to be simulated, including 

the material memory effects. 

H.3.2 The Stress State at the Notch Tip 

For the case of general multiaxial loading applied to a notched body, the state of 

stress near the notch tip is tri-axial. However, the stress state at the notch tip is bi-axial 

because of the notch-tip stress free surface (Figure H1). Since equilibrium of the infinitesimal 

element at the notch tip must be maintained, i.e. σ23 = σ32 and ε23 = ε32, there are three non-

zero stress components and four non-zero strain components. Therefore there are seven 
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unknowns all together and a set of seven independent equations is required for the 

determination of all stress and strain components at the notch tip.  
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The material constitutive relationships provide four equations, leaving three 

additional equations to be established. 
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Figure H1.  Stress state at a notch tip (notation). 

 
H.3.3 Material Constitutive Model 

In the case of proportional or nearly proportional notch tip stress path the Hencky 

total deformation equations of plasticity can be used in the analysis. 
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where: Sij
a

ij
a

kk
a

ij= −σ σ δ1
3

 

The most frequently used model of incremental plasticity is the Prandtl-Reuss flow rule. For 

an isotropic body, the Prandtl-Reuss strain-stress relationships can be expressed as: 
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The multiaxial incremental stress-strain relation (H3) is obtained from the uniaxial stress-

strain curve by relating the equivalent plastic strain increment to the equivalent stress 

increment such that: 

 

∆ ∆eq
pa eq

a

eq
a eq

a=
d f( )

d
ε

σ
σ

σ . (H4) 

 

The function, εeq
p= f(σeq), is identical to the plastic strain – stress relationship obtained 

experimentally from uni-axial tension test. 

H.3.4 The Load-Notch Tip Stress-Strain Relationships 

The load or the load parameter, in the case of notched bodies, is usually represented 

by the nominal or reference stress being proportional to the remote applied load. In the case 

of notched bodies in plane stress or plane strain state the relationship between the load and 

the elastic-plastic notch tip strains and stresses in the localized plastic zone is often 

approximated by the Neuber rule [1] or the Equivalent Strain Energy Density (ESED) 

equation [2]. It was shown [3, 4] that both methods can also be extended for multiaxial 

proportional and non-proportional modes of loading. Similar approaches were proposed by 

Hoffman and Seeger [ 5] and Barkey et al. [6 ]. All methods consist of two parts namely the 

constitutive equations and the relationships linking the fictitious linear elastic stress-strain 

state (σij
e,εij

e) at the notch tip with the actual elastic-plastic stress-strain response (σij
a,εij

a) as 

shown in Figure H2. 
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Figure H2.  Stress states in geometrically identical elastic and elastic-plastic bodies subjected 
to identical boundary conditions. 

 

For proportional loading the Neuber rule [2,3], where the Hencky stress-strain 

relationships are applicable, can be written for the uni-axial and multiaxial stress state in the 

form of equations (H5a) and (H5b) respectively. 

σ ε σ ε22 22 22 22
e e a a=  (H5a) 

σ ε σ εij
e

ij
e

ij
a

ij
a=  (H5b) 

The Neuber rule (H5a) represents the equality of the total strain energy (the strain 

energy & the complimentary strain energy density) at the notch tip, represented by the 

rectangles A and B in Figure H3a. 

The ESED method (H6a) is based on the equivalence of the strain energy density, 

which can be interpreted as the equality between the strain energy density at the notch tip of 
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a linear elastic body (Figure H2) and the notch tip strain energy density of a geometrically 

identical elastic-plastic body subjected to the same load. 
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This relationship is shown graphically in Figure H3b, and represents the equality of 

the area under the linear-elastic curve and the area under the actual elastic-plastic σ22
a-ε22

a 

material curve. 
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Figure H3.  Graphical interpretation of (a) Neuber’s rule, and (b) the equivalent strain energy 
density (ESED) method. 

 

In the case of multiaxially stressed notches the strain energy density equations can 

be written as: 
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The overall strain energy density equivalence, equation (H5b) or (H6b), relating the 

pseudo-elastic and the actual elastic-plastic notch tip strains and stresses at the notch tip has 

been generally accepted as a good approximation rule but the additional conditions, 

necessary for the complete formulation of a multiaxial stress state problem, are being the 

subject of controversy. Hoffman and Seeger [5] assumed that the ratio of the actual principal 

strains at the notch tip is to be equal to the ratio of the fictitious elastic principal strain 

components while Barkey et al. [6] suggested to use the ratio of principal stresses. The data 

presented by Moftakhar [7] found that the accuracy of the stress or strain ratio based analysis 

depended on the degree of constraint at the notch tip. Therefore, Moftakhar and co-workers 

proposed [7] to use the ratios of strain energy density contributed by each pair of 

corresponding stress and strain components. It was confirmed later by Singh et.al. [4] that the 

accuracy of the additional energy equations was also good when used in an incremental form. 

Because the ratios of strain energy density increments seem to be less dependent on the 

geometry and constraint conditions at the notch tip than the ratios of stresses or strains the 

analyst is not forced to make any arbitrary decisions about the constraint while using these 

equations. However, the additional strain energy density equations [4, 7] have a theoretical 

drawback indicated by Chu [8], namely the estimated elastic-plastic notch tip strains and 

stresses may depend on the selected system of coordinates. Fortunately, the dependence is 

not very strong and with suitably chosen system of axis it could be sufficiently accurate for a 

variety of engineering applications. It was also found that the set of seven equations 

involving the strain, stress and the strain energy density increments can be singular at some 

specific ratios of stress components, which is due to the conflict between the plasticity model 

(normality rule) and strain energy density equations. Such a conflict can be avoided if the 

principal idea of Neuber is implemented in the incremental form. Namely, it should be noted 

that the original Neuber rule (H5a) was derived for bodies in pure shear stress state. It means 

that the Neuber equation states the equivalence of only distortional strain energies. Therefore, 

in order to formulate the set of necessary equations for a multiaxial non-proportional analysis 

of elastic-plastic stresses and strains at the notch tip, the equality of increments of the total 

distortional strain energy density should be used. Thus all equations should be written in 

terms of deviatoric stresses and strains. 
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H.3.5 Deviatoric Stress-Strain Relationships 

The notch tip deviatoric stresses of the hypothetical linear-elastic input are 

determined as: 
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 (H7) 

 

The elastic deviatoric strains and strain increments can be calculated from the Hooke law. 
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The actual deviatoric stress components in the notch tip can analogously be defined as: 
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The incremental deviatoric stress-strain relations based on the associated Prandtl-Reuss flow 

rule can be subsequently written as: 
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The form and specific parameters of the stress-strain function, εeq
p= f(σeq), must be obtained 

experimentally from an uniaxial cyclic test. 

H.3.6 Equivalence of Increments of the Total Distortional Strain Energy Density 

It is proposed, analogously to the original Neuber rule, to use the equivalence of 

increments of the total distortional strain energy density contributed by each pair of 

associated stress and strain components, i.e., 
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The equalities of strain energy increments for each set of corresponding hypothetical elastic 

and actual elastic-plastic strains and stress increments at the notch tip can be shown 

graphically (Figure H4) as the equality of surface areas of the two pairs of rectangular 

elements representing the increments of strain energy density. The area of dotted rectangles 

represents the total strain energy increment of the hypothetical elastic notch tip input stress 

while the area of the hatched rectangles represents the total strain energy density of the actual 

elastic-plastic material response at the notch tip. 
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Figure H4.  Graphical representation of the incremental Neuber rule. 
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Equations (H10) and (H11) form a set of seven simultaneous equations from which 

all deviatoric strain and stress increments can be determined, based on the linear hypothetical 

elastic notch tip stress path data, i.e. increments ∆σij
e, obtained from the linear-elastic 

analysis and the constitutive stress-strain curve (H3).  
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 (H12) 

 

For each increment of the external load, represented by the increments of pseudo-elastic 

deviatoric stresses, ∆Sij
e, the deviatoric elastic-plastic notch tip strain and stress increments, 

∆eij
a and ∆Sij

a, are computed from the equation set (H12). With the help of equation (H9) the 

calculated deviatoric stress increments, ∆Sij
a, can subsequently be converted into the actual 

stress increments, ∆σij
a,  
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∆ ∆
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a a
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1
3
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3
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= − +

=

σ σ σ

σ σ σ

σ

c h

c h  (H13) 

 

The deviatoric and the actual stress components Sij
a and  σij

a at the end of given load 

increment are determined from equations (H14-H15). 
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ij
an= + +σ σ σ σ∑∆ ∆  (H15) 

where: n denotes the load increment number. 

The actual strain increments, ∆εij
a, can finally be determined from the constitutive 

equation (H3). 

H.3.7 Cyclic Plasticity Model 

In order to predict the notch tip stress-strain response of a notched component 

subjected to multiaxial cyclic loading, the incremental equations discussed above have to be 

linked with the cyclic plasticity model. Several plasticity models are available in the 

literature. The most popular is the model [9] proposed by Mroz. According to Mroz [9] the 

uniaxial stress-strain material curve can be represented in a multiaxial stress space by a set of 

work-hardening surfaces.  

 

,
3
2

a a a
eq i ij ijS Sσ =  (H16) 

 

In the case of a two-dimensional stress state, such as that one at a notch tip, the work-

hardening surfaces can be represented by ellipses on the coordinate plane for which the axes 

are defined by the directions principal stress components (Figure H5). The equation of each 

work-hardening ellipse in the principal stress space is:  

 

( ) ( )2 2

2 2 3 2
a a a a a
eq = - +σ σ σ σ σ  (H17) 

 

The essential elements of the plasticity model can be presented in such a case graphically in a 

two-dimensional stress space. 
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Figure H5.   Piecewise linearization of the material σ−ε curve and the corresponding work 
hardening surfaces. 

 

The load path dependency effects are modeled by prescribing a translation rule for 

the translation of ellipses in the σ1
a-σ2

a plane. The translation of these ellipses is assumed to 

be caused by the sought stress increment, which can be represented in the principal stress 

space as a vector. The ellipses can be translated with respect to each other over distances 

dependent on magnitude of the stress/load increment. The ellipses move within the 

boundaries of each other, but they do not intersect. If an ellipse comes in contact with 

another, they move together as one rigid body. 

However, it has been found that the ellipses in the original Mroz model may 

sometimes intersect each other, which is not permitted. Therefore, Garud proposed [10] an 

improved translation rule that prevents any intersections of plasticity surfaces. The principle 

idea of the Garud translation rule is illustrated in Figure H6. 

a.) The line of action of the stress increment, ∆σa, is extended to intersect the next larger 
non-active surface, f2, at point B2. 

b.)  Point B2 is connected to the center, O2, of the surface f2. 
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c.) A line is extended through the center of the smaller active surface , O1, parallel to the 
line O2B2 to find point B1 on surface f1.\ 

d.)  The conjugate points B1 and B2 are connected by the line B1B2. 

e.)  Surface f1 is translated from point O1 to point O1' such that vector O1O1' is parallel to  
     line B1B2.  The translation is complete when the end of the vector defined by the  
    stress increment, ∆σ, lies on the translated surface f1'. 
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Figure H6.  Geometrical illustration of the translation rule in the Garud incremental  
plasticity model. 
 
 

The mathematics reflecting these operations can be found in the original paper of 

Mroz [9] or Garud [10] or in any recent textbook on the theory of plasticity. The Mroz and 

Garud models are relatively simple but they are not very efficient numerically, especially in 

the case of long load histories with a large number of small increments. If the computation 
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time is of some concern the model based on infinite number of plasticity surfaces proposed 

by Chu [11] can be used in lengthy fatigue analyses.  

The cyclic plasticity models enable the, ∆εeq
p-∆σeq

a, relationship to be established 

providing the actual plastic modulus for given stress/load increment, ∆σi. In other words the 

plasticity model determines which piece of the stress-strain curve (Figure H5) has to be 

utilized during given stress/load increment. Two or more tangent ellipses translate together as 

rigid bodies and the largest moving ellipse indicates which linear piece of the constitutive 

relationship should be used for a given stress increment. The slope of the actual element of 

the stress-strain curve defines the plastic modulus, ∆σeq /∆εeq
p, necessary for the 

determination of parameter, dλ, in the constitutive equation (H10). The plasticity models are 

described in most publications, as algorithms for calculating strain increments that result 

from given series of stress increments or vice versa.  This is called as the stress or strain 

controlled input. In the case of the notch analysis neither stresses nor strains are directly 

inputted into the plasticity model. The input is given in the form of the total deviatoric strain 

energy density increments and both the deviatoric strain and stress increments are to be found 

simultaneously by solving the equation set (H12). Therefore, the plasticity model is needed 

only to indicate which work-hardening surface is going to be active during the current load 

increment, which subsequently determines the instantaneous value of the parameter dλ. In 

order to find the elastic-plastic deviatoric stress and strain increment ∆σij
a and  ∆eij

a from the 

equation set (H12) the value of parameter dλ is determined first based on the current 

configuration of plasticity surfaces. After calculating the stress increments, ∆σij
a, and the 

resultant stress increment, ∆σa, the plasticity surfaces are translated as shown in Figure H6. 

The process is repeated for each subsequent increment of the “elastic” input, ∆σij
e.  

The Mroz and Garud models were chosen here as an illustration. Obviously, any 

other plasticity model can be associated with the incremental stress-strain notch analysis 

proposed above. 

H.4 VALIDATION OF THE TWO-DIMENSIONAL (2 – D) MODEL 

The first set of data was obtained for multiaxial non-proportional monotonic load 

(no unloading) in order to check whether the method and code are qualitatively and 
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quantitatively correct. For that purpose several Finite Element analyses have been carried out 

involving various material models and load paths. 

The second set of data was obtained for non-proportional cyclic loading paths and 

the calculated results were compared with experimentally measured elastic-plastic strains at 

the notch tip. 

H.4.1 Comparison of Calculated Elastic-Plastic Notch Tip Strains and Stresses with 
Finite Element Data Obtained under Non-proportional Monotonically 
Increasing Load 

 
In the case of monotonic (no unloading) non-proportional stress path the qualitative 

correctness and accuracy of the method was demonstrated by comparing the calculated notch 

tip stress-strain histories to those obtained from the finite element method. The elastic-plastic 

finite element stress results of reference [4] were obtained using the ABAQUS finite element 

package. The isotropic strain-hardening plasticity model was used for calculations. The 

geometry of the notched element was that of the circumferentially notched bar shown in 

Figure H7. 
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Figure H7.  Geometry and dimensions of the notched bar tested 
under non-proportional tension and torsion loading. 

 

The basic proportions of the cylindrical component were ρ/t = 0.3 and R/t = 7 

resulting in the torsional and tensile stress concentration factor KT = 3.31 and KF = 1.94 
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respectively. The ratio of the notch tip hoop to axial stress under tensile loading was σ33
e 

/σ22
e = 0.284. The stress concentration factors for the axial and torsion loads were defined as: 

K and KF

e

nF
T

e

nF

= =
σ
σ

σ
τ

22 32  (H18) 

 
While the nominal stresses in the net cross section were determined as: 
 

σ
π

τ
πn n

F
R t

and T
R t

=
−

=
−b g b g2 3

2  (H19) 

 
The loads applied to the bar were monotonically increasing torsion in the first phase and then 

increasing tension in the second phase with the torsion load being kept constant as shown in 

Figure H8.  

0

20

40

60

80

100

120

140

160

180

200

0 50 100 150 200 250 300 350 400

Axial notch tip stress, σ22
e (MPa)

Sh
ea

r n
ot

ch
 ti

p 
st

re
ss

, σ
23

e  (M
Pa

)

initiation of yielding at the notch tip

0

20

40

60

80

100

120

140

160

180

200

0 50 100 150 200 250 300 350 400

Axial notch tip stress, σ22
e (MPa)

Sh
ea

r n
ot

ch
 ti

p 
st

re
ss

, σ
23

e  (M
Pa

)

initiation of yielding at the notch tip

0

20

40

60

80

100

120

140

160

180

200

0 50 100 150 200 250 300 350 400

Axial notch tip stress, σ22
e (MPa)

Sh
ea

r n
ot

ch
 ti

p 
st

re
ss

, σ
23

e  (M
Pa

)

initiation of yielding at the notch tip

 
Figure H8.  The input stress path increments of the monotonic non-proportional 

stress-time history. 
 

The torque T induced the ‘linear elastic’ shear stress σ23
e at the notch tip and the 

axial load F induced the normal stress components σ22
e and σ33

e. The increments of the 
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hypothetical ‘elastic” stress components σ23
e, σ22

e and σ33
e and associated strains were used 

as the input data. The pseudo elastic equivalent stress of the input at the notch tip was 

increasing throughout the entire loading process to ensure monotonic loading path. The 

material for the notched bar was SAE 1045 steel with a cyclic stress-strain curve 

approximated by the Ramberg- Osgood relation. The material properties were: E = 202 GPa, 

ν = 0.3, SY = 202 MPa, n=0.208, and K = 1258 MPa.. 
1
n

= +
E K
σ σε ⎛ ⎞

⎜ ⎟
⎝ ⎠

 (H20) 

The maximum applied load levels were chosen to be 50% higher than it would be required to 

induce yielding at the notch tip if each load was applied separately. 

The calculated and the FEM determined strain components, ε22
a and ε23

a, and the 

stress components, σ22
a
 and σ23

a, are shown in Figures H9 - H10.  
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Figure H9.  Comparison of the calculated and FEM determined strain paths for the 
monotonic non-proportional torsion-tension input stress history. 

 
 



H-19 

Note, that the calculated stresses and strains and the results of the finite element 

analysis are identical in the elastic range.  This is expected since the model converges to the 

elastic solution in the elastic range. Just beyond the onset of yielding at the notch tip, the 

strain results that were predicted using the proposed model and the finite element data begin 

gradually to diverge. It can be concluded that the method based on the equivalence of the 

total strain energy increments overestimates the actual notch tip strains but the predicted 

strains are reasonably close to the numerical FEM data. 
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Figure H10.  Comparison of the calculated and FEM determined stress paths for the 

monotonic non-proportional torsion-tension input stress history. 
 
 
H.4.2 Comparison of Calculated Elastic-Plastic Notch Tip Strains with 

Experimentally Measured Elastic-Plastic Strains at the Notch Tip Induced by 
Cyclic Non-proportional Stress Paths 

 
The experimental data concerning measured notch tip strains induced by non-

proportional cyclic loading histories were obtained by Barkey [12] who used a cylindrical bar 

with a circumferential notch similar to that one shown in Figure H7. The basic proportions of 
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the cylindrical specimen were ρ/t = 1 and R/t = 2 resulting in the tensile and torsion stress 

concentration factor KF = 1.41 and KT = 1.15 respectively. The ratio of the notch tip hoop 

stress to the axial stress under tensile axial loading was σ33
e /σ22

e = 0.184. The actual radius 

of the cylindrical specimen was R=25.4 mm. 

The material for the notched bar was SAE 1070 steel with a cyclic stress-strain 

curve approximated by the Ramberg- Osgood relation (H18). The material properties were: E 

= 210 GPa, ν = 0.3, SY = 242 MPa, n’=0.199, and K’ = 1736 MPa.. 

The first box-type cyclic stress path of the pseudo-elastic notch tip stresses, σ22
e - 

σ23
e, is shown in Figure (H11).  
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Figure H11. Non-proportional “box” type cyclic stress/load history (path). 

 

The rectangular box path was repeated counter-clockwise more than hundred times 

while recording the strains in the notch tip. The notch tip stress components were measured 

using electric resistance strain gauges mounted at the notch tip. The maximum nominal 
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tensile stress and the nominal torsion stresses were σn = 296 MPa and τn = 193 MPa 

respectively.  The corresponding notch tip pseudo-elastic input stresses were σ22
e = 417.3 

MPa and σ23
e = 221.9 MPa respectively. Comparison of the measured and calculated notch 

tip strain paths are shown in Figure (H12). The pseudo-elastic input strain path has been also 

included as a reference. It can be noted that the agreement between the calculated and 

measured strain paths is qualitatively and quantitatively good. The experimental solid lines 

represent notch tip strains measured during the 1st and the 50th loading cycle. The remaining 

experimental data is not shown in order to preserve the clarity of the diagram. The measured 

strain path is not symmetric with respect to the center of coordinates and the yielding during 

the first make up cycle, which is always slightly different from the subsequent cyclically 

stabilized material response, might cause this shift. This might be the reason of the offset of 

one part of the measured strain path with respect to the calculated symmetric strain path, 

which was obtained from the stabilized cyclic stress-strain curve. 
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Figure H12.  Measured and calculated strain paths in the notch tip induced by the “box” 
input-loading path. 
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The second cyclic stress path of Barkey (H12) is shown in Figure (H13). The 

resulting elastic-plastic notch tip strain paths are shown in Figure (H14). The maximum 

nominal stresses were σn = 296 MPa and τn = 193 MPa. Again the qualitative and 

quantitative agreement between the measured and calculated strain histories was good as in 

the case of the box stress path. 
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Figure H13.  Unequal frequency tension-torsion stress/loading path. 
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Fig. 14. Measured and calculated strain paths in the notch tip induced by the unequal
frequency tension-torsion  input loading path.

-0.0025

-0.002

-0.0015

-0.001

-0.0005

0

0.0005

0.001

0.0015

0.002

0.0025

-0.003 -0.002 -0.001 0 0.001 0.002 0.003 

Axial notch tip strain, ε 22
a

   
 S

he
ar

 n
ot

ch
 ti

p 
st

ra
in

, 
ε 2

3  a  

Calc. 
Exper. 

 

 

Figure H14.   Measured and calculated strain paths in the notch tip induced by the unequal 
frequency tension-torsion input-loading path. 

 
 
H.5 THE 2-D NOTCH TIP COMPUTER CODE (NEU34) 

The computer code for solving the required set of incremental equation has been 

written in FORTRAN 77. The executable file has been created using the WATCOM -

WATFOR87 compiler. 

The Computer Code Data Files 

There are two files necessary to run the calculations, i.e. the MATERIAL STRESS-

STRAIN CURVE file and the STRESS PATH file. Both of them are text files. 

The material stress-strain curve is given by series of points having stress and strain 

(σ - ε) values as coordinates (Figure H15). The first data point (i.e. the first line) in the 

material file has to be that one above the yield limit, S0, (or proportionality limit) because the 

yield limit, the modulus of elasticity, E, and the Poisson ratio, ν, are inputted from the 

keyboard. The format of the material data file is given below. 
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S0

 ε0
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Figure H15.  Stress-strain coordinates for the material stress-strain input file. 

 

The stress-strain curve is approximated by a series of linear pieces. The maximum 

number of linear elements of the stress-strain curve was set to 100. 

Material Stress-Strain File (the format):  

File name (example: 13ab.dat) – length of the file name 6 characters; 

Stress coordinate, σ,  in the first column; 

Strain coordinate, ε,  in the second column. 

The first linear segment (piece) from 0 to S0 should not be given in the data file. 

The data file must start with the coordinates of the end of the second linear piece or the 

beginning of the third one (see Figure H15). Columns in the material data file must be 

separated by coma. The material data file below (attached also in an electronic form) has 

been prepared for a material with the modulus of elasticity E = 200000 MPa and the yield 

limit of S0= 400 MPa and the Poisson ratio ν=0.3 and it has been approximated by 15 linear 

pieces.  
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Example of the material data file 

432,0.0023 
460,0.0027 
490,0.0033 
512,0.004 
540,0.0055 
575,0.009 
605,0.015 
620,0.024 
640,0.04 
660,0.08 
700,0.16 
750,0.3 
800,0.45 
850,0.6 
1000,1.2 

The stress path data is given (Figure H16) in terms of elastic stress increments, ∆σi, 

at the notch tip. The first two columns are reserved for the increments of the normal stress 

components σ22 and σ33. The third column is reserved for the increments of the shear stress, 

σ23. The remaining stress components are zero. The stress columns in the stress path data file 

must be separated by coma. An example of a stress path data file (CROSS.DAT) is given 

below.  

time

 σ Stress increments,  ∆σi

0

 ∆σi

 ∆σ2

 ∆σ1

 ∆σ3

time

 σ Stress increments,  ∆σi

0

 ∆σi

 ∆σ2

 ∆σ1

 ∆σ3

time

 σ Stress increments,  ∆σi

0

 ∆σi

 ∆σ2

 ∆σ1

 ∆σ3

 

Figure H16.  The input stress path increments of the stress-time history. 
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Stress Path Data File - Cross.dat  (Increments!): 

 ∆σ22,  ∆σ33,  ∆σ23 
The data……….. 
80.01,8.001,59.436 
80.01,8.001,59.436 
80.01,8.001,59.436 
80.01,8.001,59.436 
80.01,8.001,59.436 
80.01,8.001,59.436 
-80.01,-8.001,-59.436 
-80.01,-8.001,-59.436 
-80.01,-8.001,-59.436 
-80.01,-8.001,-59.436 
-80.01,-8.001,-59.436 
-80.01,-8.001,-59.436 
-80.01,-8.001,59.436 
-80.01,-8.001,59.436 
-80.01,-8.001,59.436 
-80.01,-8.001,59.436 
-80.01,-8.001,59.436 
-80.01,-8.001,59.436 
80.01,8.001,-59.436 
80.01,8.001,-59.436 
80.01,8.001,-59.436 
80.01,8.001,-59.436 
80.01,8.001,-59.436 
80.01,8.001,-59.436 
-80.01,-8.001,-59.436 
-80.01,-8.001,-59.436 
-80.01,-8.001,-59.436 
-80.01,-8.001,-59.436 
-80.01,-8.001,-59.436 
-80.01,-8.001,-59.436 
80.01,8.001,59.436 
80.01,8.001,59.436 
80.01,8.001,59.436 
80.01,8.001,59.436 
80.01,8.001,59.436 
80.01,8.001,59.436 
80.01,8.001,-59.436 
80.01,8.001,-59.436 
80.01,8.001,-59.436 
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The output file (Cross.out) gives subsequent values of the elastic-plastic stress and 

strain components corresponding to the end of each stress increment inputted from the stress 

path data file. 

Data Inputted from the Keyboard: 

At the beginning of the execution of the program the following data (bold 

characters) has to be inputted from the keyboard: the modulus of elasticity E, Poisson’s ratio 

ν, yield limit S0, name of the material input file, name of the (loading) stress path file and 

name of the output file. 

The Screen Output: 

 
          MATERIAL PROPERTIES: 
 
 YOUNG MODULUS E=200000 

 POISSON`s RATIO ENI=0.3 

 PLASTICITY LIMIT So=400 

 CONSTITUTIVE LAW DATA FILE : 13ab.dat 

 LOADING DATA FILE : cross.dat 

 NAME THE OUTPUT DATA FILE : cross.out 

   

All data files have to reside in the same directory as the executable file 

(NEU34.EXE)! The output file (example given below) will be written in the same directory 

were the executable program file resides. 
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Example of the 2-D Notch Tip Output File Contents: 
cross.out    
EPS(1,1) EPS(2,2) SIG(2,2) EPS(2,3) SIG(2,3) EPS(3,3) SIG(3,3) 
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
-1.32E-04 3.88E-04 8.00E+01 3.86E-04 5.94E+01 -8.00E-05 8.00E+00 
-2.64E-04 7.76E-04 1.60E+02 7.73E-04 1.19E+02 -1.60E-04 1.60E+01 
-3.96E-04 1.16E-03 2.40E+02 1.16E-03 1.78E+02 -2.40E-04 2.40E+01 
-6.11E-04 1.63E-03 2.87E+02 1.67E-03 2.13E+02 -3.87E-04 2.87E+01 
-9.37E-04 2.25E-03 3.14E+02 2.37E-03 2.34E+02 -6.18E-04 3.14E+01 
-1.36E-03 3.00E-03 3.31E+02 3.25E-03 2.47E+02 -9.19E-04 3.31E+01 
-1.22E-03 2.61E-03 2.51E+02 2.86E-03 1.87E+02 -8.39E-04 2.51E+01 
-1.09E-03 2.23E-03 1.71E+02 2.47E-03 1.28E+02 -7.59E-04 1.71E+01 
-9.59E-04 1.84E-03 9.08E+01 2.09E-03 6.82E+01 -6.79E-04 9.08E+00 
-8.27E-04 1.45E-03 1.08E+01 1.70E-03 8.79E+00 -5.99E-04 1.08E+00 
-6.95E-04 1.06E-03 -6.92E+01 1.31E-03 -5.06E+01 -5.19E-04 -6.92E+00 
-5.63E-04 6.74E-04 -1.49E+02 9.29E-04 -1.10E+02 -4.39E-04 -1.49E+01 
-4.31E-04 2.86E-04 -2.29E+02 1.31E-03 -5.06E+01 -3.59E-04 -2.29E+01 
-2.99E-04 -1.02E-04 -3.09E+02 1.70E-03 8.79E+00 -2.79E-04 -3.09E+01 
-1.13E-04 -5.50E-04 -3.72E+02 2.09E-03 6.96E+01 -1.56E-04 -3.72E+01 
1.39E-04 -1.05E-03 -4.04E+02 2.48E-03 1.20E+02 1.99E-05 -4.04E+01 
4.72E-04 -1.66E-03 -4.20E+02 2.94E-03 1.60E+02 2.59E-04 -4.20E+01 
9.01E-04 -2.40E-03 -4.22E+02 3.55E-03 1.88E+02 5.71E-04 -4.22E+01 
7.69E-04 -2.01E-03 -3.42E+02 3.17E-03 1.29E+02 4.91E-04 -3.42E+01 
6.37E-04 -1.62E-03 -2.62E+02 2.78E-03 6.94E+01 4.11E-04 -2.62E+01 
5.05E-04 -1.24E-03 -1.82E+02 2.39E-03 1.00E+01 3.31E-04 -1.82E+01 
3.72E-04 -8.47E-04 -1.02E+02 2.01E-03 -4.94E+01 2.51E-04 -1.02E+01 
2.40E-04 -4.59E-04 -2.19E+01 1.62E-03 -1.09E+02 1.71E-04 -2.19E+00 
1.08E-04 -7.09E-05 5.81E+01 1.23E-03 -1.68E+02 9.04E-05 5.81E+00 
2.17E-04 -4.28E-04 -2.63E+01 7.55E-04 -2.11E+02 1.53E-04 -2.63E+00 
3.50E-04 -8.08E-04 -1.02E+02 1.57E-04 -2.39E+02 2.34E-04 -1.02E+01 
5.26E-04 -1.23E-03 -1.60E+02 -5.21E-04 -2.57E+02 3.50E-04 -1.60E+01 
7.76E-04 -1.74E-03 -2.02E+02 -1.35E-03 -2.67E+02 5.24E-04 -2.02E+01 
1.09E-03 -2.35E-03 -2.32E+02 -2.31E-03 -2.75E+02 7.47E-04 -2.32E+01 
1.44E-03 -3.00E-03 -2.55E+02 -3.33E-03 -2.82E+02 9.97E-04 -2.55E+01 
1.31E-03 -2.61E-03 -1.75E+02 -2.95E-03 -2.22E+02 9.17E-04 -1.75E+01 
1.18E-03 -2.22E-03 -9.52E+01 -2.56E-03 -1.63E+02 8.36E-04 -9.52E+00 
1.04E-03 -1.83E-03 -1.52E+01 -2.17E-03 -1.03E+02 7.56E-04 -1.52E+00 
9.12E-04 -1.45E-03 6.49E+01 -1.79E-03 -4.41E+01 6.76E-04 6.49E+00 
7.80E-04 -1.06E-03 1.45E+02 -1.40E-03 1.54E+01 5.96E-04 1.45E+01 
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H.6 THEORETICAL BASIS FOR THE THREE-DIMENSIONAL  (3-D) 
ELASTO-PLASTIC NEAR NOTCH TIP MODEL 

 
The 2-D approach makes it possible to analyze elastic-plastic stresses and strains at 

the notch tip only where at least three stress components are being zero. However, away from 

the notch tip there are more unknown stress components than three. Therefore if elasto-

plastic stresses and strains across the notch tip plastic zone need to be determined the 

complete stress and strain tensor must be considered. It means that all stress and strain 

components have to be included into the mathematical formulation of the problem. 

H.6.1 The Stress State in the Notch Tip Region 

For the case of general multiaxial loading applied to a notched body, the state of 

stress in the notch tip region is tri-axial. There are in general six unknown stress (Figure 

H17) and six strain components. As a result there are twelve unknowns all together and a set 

of twelve independent equations is required for the determination of all stress and strain 

components at the notch tip.  

11 12 13 11 12 13

21 22 23 21 22 23

31 32 33 31 32 33

a a a a a a

a a a a a a a a
ij ij

a a a a a a

and
σ σ σ ε ε ε

σ σ σ σ ε ε ε ε
σ σ σ ε ε ε

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (H21) 

The material constitutive relationships provide six equations, leaving six additional equations 

to be established. 
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Figure H17.  Stress state in the notch tip region. 

 

H.6.2 Material Constitutive Model 

In the case of proportional or nearly proportional notch tip stress path the Hencky 

total deformation equations of plasticity can be used in the analysis. 

 

ε ν σ ν σ δ ε
σij

a
ij
a

kk
a

ij
eq
pa

eq
a ij

a= 1+
E

-
E

+ 3
2

S  (H22) 

where: Sij
a

ij
a

kk
a

ij= −σ σ δ1
3

 

 

The most frequently used model of incremental plasticity is the Prandtl-Reuss flow rule. For 

an isotropic body, the Prandtl-Reuss strain-stress relationships can be expressed as: 
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∆ ∆ ∆ ∆ε ν σ ν σ δ ε
σij
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eq
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+ 3
2

S  (H23) 

The multiaxial incremental stress-strain relation (H3) is obtained from the uniaxial stress-

strain curve by relating the equivalent plastic strain increment to the equivalent stress 

increment such that: 

∆ ∆eq
pa eq

a

eq
a eq

a=
d f( )

d
ε

σ
σ

σ . (H24) 

The function, εeq
p= f(σeq), is identical to the plastic strain – stress relationship obtained 

experimentally from uni-axial tension test. 

H.6.3 The Load-Notch Tip Stress-Strain Relations 

The load or the load parameter, in the case of notched bodies, is usually represented 

by the nominal or reference stress being proportional to the remote applied load. Analogously 

to the 2-D formulation for the notch tip it was anticipated that the relationship between the 

load and the elastic-plastic notch tip strains and stresses in the localized plastic zone can also 

be approximated by the Neuber rule [1] or the Equivalent Strain Energy Density (ESED) 

equation [2]. Both methods consist of two parts namely the constitutive equations and the 

relationships linking the fictitious linear elastic stress-strain state (σij
e,εij

e) near the notch tip 

with the actual elastic-plastic stress-strain response (σij
a,εij

a) as shown in Figure H2. 

The Neuber rule [2,3] for proportional loading, where the Hencky stress-strain relationships 

are applicable, can be written for the multiaxial stress state in the form of equations (H25). 

σ ε σ εij
e

ij
e

ij
a

ij
a=  (H25) 

The Neuber rule (H25) represents the equality of the total strain energy (the strain energy & 

the complimentary strain energy density) at the notch tip, represented by the rectangles A and 

B in Figure H3a. The total strain energy density equation written in engineering notation 

takes the form of expression (H26). 

11 11 12 12 13 13 22 22 23 23 33 33

11 11 12 12 13 13 22 22 23 23 33 33

e e e e e e e e e e e e

a a a a a a a a a a a a

σ ε σ ε σ ε σ ε σ ε σ ε

σ ε σ ε σ ε σ ε σ ε σ ε

+ + + + +

= + + + + +
 (H26) 
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The overall strain energy density equivalence, equation (H26), relating the pseudo-elastic and 

the actual elastic-plastic notch tip strains and stresses at the notch tip has been generally 

accepted as a good approximation rule but the additional conditions, necessary for the 

complete formulation of a multiaxial stress state problem, are being the subject of 

controversy as far as the 2-D formulation is concerned. However, nobody tried according to 

the authors knowledge to formulate the complete 3-D problem in terms of the Neuber or the 

ESED hypothesis. The method described below uses the ratios of strain energy density 

contributed by each pair of corresponding stress and strain components. In order to analyze 

non-proportional loading paths the energy equations were written in an incremental form. 

Because the ratios of strain energy density increments seem to be less dependent on the 

geometry and constraint conditions at the notch tip than the ratios of stresses or strains the 

analyst is not forced to make any arbitrary decisions about the constraint while using these 

equations. Because plastic yielding is dependent mainly on deviatoric stresses the entire 

formulation has been written in deviatoric stress space involving deviatoric stresses and 

strains, analogously to the original Neuber’s idea.   

H.6.4 Deviatoric Stress-Strain Relationships 

The notch tip deviatoric stresses of the hypothetical linear-elastic input are 

determined as: 

Sij
e

ij
e

kk
e

ij= −σ σ δ1
3

 (H27) 

The elastic deviatoric strains and strain increments can be calculated from the Hooke law. 

∆
∆

e
S
Gij

e ij
e

=
2

 (H28) 

The actual deviatoric stress components in the notch tip can analogously be defined as: 

Sij
a

ij
a

kk
a

ij= −σ σ δ1
3

 (H29) 

The incremental deviatoric stress-strain relations based on the associated Prandtl-Reuss flow 

rule can be subsequently written as: 

∆
∆

e
S
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S dij
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2
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In engineering notation the deviatoric stress-strain relations are written in the form: 
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where: 
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The form and specific parameters of the stress-strain function, εeq
p= f(σeq), must be obtained 

experimentally from uniaxial cyclic test. 

H.6.5 The Equivalence of Increments of the Total Distortional Strain Energy Density 
 

It is proposed, analogously to the original Neuber rule, to use the equivalence of 

increments of the total distortional strain energy density contributed by each pair of 

associated stress and strain components. 
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The equalities of strain energy increments for each set of corresponding 

hypothetical elastic and actual elastic-plastic strains and stress increments at the notch tip can 

be shown graphically (Figure H4) as the equality of surface areas of the two pairs of 

rectangular elements representing the increments of strain energy density. The area of dotted 

rectangles represents the total strain energy increment of the hypothetical elastic notch tip 

input stress while the area of the hatched rectangles represents the total strain energy density 

of the actual elastic-plastic material response at the notch tip. 

Equations (H30)-(H31) form a set of twelve simultaneous equations from which all 

deviatoric strain and stress increments can be determined, based on the linear hypothetical 

elastic notch tip stress path data, i.e. increments ∆σij
e, obtained from the linear-elastic 

analysis and the constitutive stress-strain curve (H3).  
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For each increment of the external load, represented by the increments of pseudo-elastic 

deviatoric stresses, ∆Sij
e, the deviatoric elastic-plastic notch tip strain and stress increments, 

∆eij
a and ∆Sij

a, are computed from the equation set (H32). Then the calculated deviatoric 

stress increments, ∆Sij
a, are converted into the actual stress increments, ∆σij

a,  
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 (H33) 

The deviatoric and the actual stress components Sij
a and  σij

a at the end of given load 

increment are determined from equations (H34-H35). 
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an= + +σ σ σ σ∑ ∆ ∆  (H35) 

where: n denotes the number of the load increment. 

The actual strain increments, ∆εij
a, can finally be determined from the constitutive 

equation (H3).  The same cyclic plasticity model has been implemented as in the case of the 

2-D formulation. 

H.6.6 Correction for the Stress Redistribution in the Notch Tip Region 

Plastic yielding near the notch tip causes stress re-distribution of the hypothetical 

linear elastic field used as a base in the proposed methodology. The stress redistribution 

results in an increase of plastic zone size by amount of ∆xp (Figure H18) in comparison to 

that one (denoted xp) resulted from the hypothetical linear elastic stress notch tip field. 
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Figure H18.  The original and corrected equivalent stress distribution. 

 

Such an increase of the plastic zone size can be interpreted, analogously with Irwin 

[13], as an increase of the hypothetical elastic notch tip stresses. The plasticity induced 

increase of stress near the notch tip Irwin proposed to estimate by shifting horizontally 

(Figure H18) the original linear elastic stress field over the distance equal to the increment of 

the plastic zone size ∆xp caused by the stress redistribution. The increase of the stress at 

given co-ordinate x was determined as: 

( )
( )

corrected

p original

xC
x

σ
σ

=  (H36) 

Thus, in order to calculate the plastic zone correction factor, Cp, one has to determine the 

plastic zone size, xp, and plastic zone increment, ∆xp. The plastic zone size, xp, can be 

estimated from the distribution of the equivalent (von Mises) stress in the near notch tip 
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region. Therefore the distribution of the equivalent stress has to be supplied as an additional 

input data. The plastic zone increment, ∆xp, can be subsequently determined from the 

equilibrium condition in the near notch tip region. 

If the plastic flow is localized and the elastic field surrounding the plastic zone is 

relatively large the stress redistribution occurs predominantly in the near notch tip region. 

Therefore the force, F1, denoted as area, F1, in Figure H18, has to be transferred by adjacent 

material over the distance, ∆xp. Thus, forces F1 and F2 represented by areas F1 and F2 in 

Figure H18 have to be equal. 

1 2F F=  (H37) 

Because equivalent stress in the plastic zone is approximately equal to the yield 

limit, SY, then the increment, ∆xp, can by easily determined from equation (H38) representing 

the equality of the two generalized forces F1 and F2. 
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The plastic zone increment, ∆xp, can be finally determined from expression (H39). 

( )
0

1 px

p peq
Y

x x dx x
S

σ∆ = −∫  (H39) 

A special numerical routine has been written for calculating the integral in expression (H39) 

and the plastic zone increment, ∆xp.  

The original distribution of the equivalent stress, σ(x)original is subsequently shifted 

away from the notch tip by distance, x = ∆xp, resulting in the corrected equivalent stress 

distribution, σ(x)corrected. Knowing both equivalent stress distributions makes it possible to 

determine the correction factor, Cp, for any coordinate, x, according to expression (H36). 

The original increments of the input stress history are then multiplied by the plastic 

zone correction factor, Cp, before they are inputted into the Neuber strain energy density 

equations. All calculations are in effect carried out later for stress increments increased by 

the correction factor Cp. 
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H.7 VALIDATION OF THE THREE DIMENTIONAL (3 – D) NOTCH MODEL 

The linear elastic and elasto-plastic stresses and strains in several notched 

components have been determined using a variety of geometry and material configurations. 

The SWRI (G. Chell) and the North Dakota State University (A. Kallmeyer) carried out the 

Finite Element (FE) analyses. Both the elastic and elastic plastic stress distributions were 

determined and made available for independent analysis. 

The SWRI data (G. Chell) were obtained for only one stress reversal (monotonic 

loading) and the data supplied corresponded to the maximum load. The applied load was 

proportional in all instances. Only the stress data was supplied by the SWRI. The strain data 

was not made available. 

The data supplied by the NDSU (A. Kallmayer) included both proportional and 

non-proportional loading and unloading and non-proportional cyclic load paths. Both strains 

and stresses were made available for the validation. 

H.7.1 The Geometry of SWRI Notched Components 

 The data supplied by the SWRI concerns three cases. Stresses for the notch tip 

region for Cases A and B were obtained for a two-dimensional configuration in the form of a 

plate with a circular hole (Figures H19a-H19b) subjected to uni-axial and bi-axial tension 

respectively. The two-dimensional cases A and B were analyzed under imposed condition of 

plane strain. The third case C was a single edge notch in a plate and the component was 

analyzed as a three-dimensional problem (Figure H19c) without imposing any specific 

condition concerning the resultant stress state in the notch tip region. 
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Figure H19.  The SwRI two-dimensional (2-D) finite element models:  a.) Case A; b.) Case 
B; and c.) Case C. 

 
 
H.7.2 The Material Stress-Strain Curves Used in the SWRI Analyses 

Two nonlinear material behaviors are included in the comparison.  They are shown 

in Figure H20.   
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Figure H20.  The material stress-strain curves used in the SwRI finite element (FE) analysis. 
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Material A behaves more like a perfect plastic material while Material B 

demonstrates a strong material hardening. The same curves were used in the Neuber based 

program NCP340 described below. However some caution has to be taken while dividing the 

material curve into a series of linear pieces. It has been found that the yield strength, SY, can 

not be considered as the upper limit for the linear segment of the stress –strain curve (Figures 

H21-H22). This is due to the fact that the nonlinearly below the standard yield limit has to be 

taken into account as well. This is particularly true for notch tip strains and stresses not 

significantly exceeding the yield limit - as it should be the case in most practical engineering 

applications. Therefore two limits characterizing the stress-strain curve are used in the 

proposed methodology, i.e. the standard yield strength, SY, and the linearity limit, σ0. 

Assumption that the stress-strain curve is linear up to the yield limit (σ < SY) results in non-

conservative notch tip strain and stress predictions. 

Two different piecewise representations of both strain-stress curves are shown in 

Figures H21 – H22. The smooth curves with the non-linearity starting at stress σ > σ were 

used in the Neuber based calculations. Unfortunately it is know what kind of representations 

of the stress-strain curve was exactly used by the SWRI-FE package. 
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Figure H21.  Piecewise representations of the stress-strain curve; SwRI-material A. 
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SWRI - material curve B

0

20

40

60

80

100

120

140

0 0.005 0.01 0.015 0.02

Strain

S
tr

es
s,

[ k
si

]

σ0

SY

SWRI - material curve B

0

20

40

60

80

100

120

140

0 0.005 0.01 0.015 0.02

Strain

S
tr

es
s,

[ k
si

]

σ0

SY

 

 
Figure H22.  Piecewise representations of the stress-strain curve; SwRI-material B 

 

H.7.3 The Load/Stress Paths 

 The elastic stress path input was given in terms of a set of stress increments for each 

stress component determined at given point near the notch for an ideal elastic material 

behavior. All input files are to be delivered separately in the form of EXCEL files. Examples 

of stress path input files are discussed below.  

However, one feature of the stress-input files should be looked at with some caution. 

Namely, several input files used by the SWRI contained inaccurate stress values such as non-

zero stress components on a free surface. The deviations from zero stress values were 

relatively small and they were probably resulting from the FE averaging process but when 

included into the Neuber based analysis these inaccuracies invoked noticeable accumulated 

error at the end of the load path. This was particularly true in the case of the transverse 

(through the thickness) stress component. 
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H.7.4 The Comparisons of the SWRI - FE and the Neuber-Based Near Notch Tip 
Stresses 

The comparison of results obtained by SWRI and those obtained from the NPC30 

program are shown in Figures H23-H32. In the case of the 3-D model (Case C – Figures 

H27-H32) stresses were determined in three planes: in the side plane (y/r = 0), in the plane at 

¼ of the plate thickness (y/r = 1.237) and in the plane at the mid-thickness of the plate (y/r = 

2.5). It can be noticed that the transverse stress SIGyy is under-predicted by the proposed 

method. However, the Neuber based analysis for y/r = 0 predicted the transverse stress zero, 

as it should be, while the FE analysis predicted non-zero stress normal to the free surface. It 

is therefore thought that the FE data concerning the transverse stress are inaccurate and over-

predicted. 

The plasticity model used in the Neuber based methodology was the isotropic-

kinematic model proposed by Garud [10]. There was no specific information concerning the 

plasticity model incorporated into the FE package used by the SWRI. Therefore some 

differences may also be caused by the incompatibility of the basic plasticity models used in 

the study. 
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Figure H23.  Comparison of SwRI finite element stress data with the Neuber based 
estimations; Case A – material A. 

SWRI, Case A - Material B

0

20

40

60

80

100

120

0 0.5 1 1.5 2 2.5

Relative distance from the notch tip, x/r

S
tre

ss
, [

ks
i]

SIGxx,FE SIGzz,FE SIGyy,FE

SIGxx,N SIGzz,N SIGyy,N

 
 

Figure H24.  Comparison of SwRI finite element stress data with the Neuber based 
estimations; Case A – material B. 
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Figure H25. Comparison of SwRI finite element stress data with the Neuber based 
estimations; Case B – material A. 
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SWRI, Case B - Material B
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Figure H26. Comparison of SwRI finite element stress data with the Neuber based 
estimations; Case B – material B. 

 
 

SWRI, Case C - Material A - y/r=0
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Figure H27. Comparison of SwRI FE stress data with the Neuber based estimations; 

Case C – material A, y/r=0. 
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SWRI, Case C - Material A - y/r=1.237
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Figure H28.  Comparison of SwRI FE stress data with the Neuber based estimations; 
Case C – material A, y/r=1.237. 

 

SWRI, Case C - Material A - y/r=2.5
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Figure H29.  Comparison of SwRI FE stress data with the Neuber based estimations; 
Case C – material A, y/r=2.5. 
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SWRI, Case C - Material B - y/r=0
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Figure H30.  Comparison of SwRI FE stress data with the Neuber based estimations; 
Case C – material B, y/r=0. 
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Figure H31.  Comparison of SwRI FE stress data with the Neuber based estimations; 
Case C – material B, y/r=1.237. 
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SWRI, Case C - Material B - y/r=2.5
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Figure H32.  Comparison of SwRI FE stress data with the Neuber based estimations; 
Case C – material B, y/r=2.5. 

 

H.7.5 The Geometry of NDSU Notched Components 

The data supplied by NDSU also concerned a three dimensional analysis of plate 

with a circular notch (Figure H33) but subjected to cyclic axial loading (loading and 

unloading). The cylindrical specimen shown in Figure H33 was subjected to two loading 

modes, i.e. torsion and axial load. Both proportional and non-proportional cyclic loading 

paths were studied and all the stress and strain components were made available for 

comparisons.  

H.7.6 The Material Stress-Strain Curve Used in the NDSU Analyses 

The finite element analyses of NDSU were conducted in Ansys using a multilinear 

kinematic hardening rule in conjunction with the cyclic stress-strain curve for Ti-6Al-4V at 

room temperature.  The original cyclic stress-strain curve used in the FE analysis is shown in 

Figure H34. The analogous piecewise stress-strain curve used in the Neuber based analysis is 

shown in Figure H35. 
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Figure H33.  The NDSU three-dimensional (3-D) finite element models. 
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Figure H34.  The original material stress-strain curve used in the NDSU finite element (FE) 
analyses. 
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Fig. 35. The piecewise stress-strain material curve used in the Neuber based analyses

σ0 = SY
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Figure H35.  The piecewise stress-strain material curve used in the Neuber based 
analyses. 

 
 

H.7.7 The NDSU Loading Paths 

The stress path for the plate with the circular hole was simple loading from zero to 

maximum load and unloading to zero (zero-maximum-zero). The comparison was carried out 

for stresses and strains corresponding to the maximum and the minimum load (Figure H36). 

In the case of the non-proportional box type loading path the stresses and strains were 

obtained for loads corresponding to the values at each corner of the box load path denoted as 

Point 1, Point 2, Point 3 and Point 4. 

H.7.8 The Comparisons of the SWRI - FE and the Neuber-Based Near Notch Tip 
Stresses 

 The comparison of results generated by the NDSU and those obtained from the 

Neuber based NPC30 code is shown in Figures H37-H69. The NDSU-FE and the Neuber 

based stress component values are close to each other even in the case of the non-

proportional cyclic load path. The data used in the comparisons was that one corresponding 

to the 10-th cycle of cyclic loads path. The strains are usually over-predicted by the proposed 

methodology as it should be expected in the case of the Neuber type formulation. 
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Figure H36.  The proportional and the box-type non-proportional multiaxial cyclic loading 

paths analyzed by the NDSU. 
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Figure H37.  Comparison of stresses in plate with circular hole; in the plane coinciding 
with the side free surface; at max. load.
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AKallmeyer, Plate-Notch Edge, Min. Load, Case - 80ksi
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Figure H38.  Comparison of strains in the plate with circular hole; in the plane 

coinciding with the side free surface; at max load. 
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Figure H39.  Comparison of stresses in the plate with circular hole; in the plane 

coinciding with the side free surface; at min. load. 
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Figure H40. Comparison of strains in the plate with circular hole; in the plane 

coinciding with the side free surface; at min. load. 
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Figure H41. Comparison of stresses in the plate with circular hole; in the mid-
thickness plane; at max load. 
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AKallmeyer, Plate- Mid. Thickness, Max. Load, Case - 80ksi
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Figure H42. Comparison of strains in the plate with circular hole; in the mid-

thickness plane; at max load. 
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Figure H43. Comparison of stresses in the plate with circular hole; in the mid-

thickness plane; at min. load. 
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AKallmeyer, Plate-Mid. Thickness, Min. Load, Case - 80ksi
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Figure H44. Comparison of strains in the plate with circular hole; in the mid-

thickness plane; at min. load. 
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Figure H45. Comparison of normal stresses in the cylindrical bar; at maximum of 

proportional loading. 
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AKallmeyer, Round Bar - Proportional Path (8200+1435), Max. Load
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Figure H46. Comparison of normal strains in the cylindrical bar; at maximum of 

proportional loading. 
 

AKallmeyer, Round Bar - Proportional Path (8200+1435), Max. Load

0

10

20

30

40

50

60

70

0 0.05 0.1 0.15 0.2 0.25

Distance from the notch tip, [in]

Sh
ea

r s
tre

ss
, [

ks
i]

SIGxz,FE
SIGxz,N

 
 

Figure H47. Comparison of shear stresses in the cylindrical bar; at maximum of 
proportional loading. 
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Figure H48. Comparison of shear strains in the cylindrical bar; at maximum of 

proportional loading. 
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Figure H49. Comparison of normal stresses in the cylindrical bar; at minimum of 
proportional loading. 
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AKallmeyer, Round Bar - Proportional Path (8200+1435), Min. Load
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Figure H50. Comparison of normal strains in the cylindrical bar; at minimum of 

proportional loading. 
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Figure H51. Comparison of shear stresses in the cylindrical bar; at minimum of 

proportional loading. 
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AKallmeyer, Round Bar - Proportional Path (8200+1435), Min. Load
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Figure H52. Comparison of shear strains in the cylindrical bar; at minimum of 

proportional loading. 
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Figure H53. Comparison of normal stresses in the cylindrical bar; at Point 1 of  
  the box type loading path. 
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AKallmeyer, Round Bar, Box Path (8200+1435) - Point 1
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Figure H54. Comparison of normal strains in the cylindrical bar; at Point 1 of  
  the box type loading path. 
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Figure H55. Comparison of shear stresses in the cylindrical bar; at Point 1 of  
  the box type loading path. 
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AKallmeyer, Round Bar, Box Path (8200+1435) - Point 1
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Figure H56. Comparison of shear strains in the cylindrical bar; at Point 1 of  
  the box type loading path. 
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Figure H57. Comparison of normal stresses in the cylindrical bar; at Point 2 of  
  the box type loading path. 
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AKallmeyer, Round Bar, Box Path (8200+1435) - Point 2
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Figure H58. Comparison of normal strains in the cylindrical bar; at Point 2 of  
  the box type loading path. 
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Figure H59. Comparison of shear stresses in the cylindrical bar; at Point 2 of  
  the box type loading path. 
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AKallmeyer, Round Bar, Box Path (8200+1435) - Point 2
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Figure H60. Comparison of shear strains in the cylindrical bar; at Point 2 of  
  the box type loading path. 

 

AKallmeyer, Round Bar, Box Path (8200+1435) - Point 3

-70

-60

-50

-40

-30

-20

-10

0
0.00 0.05 0.10 0.15 0.20 0.25

Distance from the notch tip, [in]

S
tre

ss
, [

ks
i]

SIGxx,FE SIGyy,FE SIGzz,FE
SIGxx,N SIGyy,N SIGzz,N

 
Figure H61. Comparison of normal stresses in the cylindrical bar; at Point 3 of  
  the box type loading path. 
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AKallmeyer, Round Bar, Box Path (8200+1435) - Point 3
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Figure H62. Comparison of normal strains in the cylindrical bar; at Point 3 of  
  the box type loading path. 
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Figure H63. Comparison of shear stresses in the cylindrical bar; at Point 3 of  
  the box type loading path. 
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AKallmeyer, Round Bar, Box Path (8200+1435) - Point 3
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Figure H64. Comparison of shear strains in the cylindrical bar; at Point 3 of  
  the box type loading path. 
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Figure H65. Comparison of normal stresses in the cylindrical bar; at Point 4 of  
  the box type loading path. 
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AKallmeyer, Round Bar, Box Path (8200+1435) - Point 4
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Figure H66. Comparison of normal strains in the cylindrical bar; at Point 4 of  
  the box type loading path. 
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Figure H67. Comparison of shear stresses in the cylindrical bar; at Point 4 of  
  the box type loading path. 
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AKallmeyer, Round Bar, Box Path (8200+1435) - Point 4
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Figure H68. Comparison of shear strains in the cylindrical bar; at Point 4 of  
  the box type loading path. 
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Figure H69.  The distribution of the equivalent stress and the input file. 

 
 
H.8 THE 3-D NEAR THE NOTCH TIP COMPUTER CODE (NPC30) 

The computer code for solving the required set of incremental equation has been 

written in FORTRAN 77. The executable file has been created using the WATCOM 

WATFOR87 compiler. 

The Computer Code Data Files: 

There are three input files necessary to run the calculation, i.e. the MATERIAL 

STRESS-STRAIN CURVE file, the distribution of the EQUIVALENT STRESS in the cross 

section file and the STRESS PATH file. All of them are text files. 
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The material stress strain curve is given by series of points with stress-strain (σ - ε) 

coordinates (Figure H15). The first data point in the material file has to be above the linearity 

limit (or proportionality limit) because the proportionality limit, σ0, the yield limit, SY, the 

modulus of elasticity, E, and the Poisson ratio, ν, are inputted from the keyboard. The format 

of the material file is the same as in the case of the NUE34 code discussed earlier. 

The stress-strain curve is approximated by a series of linear pieces. The maximum 

number of linear elements of the stress-strain curve was set to 100.  

Material Stress-Strain File (the format):  

File name (example: 13ab.dat) – length of the file name 6 characters; 

Stress coordinate, σ,  in the first column; 

Strain coordinate, ε,  in the second column. 

The first linear segment (piece) from 0 to σ0 should not be given in the data file. 

The data file must start with the coordinates of the end of the first linear piece or the 

beginning of the second one (see Figure H15). Columns in the material data file must be 

separated by coma. The material data file below (attached in electronic form) has been 

prepared for a material with modulus of elasticity E = 200000 MPa and the yield limit of σ0= 

400 MPa and it is approximated by 15 linear pieces.  

Example Material Data File: 

432,0.0023 
460,0.0027 
490,0.0033 
512,0.004 
540,0.0055 
575,0.009 
605,0.015 
620,0.024 
640,0.04 
660,0.08 
700,0.16 
750,0.3 
800,0.45 
850,0.6 
1000,1.2 
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The Stress Path File 

The stress path data is given (Figure H16) in terms of elastic stress increments, ∆σij, 

at the point, xi, where the elastic-plastic stress and strains have to be determined. Each of the 

six columns is reserved for the increments of one stress component. The stress columns in the 

stress path data file must be separated by coma. The notation for the stress/columns order is 

as follows: 

Column 1 – stress increments of component σ11, 

Column 2 – stress increments of component σ12, 

Column 3 – stress increments of component σ13, 

Column 4 – stress increments of component σ22, 

Column 5 – stress increments of component σ23, 

Column 6 – stress increments of component σ33, 

An example of a stress path data file is given below.  

Stress Path Data File – Ld31a31.csv  (Increments!): 
 ∆σ11,          ∆σ12,              ∆σ13,             ∆σ22,                ∆σ23,                ∆σ33 
The data……….. 
0.0065083,0.00062707,0.00026852,-0.00004694,-0.00000535,0.05176030 
0.0065083,0.00062707,0.00026852,-0.00004694,-0.00000535,0.05176030 
0.0065083,0.00062707,0.00026852,-0.00004694,-0.00000535,0.05176030 
0.0065083,0.00062707,0.00026852,-0.00004694,-0.00000535,0.05176030 
0.0065083,0.00062707,0.00026852,-0.00004694,-0.00000535,0.05176030 
0.0065083,0.00062707,0.00026852,-0.00004694,-0.00000535,0.05176030 
0.0065083,0.00062707,0.00026852,-0.00004694,-0.00000535,0.05176030 
0.0065083,0.00062707,0.00026852,-0.00004694,-0.00000535,0.05176030 
0.0065083,0.00062707,0.00026852,-0.00004694,-0.00000535,0.05176030 
0.0065083,0.00062707,0.00026852,-0.00004694,-0.00000535,0.05176030 
…………………………………………………… 

 
The output file contains header with complete set if information concerning the 

input data and subsequent values of the elastic-plastic stress and strain components 

corresponding to the end of each stress increment inputted from the stress path data file. 

The Distribution of the Equivalent Stress over the Entire Cross Section 

The equivalent stress distribution has to be given by a series of points - equivalent 

stress value, σeq,i, and corresponding coordinate, xi -(see Figure H69). The equivalent stress 

distribution can be determined for any load level applied to the component or it can be given 

in non-dimensional form (divide all values by any reference stress). The equivalent stress 
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distribution file is used for scaling the actual equivalent stress depending on the current stress 

magnitude at given point near the notch tip. Therefore only the relative values are needed 

(the actual values of the equivalent stress are OK but not necessary). 

An example of the equivalent stress file is given below. The stress file below is 

given in a non-dimensional form obtained by division of all equivalent stresses by the peak 

value occurring at the notch tip. However, the actual stress values can be given as well. The 

first column in the equivalent stress data file contains coordinates, x, and the second column 

contains the absolute or relative values of the equivalent stress at those points. 

Example of Equivalent Stress Distribution File: 

0.000,1.00000 
0.092,0.78864 
0.189,0.64553 
0.291,0.55130 
0.398,0.48833 
0.510,0.44518 
0.628,0.41506 
0.752,0.39348 
0.882,0.37794 
1.473,0.34971 
2.961,0.34386 
5.462,0.34210 
9.000,0.31616 
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APPENDIX I 

ISOTROPIC SHAKEDOWN METHODOLOGY FOR  
BIVARIANT STRESS FIELD 

 

I.1 INTRODUCTION 

The shakedown methodology developed herein is based on an approximate elastic-

plastic stress analysis that is applicable to rectangular load bearing areas that are subjected to 

bivariant stressing. (Bivariant stress distributions occur in a structure when the stresses in the 

load bearing section vary with both x and y coordinates, as in Figure I1)  The input data 

needed to apply the methodology and to run the computer program SHARP (Shakedown 

Analysis for Residual Plasticity) that performs the stress analysis consists of three parts: 

structural dimensions, material properties and linear elastic stress analysis results.  The 

structural data consists of specifying the coordinates of the rectangular load bearing section.  

The material data consists of the uniaxial stress-strain curve for monotonic loading and 

discrete points on the stress-strain curve that define the plasticity surfaces for use with the 

Garud yield criterion.  The linear elastic stress analysis data consists of the incremental 

changes in the stress components at the grid points or nodes of the elements that form a two-

dimensional model of the load bearing section as the applied load(s) are incrementally 

increased. The elements have to be rectangular in shape but not necessarily of equal size. For 

example, they could coincide with the elements on the load bearing section corresponding to 

the finite element modeling of that plane. 

The shakedown methodology converts the incremental linear elastic solutions into 

equivalent elastic-plastic solutions while conserving forces and moments resulting from the 

remote loading.  All six components of stress are required for the shakedown analysis.  The 

z-component of stress that is normal to the load bearing area is considered the primary stress 

of concern.  The out-of-plane direction is in the y-direction, and this coordinate along with 

the x coordinate defines the load bearing section.  The designation of stresses conforms to the 

coordinate system employed in Figure I1, which shows the load bearing section (enclosed by 

dashed lines) corresponding to a notched plate. 
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Figure I1. Geometry, coordinate system, and loading conditions for finite  
 element  analysis used to verify SwRI's isotropic shakedown module.   
 Various combinations of tensile stresses and moments were applied  
 to the notched plate (see Table I8). 

 

The load bearing section is defined by a rectangle bounded on one side by the x-

coordinate with a width (L) extending from xmin to xmax, and on the other side by the y-

coordinate with a depth (t) extending from ymin to ymax. The incremental elastic stress state is 

specified at the points (nodes) defined by the intersecting perpendicular gridlines that define 

(nx−1)×(ny−1) small rectangular elements corresponding to nx and ny gridlines that originate 

from the x- and y-axes, respectively.  The nodal coordinates are signified by (xi,yj) where i 

varies from 1 to nx and j from 1 to ny, and a rectangle element is represented by four corner 

nodes whose coordinates are given by (xi, yj), (xi+1, yj), (xi+1, yj+1), and (xi, yj+1). 

Two major tasks are performed in the isotropic shakedown methodology.  The first 

task determines the stress relaxation at each nodal position using the linear elastic stress state. 

This procedure is referred to herein as the point relaxation procedure and it provides an 

approximate solution to the elastic-plastic stress state at each nodal position for the current 

load step from the corresponding incremental change in the applied linear elastic solution. 

The point relaxation procedures are based on the point relaxation module originally 

developed by Professor Glinka and subsequently modified and enhanced by SwRI. The 
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modifications made by SwRI included changing the Neuber method from one based on the 

incremental change in each component of stress, to one based on the incremental change in 

the equivalent stress, and the introduction of a parameter that characterizes the degree of 

stress triaxiality to capture the mixed plane stress/plane strain conditions that prevail in three-

dimensional structures. The second task performs the load shedding that occurs due to point 

relaxation and re-distributes the surplus incremental forces and moments over the load 

bearing area.  A more detailed description of each of these tasks now follows. 

I.2 STRESS RELAXATION AT A POINT (POINT RELAXATION) 

The point relaxation process is accomplished by applying Neuber's rule using the 

linear elastically determined equivalent stress and equivalent strain increments.  Neuber's rule 

states that the incremental product of stress and strain is invariant for each load step 

irrespective of the constitutive relationship between stress and strain.  In terms of incremental 

stresses, which is more appropriate to multi-axial stressing and non-proportional loading, 

Neuber's rule can be formulated1 as 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )E
eq

E
eq

kep
eq

kep
eq

kep
eq

kep
eq

kE
eq

E
eq

kep
eq

ep
eq

k εσεσεσεσεσ ∆=∆⋅+⋅∆⇒∆=∆ −− 11       (I1) 

where stress and strain are denoted by σ and ε, ( ) ( ) ( ) ep
eq

kep
eq

kep
eq

k σσσ 1−−=∆  and 

( ) ( ) ( ) ep
eq

kep
eq

kep
eq

k εεε 1−−=∆ .  The superscript k denotes the current step number.  The superscripts 

E and ep signify elastic and elastic-plastic quantities, and the subscript, eq, represents an 

equivalent quantity; for example, ep
eqσ  is used to denote the equivalent elastic-plastic stress.   

The equivalent elastic stress and the equivalent elastic stress increment are defined, 

respectively, as 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]{ }222222 62
2
1 E

yz
E
xz

E
xy

E
z

E
y

E
z

E
x

E
y

E
x

E
z

E
y

E
x

E
eq σσσσσσσσσσσσσ +++++−++=  

and 

                                                 
1 This approach is different from the approach used in the original point relaxation module by Glinka in which 
Neuber's rule was applied to every component of stress and strain instead of to the equivalent stress and 
equivalent strain. In Glinka’s formulation for multiaxial stressing, Neuber’s rule becomes ( ) ( ) ( ) ( ) E

ij
E
ij

kep
ij

ep
ij

k eSeS ∆=∆  
where i and j are summation indices for the stress and strain components, while S and e denote the deviatoric 
stress and strain. 

(I2) 



I-4 

( ) ( ) ( ) E
eq

kE
eq

kE
eq

k σσσ 1−−=∆         (I3) 

The Ramberg-Osgood equation is used to represent the constitutive relationship between 

stress and strain. Using this equation, the expression for the equivalent elastic-plastic strain in 

terms of the equivalent elastic-plastic stress is given by 

 ( )
( ) ( )

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
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⎛
+=

β

σ
σ

α
σ
σ

εε
o

ep
eq

k

o

ep
eq

k

o
ep
eq

k        (I4) 

in which σo and εo are the yield stress and the elastic strain at yield, respectively, and α and β 

are material constants.  

Neuber's rule can be solved for the current equivalent elastic-plastic stress, ( ) ep
eq

k σ , 

using the elastic-plastic stresses and strains determined at the end of the previous load step 

together with the user-specified elastic stresses and strains. (In the SHARP module, the 

elastic strains are derived from the stresses using the elastic modulus matrix).  The required 

solution is in the form of one of the roots of a non-linear equation derived by applying 

Neuber’s rule. This root needs to be determined using numerical methods.  The bisection 

method is used in the isotropic shakedown module.  After the root is found, the elastic-plastic 

equivalent strain ( ) ep
eq

k ε  and the elastic-plastic equivalent strain increment ( ) ep
eq

k ε∆  can be 

computed from the constitutive relationship.   

The following procedure was implemented2 to derive the incremental elastic-plastic 

stress components ep
ijσ∆  from the calculated equivalent incremental elastic-plastic 

stress ep
eqσ∆ .  In the following, the superscript k is removed to signify that the step number is 

referring to the k-th step, which is the current step number.  The process involves two steps: 

(1) determining a triaxiality parameter at each nodal position based on the linear elastic 

solutions, and (2) solving for the components of the relaxed elastic-plastic stress increment at 

the current step. 

                                                 
2 Glinka's point relaxation module uses a proportional relationship to determine the elastic-plastic stress 
increment based on the equation ( ) ep

ij
E
kk

E
ij

ep
ij

ep
ij

ep
ij

ep
ij SSS ∆+⋅∆∆=∆ 3σξξσ  where 

ij
ep
ij

ep
ij S αξ −=  and 

ijα  is the 
center of the plasticity surface in deviatoric space.  
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A triaxiality parameter, ω, is employed to characterize the multi-axial stress state 

that exists at notches in 3-D structures, such as the plane stress conditions at free surfaces and 

the near plane strain conditions in the interior of a structure.  The evaluation of ω is position-

dependent and is based on the linear elastic analysis results provided as input data. The 

parameter is given by the equation  

( ) ( )22 E
z

E
x

E
y

σσ

σ
ω

∆+∆

∆
=         (I5) 

In practice, a normalized value of ω, called ω , that varies from 0 to 1 is used. The 

normalized value is equal to the point value of ω divided by the maximum value of ω on the 

load bearing section.  As can be seen from the foregoing equation, the triaxial parameter has 

a value near zero adjacent to free surfaces where plane stress conditions prevail ( 0=∆ E
yσ , 

no out-of-plane stress). 

Solving for the incremental changes in the components of elastic-plastic stress at 

the current step requires an iterative procedure to ensure that the set of solutions for the 

incremental stress components is consistent with the incremental change in equivalent stress 

determined from Neuber's rule.  

The iteration starts with an initial estimate for the incremental change in the elastic-

plastic stress components based on the ratio of the equivalent elastic-plastic stress increment 

to the equivalent elastic stress increment times the changes in the elastic stress components 

during the current load step, as shown in the equation: 

( ) E
ijE

eq

eq
eqESTIMATEep

ij σ
σ
σ

σ ∆⋅
∆

∆
=∆        (I6) 

The iteration process proceeds by finding a suitable set of solutions for the three 

major stress components; i.e., ep
xσ∆ , ep

yσ∆ , and ep
zσ∆  while ep

xσ∆  remains unchanged.  

During the iteration, the following two equations are used to determine the intermediate 

values until the convergence criteria are met:  

( ) ( ) ( ) ( )[ ]ep
x

OLDep
zeff

OLDep
y

NEWep
y σσνωξωσσ ∆+∆⋅⋅⋅+−∆=∆ 1    (I7) 
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and 

( ) ( )[ ]{
( ) ( )( ) ( ) ( ) ( ) ( ) ( )[ ]

⎭
⎬
⎫

∆+∆+∆−∆+∆∆+⎥⎦
⎤

⎢⎣
⎡ ∆+∆−

+∆+∆=∆

222222 12463

2
1
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yz

ep
xz

ep
xy

ep
eq

NEWep
y

ep
x

NEWep
y
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x

NEWep
y

ep
x

NEWep
z

σσσσσσσσ
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These two equations have three unknowns, ξ, ( )ep
yσ∆  and ( )ep

zσ∆ .  It is shown below how a 

value of ξ is chosen so that the three unknowns are reduced to two. 

In the first iteration, the initial estimated values are used for ( )OLDep
xσ∆ , ( )OLDep

yσ∆  and 

( )OLDep
zσ∆ .  The effective Poisson's ratio, which interpolates between the elastic and plastic 

Poisson ratio values, is defined by 

( ) ( )
ep
eq

plasticep
eq

elasticep
eq

E

eff ε
εεν

ν
∆

∆⋅+∆
=

5.0
      (I9) 

This quantity remains unchanged during the iteration (as do ep
xσ∆  and all shear components 

of the stress increment).  The superscripts elastic and plastic signify elastic and plastic 

components, respectively. The user specifies the elastic value of Poisson’s ratio, Eν , but the 

plastic value is taken as 0.5.  The updated values for ep
yσ∆ , ep

zσ∆ , ( )NEWep
yσ∆  and ( )NEWep

zσ∆  

after each iteration are assigned as the old values, ( )OLDep
yσ∆  and ( )OLDep

zσ∆ , and used in the 

next iteration until convergence is attained.  The equation for ( )NEWep
zσ∆  is derived from the 

quadratic equation for the equivalent elastic-plastic stress increment.   

To reduce the three unknowns, ξ, ( )ep
yσ∆  and ( )ep

zσ∆  to two, the following 

empirically derived procedure is followed.  The factor ξ is initially taken as 1.  After ( )ep
yσ∆  

and ( )ep
zσ∆  have been determined for this ξ value, the value of ξ is increased, and the 

iterative procedure with the new ξ value is repeated.  This process continues until the root 

searching process fails to find a solution for ( )ep
yσ∆  and ( )ep

zσ∆ .  The maximum value of ξ, 

ξmax, for which a solution for ( )ep
yσ∆  and ( )ep

zσ∆  is found and the calculated values of 

(I8) 
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ep
xσ∆ , ep

yσ∆ , ep
zσ∆ , ep

xyσ∆ , ep
yzσ∆  and ep

xzσ∆  corresponding to ξ= ξmax are used to determine 

the final value of ep
eqσ∆ .  However, in order to decompose ep

eqσ∆  into the incremental 

changes in the elastic-plastic stress components, an adjusted value of ξ, ξadj, that depends on 

ξmax and the material hardening exponent, β, is used based on the following empirically 

derived equation:  

( )[ ]⎪
⎪
⎩

⎪
⎪
⎨

⎧

≤≤+−
>

<

=
5.314,5.06021.0log5579.0

5.31,

4,
2

10max

max

max

ββξ
βξ

β
ξ

ξ adj    (I10) 

Once the incremental elastic-plastic stress components are determined, the loci of plasticity 

surfaces can be updated.  Consistent with the point relaxation module developed by Glinka, 

the approach proposed by Garud is used.  Assume there are n functions that define the field 

of plasticity of the von-Mises type.  They are specified by 

  ( ) ( )[ ] ( )[ ] 2

2
3),,( mmij

ep
ijmij

ep
ijmmij

ep
ijm RSSRSf −−⋅−= ααα   (I11) 

where fm=0 defines the m-th plasticity surface in deviatoric stress space (m=1, 2, …, n), ep
ijS  

is the deviatoric elastic-plastic stress components, ( )
mijα  denotes the current center of the m-

th plasticity surface, and Rm is the yield stress associated with the m-th plasticity surface.  It is 

assumed that during plastic straining the size and shape of the plasticity surfaces do not 

change.  Let f  be the current "active" plasticity surface; i.e., the current state of stress is on f .  

During plastic straining, the applied elastic-plastic stress increment leads to the following 

shift in the center of the -th plasticity surface. 

 ( ) ijij dp ⋅=∆α         (I12) 

where dij is related to the proportionality scalar 
1+l

l

R
R

 by 

 ( )[ ] ( ) ( )[ ]ijij
ep
ijij

ep
ijij SS

R
Rd αακα −+∆+−⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

++
+

11
1

1    (I13) 
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κ is a scalar parameter defined by the positive root of ( )( ) 0,, 111 =∆+ +++ RSSf ij
ep
ij

ep
ij ακ .  The 

κ parameter provides an estimate of the factor that the current elastic-plastic stress increment 

has to be multiplied by to reach the next plasticity surface, f +1 and to determine the 

translation direction (shift) of the center of the current plasticity surface, dij, if indeed the 

current load step is sufficiently large to cause the stress state to fall on the next plasticity 

surface.  The p parameter is determined while the size and shape of the current plasticity 

surface, f , remain unchanged while the plasticity center is translated by an amount 

determined according to the applied elastic-plastic stress increment.  Mathematically, the 

scalar parameter p can be determined as the positive root of the equation: 

( )( ) 0,, =⋅+∆+ RdpSSf ijij
ep
ij

ep
ij α       (I14) 

The centers of the plasticity surfaces fr are shifted by 

 ( ) ( ) ( ) ( ) ( )[ ]{ } ( )
rijijij

ep
ij

ep
ij

rep
ij

ep
ijrij SS

R
RSS αααα −∆+−∆+−∆+=∆   (I15) 

for r=1, 2, …,  −1, and ( ) 0=∆
rijα  for nr ≤≤+1 . 

This hardening rule used in the Garud procedure ensures that the material undergoes 

kinematic hardening before the next plasticity surface is reached.  However, when the 

applied stress increment is large enough to result in a stress state beyond the current plasticity 

surface, the plasticity surface expands to the next one and employs the center of this surface.  

In this sense, the material behaves as if it is following an isotropic hardening rule. 

I.3 LOAD SHEDDING AND LOAD RE-DISTRIBUTION 

The methodology for load shedding and load re-distribution that was developed by 

SwRI in previous work for P&W needed to be modified for the current work. The previous 

method was based on assuming history independent non-linear behavior and applying 

Neuber’s rule to only the final stress state. The present problem involves applying Neuber's 

rule to load history dependent incremental loading.  Implementation of the version of the 

load shedding and load re-distribution methodology developed for the incremental loading 
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history problem addressed herein can be resolved into the eight steps listed below.  The steps 

reference sub-steps where more detailed descriptions of the procedure are given. 

Step (1)  Interpolation of the incremental linear elastic stress values for the current load 
step to generate stress values at the nodal points of a much finer mesh of 
rectangular elements than the original mesh defined by finite element modeling of 
the load bearing section. (Sub-Section I.3.1). 

Step (2) Evaluation of the incremental increase in forces and moments for the current load 
step from the incremental change in the linear elastic stress and the estimated 
elastic-plastic stress state for the previous load step (Sub-Section I.3.2). 

Step (3) Estimation of the plastic zone size on the load bearing area based on the 
equivalent stress derived from the applied incremental linear elastic stress for the 
current load step and the elastic-plastic stress derived in the previous load step 
(Section I.3.3). 

Step (4) Splitting the stress range (defined as the difference between the maximum and 
minimum values of an equivalent stress) on the load bearing section into specific 
stress bands, determining the area of the load bearing section occupied by each of 
the bands, and assigning the equivalent stress in each element of the fine mesh to 
one of the stress bands (Section I.3.4). 

Step (5) Evaluation of the areas over which load shedding will occur for each equivalent 
stress band (Section I.3.5). 

Step (6) Determination of the plastically relaxed stresses for each equivalent stress band 
(Section I.3.6) 

Step (7) Redistribution (load shedding) of the excess incremental load arising from plastic 
stress relaxation over the area associated with each equivalent stress band 
(Section I.3.7). 

Step (8) Calculation and re-distribution of the global incremental loads needed to maintain 
force and moment balance after the plastic stress relaxation process is completed 
over the load bearing section (Section I.3.8) 

I.3.1  Generation of a New Bivariant Incremental Stress Array 

This procedure is required to provide a fine mesh consisting of small element sizes 

in order to increase the accuracy of the plastic stress relaxation and load shedding procedures 

detailed in Sections I.3.5 and I.3.7.  The stress values provided at the corner points of the 

elements constituting the user-defined mesh are interpolated to provide stress values at the 

corner points of the elements constituting a finer mesh.  The distribution of incremental 

stress, ( )yxE
ij ,σ∆ , across an element is assumed to be linear.  This means that if (x,y) is a 

coordinate position within an element of the user-defined mesh then the incremental stress 

within that element will vary as ( )yxE
ij ,σ∆  =b1+b2x+b3y+b4xy, where the coefficients b1, b2, 
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b3, and b4 are determined by the incremental stress values at the coordinates of the four 

corner points of the element.  The shakedown methodology utilizes the results for the finer 

mesh which is specified to have mx nodes (mx−1 elements) along the x-axis between x=xmin 

and x=xmax, and my nodes (my−1 elements) along the y-axis between y=ymin and y=ymax.  In 

general, mx>nx and my>ny, where nx and ny are the number of nodes along the x-axis and y-

axis, respectively, in the user-specified mesh. 

I.3.2 Evaluation of the Applied Incremental Force and Moments at the Current 
Load Step 

The evaluation of the applied force Fz and moments Mx, My, at the current load step 

is based on the elastically determined stress increments at the current load step and the 

elastic-plastic stress solution determined from the previous load step.  The equations are 

given by 
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These equations are based on the interpolated values at the corner points of the 

elements constituting a finer mesh that has (mx−1) elements along x-axis and (my−1) elements 

along y-axis.  The symbols used to designate the stress component normal to the load bearing 

section are ∆σz for stress increment and σz for stress.  The superscript E denotes the linear 

elastic solutions derived from the data provided by the user, and the superscript ep represents 

(I16) 
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the elastic-plastic solutions determined from the isotropic shakedown module.  The current 

and previous load steps are denoted by superscripts k and (k−1), respectively. 

I.3.3 Estimation of the Plastic Zone Size 

The plastic zone size, ay, is the area of the load bearing section where the equivalent 

stress values, eqσ , equal or exceed the yield stress, σyield.  An element is only included in this 

area if the equivalent stress values at all four corner points of the element satisfy this 

criterion.  A pseudo von-Mises type of equivalent stress, pseudo
eqσ , composed of the current 

elastic stress increment and the elastic-plastic stress from the previous step is is defined by 

the equation 

( ) ( )ij
pseudo

ijij
pseudo

ij
pseudo

ij
pseudo

ij
pseudo

eq SS ααξξσ −⋅−==
2
3

2
3    (I17) 

where ij
pseudo

ij
pseudo

ij S αξ −= .  The term pseudo
ijS  is a pseudo deviatoric stress based on the 

current linear elastic stress increment ( ) E
ij

k σ∆  and the elastic-plastic stress ( ) ep
ij

k σ1−  obtained 

from the previous load step.  Its tensor representation is given by 

( ) ( )( ) ( ) ( )( ) 311 E
kk

kep
kk

k
ij

E
ij

kep
ij

kpseudo
ijS σσδσσ ∆+⋅−∆+= −−     (I18) 

with 1=ijδ , if i=j, or 0=ijδ , if i≠j.  αij is the coordinate of the center of the current 

plasticity surface in the deviatoric space coordinate. 

I.3.4 Determination of the Stress Bands for Load Shedding 

The equivalent stress range ( ) ( )pseudo
eq

pseudo
eq minmax

σσ −  is divided into nr levels (i.e., nr−1 

stress bands) where the subscripts max and min denote the maximum and minimum 

equivalent stresses, respectively.  The areas occupied by each of the stress bands is 

determined and elements of the fine mesh that fall within each area are identified.  Thus, the 

elements that fall within an area contain equivalent stresses with values between the upper 

and lower bounds that define the stress band.  If ay is the area over which the equivalent 

stress exceeds the yield stress, σyield, and atotal is the area of the load bearing section, then the 

number of stress bands, nl, that contain equivalent stresses that exceed σyield is 
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 r
total

y
l n

a
a

n =          (I19) 

The stress ranges corresponding to each of the stress bands where yielding has occurred are 

defined as 

 
( )

l

yieldeq
inc n

σσ
σ

−
= max        (I20) 

It follows that the number of stress bands where the equivalent stress is lower than σyield is 

nr−nl and the stress ranges associated with these bands is 

 
( )

lr

eqyield
inc nn −

−
= min

σσ
σ        (I21) 

Once a stress band is determined, the associated area ak occupied by elements which have 

equivalent stress values above the lower limit of the band is evaluated.  During this process, 

each element is assigned to and associated with a specific stress band. 

I.3.5 Evaluation of Load Shedding Areas 

The plastic stress relaxation process, load shedding and stress re-distribution, start 

in the area of the load bearing section that has the maximum equivalent stress, ( )pseudo
eq max

σ .  It 

then proceeds to the area with a stress band equal to the second highest equivalent stress, and 

so on until the area of the load bearing section containing the minimum equivalent stress, 

( )pseudo
eq min

σ , is reached.  During this process, load shedding due to plastic stress relaxation 

transfers incremental loads onto adjacent load bearing areas.  The size of these areas, or re-

distribution zones, ( )k
relax aa , for the k-th equivalent stress band is defined by 

 ( ) ( ) ykk
relax aafaa ⋅=         (I22) 

where f(ak) is a dimensionless multiplication factor calculated from the equation 

 ( )
2

tanh
2

lowhigh

y

yklowhigh
k a

aa
af

αα
ζ

αα +
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−
=     (I23) 

This empirical factor acts as a smoothing function that re-distributes surplus 

incremental loads from locations inside the plastic zone over areas comparable to ay, and re-
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distributes incremental loads from locations outside the plastic zone over areas many times 

greater than ay.  The forms for the parameters αhigh, αlow, and ζ are empirically chosen based 

on exploratory investigations using the results of elastic-plastic finite element stress analyses 

of notched plates for material behaviors with significantly different strain-hardening 

capacities.   

The final forms are given by 

 lowhighlow αα
β
βας β

β

20  ,
1
1  ,03.0 1

1

=
−
+

== +
−

     (I24) 

where β is the Ramberg-Osgood strain hardening exponent (see Section I.2) 

I.3.6 Determination of the Plastically Relaxed Stresses 

The plastically relaxed stresses are calculated from the following stresses: 

(1) Linear elastic stress solution at the end of previous load step, ( ) E
ij

k σ1− . 

(2) Linear elastic stress increment for the current load step, ( ) E
ij

k σ∆ . 

(3) Elastic-plastic stress solution at the end of previous load step, ( ) ep
ij

k σ1− . 

The computation of the plastically relaxed stresses is performed using the point relaxation 

module.  For more details, refer to Section I.2. 

I.3.7 Redistribution of Local Incremental Loads Resulting from Load Shedding 

The reduction of the pseudo stress component pseudo
zσ  within each element 

belonging to a given stress band, is converted into an incremental load which is then re-

distributed over an area that encompasses smaller stress bands.  The increment of load re-

distributed, mF∆ , within the m-th stress band is calculated by the difference between the 

pseudo elastic-plastic stress state ( ) ( )[ ]E
z

kep
z

k σσ ∆+−1  and the relaxed stress state ( ) ep
z

k σ∆  for 

the elements belonging to the stress band using a simple Trapezoidal rule 

∑
=

∆=∆
mn

i
iim AF

14
1 σ         (I25) 

In this equation, nm denotes the number of elements within the m-th stress band, Ai stands for 

the area of the i-th element, and iσ∆  the sum of the incremental reductions in the stress 
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component normal to the load bearing section, ( ) ( )( )[ ]ep
z

kE
z

kep
z

k σσσ ∆−∆+− )(1 , evaluated at the 

four corner points of the i-th element.  The excess load is redistributed as an increment of 

stress, ( )mjz aa ,σ∆ , whose magnitude linearly varies over the redistribution zone size 

( )m
relax aa  according to the rule 

( ) ( ) ( ) ( ) mm
relax

jm
m

relax
mj

m
relax

m
mjz aaaaa

aa
aa

aa
F

aa +≤≤⎥
⎦

⎤
⎢
⎣

⎡ −
−

∆
=∆   ,  1

2
σ   (I26) 

The increments ( )mjz aa ,σ∆  are added to the incremental stress component E
zσ∆  of those 

nodes whose element belongs to the j-th stress band.  Thus at the time when the plastic stress 

relaxation calculation for the m-th stress band is completed, the total stress consists of the 

pseudo elastic-plastic stress component at the end of the previous step, ( ) ( ) E
z

kep
z

k σσ ∆+−1 , plus 

the sum of all the incremental stresses ( )mjz aa ,σ∆  resulting from load shedding. 

I.3.8 Balance of Force and Moments, and Load Re-distribution 

After the stress relaxation calculations have been completed over the load bearing 

section, conservation of the force normal to the section, and conservation of moments with 

respect to the x- and y-axes, are checked.  In this procedure, the force and moments are 

compared with the force and moments evaluated before stress relaxation according to Section 

I.3.2.  If the difference in force is denoted by zF∆  and the differences in moments by xM∆  

and yM∆ , then these are globally re-distributed as an incremental stress distribution 

( )yxz ,σ∆  over the whole load bearing section, where ( )yxz ,σ∆  is evaluated according to 

the following rule: 

( ) ( )yxCyCxCyx ep
zz ,, 323130 σσ ++=∆      (I27) 

where the coefficients Cij are given by 
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with 
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After the global re-distribution, the stress relaxation process is repeated starting with a new 

"pseudo" stress state given by 

( ) ( ) ( ) ( )yxyx z
E
z

kep
z

kpseudo
z ,, 1 σσσσ ∆+∆+= −  

This process is repeated until the convergence criterion is met. 

I.4 INTERFACING WITH SwRI’s ISOTROPIC SHAKEDOWN MODULE 

As part of the current program SwRI developed and validated under monotonic 

loading conditions a computer module, SHARP that performs an approximate shakedown 

analysis for three-dimensional structures where a bivariant stress distribution is induced on 

the load bearing section of interest. The program enhances the point relaxation module 

developed by Prof. Glinka to include the effects of load relaxation and load re-distribution 
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over the load bearing area while maintaining force and moment balance on that area. An 

executable version of the routine SHARP has been delivered to the HCF Team. This section 

describes how the SHARP routine can be interfaced with a calling program so that the 

module may be integrated into HCF related software that requires a shakedown analysis for 

its execution. 

Two data transfer mechanisms are used to pass information to and receive results 

from the isotropic shakedown module, SHARP.  One mechanism is through a COMMON 

data structure that contains arrays with prescribed dimensions, and the other mechanism is 

through the argument list of the routine itself.  To demonstrate the data passing mechanisms, 

several segments of computer code are listed below that illustrate the type of coding that the 

user should include in the program driving the isotropic shakedown module.   

The computer code listed in Table I1 shows the parameters and the associated array 

sizes required to call the isotropic shakedown module.  A description of the arrays and 

parameters listed in Table I1 is provided in Table I2. The declaration for the data type 

employs the default Fortran 77 style.  

Depending on how the shakedown module is driven by the calling program, the 

declarations of the arrays listed in Table I1 can be placed in different routines in the calling 

program. For large data arrays, the Fortran COMMON data structure is used for storage 

efficiency. Comments are used in Table I1 to separate the COMMON and DIMENSION 

declarations into two Code Segments, A and B. The arrays declared in Code Segment A are 

used by the isotropic shakedown module and the elements of these arrays need to have their 

values initialized as illustrated in Code Segment C that is contained in Table I3.  The 

parameters and arrays declared in Code Segment B are either input values specified by the 

user or output values of the plastically relaxed stress components (output), ep
ijσ , calculated by 

the shakedown module.   

The arrays declared in Code Segment A need to be initialized before the isotropic 

shakedown module is called for the first time.  The initialization should be placed outside of 

the loop driving the incremental loading.  A segment of code illustrating how to properly 

initialize the arrays declared in Code Segment A listed in Table I3.   
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Specification of the plasticity surfaces used in the Garud model described in Section 

I.2 is needed before the isotropic shakedown module can be called.  These plasticity surfaces 

should be specified outside of the incremental loading loop that calls SHARP, as indicated in 

Code Segment D shown in Table I4.  An example of a subroutine that will calculate the 

plastic modulus for a specified stress and the corresponding strain is illustrated Table I5.  

This routine will automatically increase the number of discrete stress and strain pairs 

specified by the user if refinements in stress/strain data are deemed necessary. The routine 

arranges the stress and strain data pairs in an ascending order, and calculates the effective 

plastic modulus from the piecewise line segments representing the uniaxial stress-strain 

behavior. 

The statement to drive the isotropic shakedown routine is shown in Code Segment 

E of Table I4.  There are five parameters in the argument list of the routine SHARP.  A 

description of each of the arguments can be found in Table I6.  Note should be taken of the 

fact that since the two-dimensional stress arrays that contain the linear elastic results for an 

incremental increase in load are used in the calculations for the current load step, a segment 

of code may be needed to assign the incremental stress values to these stress arrays from 

global stress arrays that may contain all the linear elastic stress results for every load step. 

A non-zero error code generated by the isotropic shakedown module indicates an 

error is detected in the module.  A sample subroutine is provided to show what the various 

error codes represent.  The listing of these error descriptions is displayed in Table I7. 
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Table I1.   Listing of Computer Code Indicating How the Array Dimensions are 
Declared 

 
c===================================================================== 
c   Parameter and arrays required to drive SHARP 
c 

Implicit real (a-h,o-z) 
parameter (nso=100,nnx=200,nny=200,max_pt=nnx*nny,max_seq=40,max_rv=5) 

c  
c  *** CODE SEGMENT A *** 
c  arrays used by the isotropic shakedown module.  They are declared outside the module 
c  for initialization.  The initialization can be found in Code Segment A. 
c 

dimension a1vb(max_pt,max_seq,6),ipv(max_pt),sigv(max_pt,6),epsv(max_pt,6), 
+               sigev(max_pt,6),dfdsv(max_pt,6),irv(max_pt,6),sezv(max_pt,6), 
+               sazv(max_pt,6),eazv(max_pt,6),dsmv(max_pt,6),serv(max_pt,max_rv,6), 
+               sarv(max_pt,max_rv,6),earv(max_pt,max_rv,6),x1v(max_pt,6) 
common/global_/a1v,sigv,epsv,sigev,dfdsv,sezv,sazv,eazv, 
+               dsmv,serv,sarv,earv,x1v,ipv,irv 

c 
c   *** CODE SEGMENT B *** 
c    

dimension seq(max_seq), etp(max_seq) 
common/mpd/E,eni,etp 
common/RO_law/alpha,beta,sigo,epso,tri_max,tri_min,iduck 
common/sig_out/ss11r(nso,nso),ss12r(nso,nso),ss13r(nso,nso), 
+              ss22r(nso,nso),ss23r(nso,nso),ss33r(nso,nso) 
common/ds_old/xo(nso),yo(nso),dsxx(nso,nso),dsxy(nso,nso), 
+              dsxz(nso,nso),dsyy(nso,nso),dsyz(nso,nso),dszz(nso,nso) 

c=================================================================== 
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Table I2.   Descriptions for Parameters and Arrays Listed in Code Segment B Using the 
Default Fortran 77 Style 

 
Parameter 

Name 
Data 
Type 

Status Description 

E real User-specified Young's module 
Eni real User-specified Poisson's ratio 
Etp real 

array 
User-specified One-dimensional array of size max_seq used to 

store the effective plastic modulus 
corresponding to the user-specified discrete 
stress values contained in array seq. The 
effective plastic modulus is defined as 

plastic
plasticd

d

εσ
ε
σ

,

. The etp and seq array values 

define piecewise line segments of the user-
specified Ramberg-Osgood equation used to 
represent the uniaxial stress-strain relationship. 
Hence the stress-strain points defined by the 
values of etp and seq should all fall on the 
Ramberg-Osgood curve. The values of etp and 
seq define the plasticity surfaces employed in 
the Garud model. 

seq real 
array 

User-specified One-dimensional array of size max_seq used to 
store the discrete stress values corresponding to 
the values of the plasticity modulus, etp. The 
element values of the arrays etp and seq, define 
the piecewise line segments representing the 
uniaxial stress-strain relationship defined 
through the Ramberg-Osgood equation (see 
description of etp). 

alpha real User-specified Coefficient appearing in the plastic strain 
component of the Ramberg-Osgood stress-strain 
equation. 

beta real User-specified Exponent appearing in the plastic strain 
component of the Ramberg-Osgood stress-strain 
equation. 

sigo real User-specified Yield stress parameter appearing in the 
Ramberg-Osgood stress-strain equation. 

epso real User-specified Yield strain parameter appearing in the 
Ramberg-Osgood stress-strain equation where 
epso=sigo/E.. 
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Table I2.   Descriptions for Parameters and Arrays Listed in Code Segment B Using the 
Default Fortran 77 Style (continued) 

 
 

Parameter 
Name 

Data 
Type 

Status Description 

xo real 
array 

User-specified One-dimensional array of size nso used to store 
the x-coordinates of the user-defined bivariant 
stress distribution.  The values of x should be 
stored in the ascending order from the minimum 
value, xmin, to the maximum value, xmax.  The 
array needs not to be fully populated with nso 
non-zero values.  However, if there are only nx 
values of x, the array elements indexed from 
(nx+1) to nso should be filled with zeros. 

yo real 
array 

User-specified One-dimensional array of size nso used to store 
the y-coordinates of the user-defined bivariant 
stress distribution.  The values of y should be 
stored in the ascending order from the minimum 
value, ymin, to the maximum value, ymax.  The 
array needs not to be fully populated with nso 
non-zero values.  However, if there are only ny 
values of y, the array elements indexed from 
(ny+1) to nso should be filled with zeros. 

dsxx real 
array 

User-specified Two-dimensional array of size nso×nso used to 
store values of the incremental linear elastic 
stress component, ∆σx, of the bivariant stress 
field corresponding to position coordinates (x,y) 
contained in the arrays xo and yo.  The array 
should contain nx×ny values, and the remaining 
elements should contain zero values. 

dsxy real 
array 

User-specified Two-dimensional array of size nso×nso used to 
store values of the incremental linear elastic 
stress component, ∆σxy, of the bivariant stress 
field corresponding to position coordinates (x,y) 
contained in the arrays xo and yo.  The array 
should contain nx×ny values, and the remaining 
elements should contain zero values. 

dsxz real 
array 

User-specified Two-dimensional array of size nso×nso used to 
store values of the incremental linear elastic 
stress component, ∆σxz, of the bivariant stress 
field corresponding to position coordinates (x,y) 
contained in the arrays xo and yo.  The array 
should contain nx×ny values, and the remaining 
elements should contain zero values. 
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Table I2.   Descriptions for Parameters and Arrays Listed in Code Segment B Using the 
Default Fortran 77 Style (continued) 

 
Parameter 

Name 
Data 
Type 

Status Description 

dsyy real 
array 

User-specified Two-dimensional array of size nso×nso used to 
store values of the incremental linear elastic 
stress component, ∆σyy, of the bivariant stress 
field corresponding to position coordinates (x,y) 
contained in the arrays xo and yo.  The array 
should contain nx×ny values, and the remaining 
elements should contain zero values. 

dsyz real 
array 

User-specified Two-dimensional array of size nso×nso used to 
store values of the incremental linear elastic 
stress component, ∆σyz, of the bivariant stress 
field corresponding to position coordinates (x,y) 
contained in the arrays xo and yo.  The array 
should contain nx×ny values, and the remaining 
elements should contain zero values. 

dszz real 
array 

User-specified Two-dimensional array of size nso×nso used to 
store values of the incremental linear elastic 
stress component, ∆σz, of the bivariant stress 
field corresponding to position coordinates (x,y) 
contained in the arrays xo and yo.  The array 
should contain nx×ny values, and the remaining 
elements should contain zero values. 

ss11r real 
array 

Output Two-dimensional array of size nso×nso used to 
store values of the plastically relaxed stress 
component, ep

xσ , of the bivariant stress field 
corresponding to position coordinates (x,y) 
contained in the arrays xo and yo. 

ss12r real 
array 

Output Two-dimensional array of size nso×nso used to 
store values of the plastically relaxed stress 
component, ep

xyσ , of the bivariant stress field 
corresponding to position coordinates (x,y) 
contained in the arrays xo and yo. 

ss13r real 
array 

Output Two-dimensional array of size nso×nso used to 
store values of the plastically relaxed stress 
component, ep

xzσ , of the bivariant stress field 
corresponding to position coordinates (x,y) 
contained in the arrays xo and yo. 
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Table I2.   Descriptions for Parameters and Arrays Listed in Code Segment B Using the 
Default Fortran 77 Style (continued) 

 
Parameter 

Name 
Data 
Type 

Status Description 

ss22r real 
array 

Output Two-dimensional array of size nso×nso used to 
store values of the plastically relaxed stress 
component, ep

yσ , of the bivariant stress field 
corresponding to position coordinates (x,y) 
contained in the arrays xo and yo. 

ss23r real 
array 

Output Two-dimensional array of size nso×nso used to 
store values of the plastically relaxed stress 
component, ep

yzσ , of the bivariant stress field 
corresponding to position coordinates (x,y) 
contained in the arrays xo and yo. 

ss33r real 
array 

Output Two-dimensional array of size nso×nso used to 
store values of the plastically relaxed stress 
component, ep

zσ , of the bivariant stress field 
corresponding to position coordinates (x,y) 
contained in the arrays xo and yo. 

tri_max, 
tri_min 

real Declaration Parameters allocated for SHARP 

iIduck integer Declaration Parameter allocated for SHARP 
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Table I3.  Segment of Computer Code Illustrating How to Initialize the Arrays 
Declared in Code Segment A 

 
c===================================================================== 
c  *** CODE SEGMENT C ***: Initializing the arrays declared in Code Segment A 
c 

do i=1,max_pt 
     do i1=1,max_seq 
          do j=1,6 
                a1v(i,i1,j)=0. 
           End do 
     End do 
End do 
do i=1,max_pt 
     ipv(i)=0 
     do j=1,6 
          x1v(i,j)=0. 
          irv(i,j)=0 
          sigv(i,j)=0. 
          epsv(i,j)=0. 
          sigev(i,j)=0. 
          dfdsv(i,j)=0. 
          dsmv(i,j)=0. 
          sezv(i,j)=0. 
          sazv(i,j)=0. 
          eazv(i,j)=0. 
     End do 
End do 
do i=1,max_pt 
    do i1=1,max_rv 
         do j=1,6 
             serv(i,i1,j)=0. 
             sarv(i,i1,j)=0. 
             earv(i,i1,j)=0.    
        End do 
    End do 
End do     

c===================================================================== 
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Table I4.   Segment of Computer Code Showing How to Call SwRI's Isotropic 

Shakedown Module 
 
 
c===================================================================== 
c ***CODE SEGMENT D *** 
c  User needs to provide a segment of code to define the plasticity surfaces 
           **** CODE FOR THE DEFINITION OF PLASTICITY SURFACES 
c 
c  before calling the isotropic shakedown module, set kinit=0 
c 

kinit=0 
c 
c===================================================================== 
c  *** CODE SEGMENT E *** : Computing loop starts from here 
c       

do istep=1,nstep 
c 
c   User needs to provide a segment of code here to read the linear elastic stress increment 

**** CODE FOR THE INPUT OF STRESS INCREMENT **** 
c 

     print '(a,i3)','---  Processing Step ',istep 
      call SHARP (kinit,istep,seq,in,ierr) 
end do 

c===================================================================== 
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Table I5.  A Sample Subroutine Used to Define the Plasticity Surfaces 
 
c===================================================================== 
      SUBROUTINE MDI(IN,SEQ,sige0) 
c 
c    Modified from Glinka's MDI routine 
c 
      parameter(max_seq=40) 
      DIMENSION SEQ(max_seq),EEQ(max_seq),ETP(max_seq), 
     +          SEQ1(max_seq),EEQ1(max_seq) 
      common/mpd/E,eni,etp 
      in1=1 
      seq1(1)=sige0 
      EEQ1(1)=SEQ1(1)/E 
      SEQ(1)=SEQ1(1) 
      EEQ(1)=EEQ1(1) 
      IN=1 
31    IN=IN+1 
      READ(10,*,END=41) ss1,ee1 
         SEQ1(IN)=ss1 
         EEQ1(IN)=ee1 
         IF(SEQ1(IN) .LE. SEQ1(IN-1).OR.EEQ1(IN) .LE. EEQ1(IN-1)) 
     +      STOP '[ERROR]: SEQ(I) < SEQ(I-1) or EEQ(I) < EEQ(I-1)!' 
      GOTO 31 
41    IN=IN-1 
      DO 20 I=2,IN 
        SQP=SEQ1(I) 
        IN2=0 
71      DSEQ=(SQP-SEQ1(I-1))/SEQ1(I-1) 
        IF(DSEQ .GT. 0.01D1)THEN 
          IN2=IN2+1 
          SQP=SEQ1(I-1)+(SQP-SEQ1(I-1))/0.2D1 
          GOTO 71 
        ENDIF 
        IN2=2**IN2 
        DSEQ=SQP-SEQ1(I-1) 
        DEQP=(EEQ1(I)-EEQ1(I-1))/DBLE(IN2) 
        DO 30 I2=1,IN2 
           IN1=IN1+1 
           if(in1.gt.max_seq) stop '[ERR]: exceed the preset!' 
           SEQ(IN1)=SEQ(IN1-1)+DSEQ 
           EEQ(IN1)=EEQ(IN1-1)+DEQP 
30      CONTINUE 
20    CONTINUE 
      IN=IN1 
c 
c   plastic modulus 
c 
      DO 40 I=2,IN 
        ETP(I)=(EEQ(I)-EEQ(I-1))/(SEQ(I)-SEQ(I-1))-0.1D1/E 
        ETP(I)=0.1D1/ETP(I) 
40    CONTINUE 
      close(10) 
      RETURN 
      END 
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Table I6.   Parameters and Arrays Passed Through the Argument List of the Isotropic 
Shakedown Module 

SUBROUTINE SHARP (kinit, istep, seq, in, ierr) 
Parameter 

Name 
Data 
Type 

Status Description 

Kinit integer User-specified 
Initially 

Set to zero (0) initially for SHARP to generate 
x- and y-coordinates constituting a finer mesh.  
After the first increment, it is automatically 
reset to one (1) within SHARP. 

Istep integer User-specified Current load increment number 
Seq real 

array 
User-specified See Table A.2 for description. 

In integer User-specified Number of data points for seq and etp. 
Ierr integer Output Error code (see Table A.7) 

 
 

Table I7.  Sample Error Code Handler 
c===================================================================== 
      subroutine errmsg(ierr) 
      if(ierr.eq.0) return 
      open(23,file='error.msg') 
      if(ierr.eq.1) then 
         write(23,101) 
      elseif(ierr.eq.2) then 
         write(23,102) 
      elseif(ierr.eq.3) then 
         write(23,103) 
      elseif(ierr.eq.4) then 
         write(23,104) 
      elseif(ierr.eq.5) then 
         write(23,105)  
      elseif(ierr.eq.7) then 
         write(23,107)  
      elseif(ierr.eq.8) then 
         write(23,108) 
      endif 
      close(23) 
101   format('[ERROR]: too few data points to generate a new bi-',/, 
     +       '         variant stress array! At least 2 by 2 required') 
102   format('[ERROR]: the values of the x-coordinate array are not',/, 
     +       '         in ascending order!') 
103   format('[ERROR]: the values of the y-coordinate array are not',/, 
     +       '         in ascending order!') 
104   format('[ERROR]: reach the max. declared array size. Increase',/, 
     +       '         the value of nbmax in the parameter statement!') 
105   format('[ERROR]: reach max. number of iterations (13)!') 
107   format('[ERROR]: no single root found when searching for the',/, 
     +       '         equivalent stress using Neuber rule!') 
108   format('[ERROR]: iterations exceeded when searching for the',/, 
     +       '         equivalent stress using Neuber rule!') 
      return 
      end  
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I.5 VALIDATION OF ISOTROPIC SHAKEDOWN MODULE AGAINST 
THREE-DIMENSIONAL FINITE-ELEMENT RESULTS 

New and existing three-dimensional elastic-plastic finite element analyses were 

used to validate the isotropic shakedown methodology.  The isotropic shakedown module 

used as input bivariant stress fields derived from three dimensional linear elastic finite 

element computations employing ABAQUS.  The validation was performed for a single edge 

notched plate of width (W) equal to 10 inches, thickness (t) equal to 5 inches, and height (h) 

equal to 20 inches, containing a semi-circular through-thickness notch with a radius (r) equal 

to 1 inch (see Figure I1).  This plate was subjected to various combinations of tensile loads 

and applied in-plane and out-of-plane moments, as illustrated in Figure I1.  The combinations 

of loads used in the validation analyses are listed in Table I8. 

Validation computations have been performed for materials with different strain 

hardening capabilities. As can be seen in Figure I2, two extreme types of material strain 

hardening behaviors (Materials A and B) were used for all of the load cases listed in Table 

I8.  For material behaviors displaying intermediate strain hardening between these two 

extremes (Materials C to F), only the results for the notched plate subjected to remote tension 

(Load Case A) were generated and used for validation.  Table I9 lists the Ramberg-Osgood 

parameters governing these constitutive relationships. 

Comparison of the results derived from the isotropic shakedown methodology with 

those evaluated using three-dimensional EPFEA is shown in Figure I3 to I42.  The figure 

number pertaining to a specific loading condition and material type can be located from 

Table I8.  Included for comparison are the results derived from the as-received Glinka's point 

relaxation module.   

Figures from I3 to I22 show the comparison of the distribution (in terms of 

contours) of the elastic-plastic stress component normal to the load bearing section predicted 

by the isotropic shakedown module and the FEA results.  In each figure, Figure (a) contains 

the FEA results, Figure (b) contains the results predicted by the isotropic shakedown module, 

and Figure (c) shows Glinka's point relaxation results (available only for Materials A and B).  

The agreement between the results obtained using SHARP and FEA is far better than the 

agreement between Glinka's point relaxation module and the FEA results, when these 

comparisons are measured with respect to either the positions of peaks and valleys in the 
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stress distributions or the peak stress magnitudes.  Glinka's point relaxation module 

consistently predicts much lower peak values than those computed by the EPFEA and the 

isotropic shakedown module.  This conclusion can be drawn by observing the contour values 

and the stress gradients around the stress peaks when comparing Figures (a), (b) and (c). 

Figures I23 to I42 show the variations of the three normal stress components along 

the plate width direction from the notch tip. These figures illustrate how the enhancements 

made by SwRI to account for the stress triaxiality and to maintain force/moment balance 

during incremental loading produced a significant improvement in the point relaxation 

module developed by Glinka.  In each figure, three plots are displayed.  The results in Figure 

(a) are for y/r=0 (the free surface at the side of the plate), those in Figure (b) are for 

y/r=1.237 (a plane one quarter of the way through the plate), and those in Figure (c) are for 

y/r=2.5 (at the mid-plane).  As can be seen, for the loading conditions leading to a small scale 

of yielding near the notch tip (Load Cases A, B and C, see Table A.5.1), the agreement 

between the FEA results and SHARP in reference to the locations of the peak stress values 

and the stress variation with distance is excellent.  

For loading conditions resulting in a large scale of yielding (Load Cases D to H), 

the agreement between the FEA results and SHARP depends on the strain hardening capacity 

of the material.  For materials displaying large strain hardening capacity; e.g., Material B, the 

agreement remains excellent—for example, see Figures I34 to I38.  However, there is a 

reduction in accuracy of the SHARP solutions for materials displaying very little strain 

hardening capacity (nearly perfectly plastic behavior) when large scale yielding occurs at the 

notches—for example, see Figures I28 to I30.  This is because in these cases a large amount 

of surplus load needs to be re-distributed over the load bearing area where deformations 

remain elastic. The load re-distribution method developed by SwRI was not intended for use 

in these situations.  However, it should be recognized that these are extreme cases where the 

plastic zone is on the order of 25% to 50% of the load-bearing section.  This situation is not 

likely to occur in engine components. 

The variation of the out-of-plane stress predicted by Glinka's point relaxation 

method tends to follow the linear elastic solution with the result that this method does not 

capture the actual elastic-plastic multiaxial stress state in the plastic zone at a notch.  
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Consequently, this approach predicts much lower stress values in most cases than does the 

FEA results. 



 

 

I-30

Table I8.  Load Combinations Used in the Verification of SwRI Isotropic Shakedown Module 
 

Applied Loads   
Material 

Load 
Case Sz (ksi) Mx (kip-in) My (kip-in)

Figure No. Showing the 
Comparison of Contours of Elastic-
Plastic Stress Component normal to 

the Load Bearing Section 

Figure No. Showing the 
Comparison of the 

Distributions of Three Normal 
Stress Components 

 A 50 0 0 I.3 I.23 
 B 25 0 2500 I.4 I.24 
 C 25 1600 0 I.5 I.25 

A D 20 1800 1800 I.6 I.26 
 E 55 0 0 I.7 I.27 
 F 30 0 3500 I.8 I.28 
 G 30 2500 0 I.9 I.29 
 H 25 2400 2400 I.10 I.30 
 A 50 0 0 I.11 I.31 
 B 25 0 2500 I.12 I.32 
 C 25 1600 0 I.13 I.33 

B D 20 1800 1800 I.14 I.34 
 E 55 0 0 I.15 I.35 
 F 30 0 3500 I.16 I.36 
 G 30 2500 0 I.17 I.37 
 H 25 2400 2400 I.18 I.38 

C A 50 0 0 I.19 I.39 
D A 50 0 0 I.20 I.40 
E A 50 0 0 I.21 I.41 
F A 50 0 0 I.22 I.42 
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Table I9.  Ramberg-Osgood Parameters Used to Generate Various Material 
Constitutive Relationships 
 

Material 
ID 

E (ksi) σo (ksi) α β 

A    31.5 
B    4 
C 27700 62.52 0.43 25.63 
D    14.7 
E    8.53 
F    4.92 
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Figure I2. Material constitutive relationships with various capacities of strain 
hardening used for validation of isotropic shakedown methodology against 
three-dimensional finite element results.
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Figure  I3.   Comparison of the distribution of the elastic-plastic stress component normal to the load bearing section predicted by SwRI's 
isotropic shakedown module with FEA results for the notched plate subjected to Sz=50 ksi, and Mx=My=0; Material A.  The 
results predicted by the as-received Glinka’s point relaxation module are also included to demonstrate the enhancements 
made by SwRI to account for stress triaxiality at the notches and to maintain force/moment balance through load shedding 
and re-distribution. 

Fig.  I3(a) FEA results Fig.  I3 (b) Predicted results by SwRI's 
isotropic shakedown module. 

Fig.  I3 (c) Predicted results by as-received 
Glinka’s point relaxation 
module. 
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Figure I4.   Comparison of the distribution of the elastic-plastic stress component normal to the load bearing section predicted by 
SwRI's isotropic shakedown module with FEA results for the notched plate subjected to Sz=25 ksi, Mx=0, and My=2500 kip-
in; Material A.  The results predicted by the as-received Glinka’s point relaxation module are also included to demonstrate 
the enhancements made by SwRI to account for stress triaxiality at the notches and to maintain force/moment balance 
through load shedding and re-distribution. 

Fig. I4(a) FEA results Fig.  I4(b) Predicted results by SwRI's 
isotropic shakedown module. 

Fig.  I4(c) Predicted results by as-received 
Glinka’s point relaxation 
module. 
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Figure  I5.  Comparison of the distribution of the elastic-plastic stress component normal to the load bearing section predicted by SwRI's 
isotropic shakedown module with FEA results for the notched plate subjected to Sz=25 ksi, Mx=1600 kip-in, and My=0; 
Material A.  The results predicted by the as-received Glinka’s point relaxation module are also included to demonstrate the 
enhancements made by SwRI to account for stress triaxiality at the notches and to maintain force/moment balance through 
load shedding and re-distribution. 

Fig.  I5(a) FEA results Fig.  I5 (b) Predicted results by SwRI's 
isotropic shakedown module. 

Fig.  I5 (c) Predicted results by as-received 
Glinka’s point relaxation 
module. 
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Figure  I6.   Comparison of the distribution of the elastic-plastic stress component normal to the load bearing section predicted by 
SwRI's isotropic shakedown module with FEA results for the notched plate subjected to Sz=20 ksi, Mx=1800 kip-in, and 
My=1800 kip-in; Material A.  The results predicted by the as-received Glinka’s point relaxation module are also included to 
demonstrate the enhancements made by SwRI to account for stress triaxiality at the notches and to maintain force/moment 
balance through load shedding and re-distribution. 

Fig.  I6(a) FEA results Fig.  I6(b) Predicted results by SwRI's 
isotropic shakedown module. 

Fig.  I6(c) Predicted results by as-received 
Glinka’s point relaxation 
module. 
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Figure  I7.   Comparison of the distribution of the elastic-plastic stress component normal to the load bearing section predicted by 
SwRI's isotropic shakedown module with FEA results for the notched plate subjected to Sz=55 ksi, and Mx=My=0; Material 
A.  The results predicted by the as-received Glinka’s point relaxation module are also included to demonstrate the 
enhancements made by SwRI to account for stress triaxiality at the notches and to maintain force/moment balance through 
load shedding and re-distribution. 

Fig.  I7(a) FEA results Fig.  I7(b) Predicted results by SwRI's 
isotropic shakedown module. 

Fig.  I7(c) Predicted results by as-received 
Glinka’s point relaxation 
module. 
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Figure  I8.   Comparison of the distribution of the elastic-plastic stress component normal to the load bearing section predicted by 
SwRI's isotropic shakedown module with FEA results for the notched plate subjected to Sz=30 ksi, Mx=0 and My=3500 kip-
in; Material A.  The results predicted by the as-received Glinka’s point relaxation module are also included to demonstrate 
the enhancements made by SwRI to account for stress triaxiality at the notches and to maintain force/moment balance 
through load shedding and re-distribution. 

Fig.  I8(a) FEA results Fig.  I8(b) Predicted results by SwRI's 
isotropic shakedown module. 

Fig.  I8(c) Predicted results by as-received 
Glinka’s point relaxation 
module. 
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Figure  I9.   Comparison of the distribution of the elastic-plastic stress component normal to the load bearing section predicted by SwRI's 
isotropic shakedown module with FEA results for the notched plate subjected to Sz=30 ksi, Mx=2500 kip-in and My=0; 
Material A.  The results predicted by the as-received Glinka’s point relaxation module are also included to demonstrate the 
enhancements made by SwRI to account for stress triaxiality at the notches and to maintain force/moment balance through 
load shedding and re-distribution. 

Fig.  I9(a) FEA results Fig.  I9(b) Predicted results by SwRI's 
isotropic shakedown module. 

Fig.  I9(c) Predicted results by as-received 
Glinka’s point relaxation 
module. 
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Figure I10.   Comparison of the distribution of the elastic-plastic stress component normal to the load bearing section predicted by 
SwRI's isotropic shakedown module with FEA results for the notched plate subjected to Sz=25 ksi, Mx=2400 kip-in and 
My=2400 kip-in; Material A.  The results predicted by the as-received Glinka’s point relaxation module are also included 
to demonstrate the enhancements made by SwRI to account for stress triaxiality at the notches and to maintain 
force/moment balance through load shedding and re-distribution. 

Fig.  I10(a) FEA results I10(b) Predicted results by SwRI's 
isotropic shakedown module. 

Fig. I10(c) Predicted results by as-received 
Glinka’s point relaxation 
module. 
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Figure  I11.   Comparison of the distribution of the elastic-plastic stress component normal to the load bearing section predicted by 
SwRI's isotropic shakedown module with FEA results for the notched plate subjected to Sz=50 ksi, and Mx=My=0; 
Material B.  The results predicted by the as-received Glinka’s point relaxation module are also included to demonstrate 
the enhancements made by SwRI to account for stress triaxiality at the notches and to maintain force/moment balance 
through load shedding and re-distribution. 

Fig.  I11(a) FEA results Fig.  I11(b) Predicted results by SwRI's 
isotropic shakedown module. 

Fig.  I11(c) Predicted results by as-received 
Glinka’s point relaxation 
module. 



 

 

I-41

Figure  I12.   Comparison of the distribution of the elastic-plastic stress component normal to the load bearing section predicted by 
SwRI's isotropic shakedown module with FEA results for the notched plate subjected to Sz=25 ksi, Mx=0, and My=2500 
kip-in; Material B.  The results predicted by the as-received Glinka’s point relaxation module are also included to 
demonstrate the enhancements made by SwRI to account for stress triaxiality at the notches and to maintain 
force/moment balance through load shedding and re-distribution. 

Fig.  I12(a)   FEA results Fig.  I12 (b) Predicted results by SwRI's 
isotropic shakedown module. 

Fig.  I12 (c) Predicted results by as-
received Glinka’s point 
relaxation module. 
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Figure  I13.   Comparison of the distribution of the elastic-plastic stress component normal to the load bearing section predicted by 
SwRI's isotropic shakedown module with FEA results for the notched plate subjected to Sz=25 ksi, Mx=1600 kip-in, and 
My=0; Material B.  The results predicted by the as-received Glinka’s point relaxation module are also included to 
demonstrate the enhancements made by SwRI to account for stress triaxiality at the notches and to maintain 
force/moment balance through load shedding and re-distribution. 

Fig.  I13(a)   FEA results Fig.  I13 (b) Predicted results by SwRI's 
isotropic shakedown module. 

Fig.  I13 (c) Predicted results by as-received 
Glinka’s point relaxation 
module. 
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Figure  I14.   Comparison of the distribution of the elastic-plastic stress component normal to the load bearing section predicted by 
SwRI's isotropic shakedown module with FEA results for the notched plate subjected to Sz=20 ksi, Mx=1800 kip-in, and 
My=1800 kip-in; Material B.  The results predicted by the as-received Glinka’s point relaxation module are also included 
to demonstrate the enhancements made by SwRI to account for stress triaxiality at the notches and to maintain 
force/moment balance through load shedding and re-distribution. 

Fig.  I14 (a)  FEA results Fig.  I14 (b) Predicted results by SwRI's 
isotropic shakedown module. 

Fig.  I14 (c) Predicted results by as-received 
Glinka’s point relaxation 
module. 
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Figure  I15.   Comparison of the distribution of the elastic-plastic stress component normal to the load bearing section predicted by 
SwRI's isotropic shakedown module with FEA results for the notched plate subjected to Sz=55 ksi, and Mx=My=0; 
Material B.  The results predicted by the as-received Glinka’s point relaxation module are also included to demonstrate 
the enhancements made by SwRI to account for stress triaxiality at the notches and to maintain force/moment balance 
through load shedding and re-distribution. 

Fig. I15(a)  FEA results Fig.  I15 (b) Predicted results by SwRI's 
isotropic shakedown module. 

Fig.  I15 (c) Predicted results by as-received 
Glinka’s point relaxation 
module. 
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Figure  I16.   Comparison of the distribution of the elastic-plastic stress component normal to the load bearing section predicted by 
SwRI's isotropic shakedown module with FEA results for the notched plate subjected to Sz=30 ksi, Mx=0 and My=3500 
kip-in; Material B.  The results predicted by the as-received Glinka’s point relaxation module are also included to 
demonstrate the enhancements made by SwRI to account for stress triaxiality at the notches and to maintain 
force/moment balance through load shedding and re-distribution. 

Fig.  I16(a)  FEA results Fig.  I16 (b) Predicted results by SwRI's 
isotropic shakedown module. 

Fig.  I16 (c) Predicted results by as-received 
Glinka’s point relaxation 
module. 
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Figure  I17.   Comparison of the distribution of the elastic-plastic stress component normal to the load bearing section predicted by 
SwRI's isotropic shakedown module with FEA results for the notched plate subjected to Sz=30 ksi, Mx=2500 kip-in and 
My=0; Material B.  The results predicted by the as-received Glinka’s point relaxation module are also included to 
demonstrate the enhancements made by SwRI to account for stress triaxiality at the notches and to maintain 
force/moment balance through load shedding and re-distribution. 

Fig.  I17(a)  FEA results Fig.  I17 (b) Predicted results by SwRI's 
isotropic shakedown module. 

Fig.  I17 (c) Predicted results by as-received 
Glinka’s point relaxation 
module. 
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Figure  I18.   Comparison of the distribution of the elastic-plastic stress component normal to the load bearing section predicted by 
SwRI's isotropic shakedown module with FEA results for the notched plate subjected to Sz=25 ksi, Mx=2400 kip-in and 
My=2400 kip-in; Material B.  The results predicted by the as-received Glinka’s point relaxation module are also included 
to demonstrate the enhancements made by SwRI to account for stress triaxiality at the notches and to maintain 
force/moment balance through load shedding and re-distribution. 

Fig.  I18(a)  FEA results Fig.  I18(b) Predicted results by SwRI's 
isotropic shakedown module. 

Fig.  I18(c) Predicted results by as-received 
Glinka’s point relaxation 
module. 
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Fig.  I19(a)  FEA results Fig. I19(b) Predicted results by SwRI's 
isotropic shakedown module. 

Figure  I19.   Comparison of the distribution of the elastic-plastic stress component normal to the load bearing section predicted by 
SwRI's isotropic shakedown module with FEA results for the notched plate subjected to Sz=50 ksi, and Mx=My=0; 
Material A.  
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Fig.  I20(a)   FEA results Fig.  I20(b) Predicted results by SwRI's 
isotropic shakedown module. 

Figure  I20.   Comparison of the distribution of the elastic-plastic stress component normal to the load bearing section predicted by 
SwRI's isotropic shakedown module with FEA results for the notched plate subjected to Sz=50 ksi, and Mx=My=0; 
Material D.  
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Fig.  I21(a)  FEA results Fig.  I21(b) Predicted results by SwRI's 
isotropic shakedown module. 

Figure  I21.   Comparison of the distribution of the elastic-plastic stress component normal to the load bearing section predicted by 
SwRI's isotropic shakedown module with FEA results for the notched plate subjected to Sz=50 ksi, and Mx=My=0; 
Material E.  
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Fig.  I22(a)  FEA results Fig.  I22(b) Predicted results by SwRI's 
isotropic shakedown module. 

Figure  I22.   Comparison of the distribution of the elastic-plastic stress component normal to the load bearing section predicted by 
SwRI's isotropic shakedown module with FEA results for the notched plate subjected to Sz=50 ksi, and Mx=My=0; 
Material F.  
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 Figure I23(a) Figure I23(b) Figure I23(c) 
 
 
 
Figure I23. Comparison of stress components predicted by SwRI's isotropic shakedown module with the results obtained from 

FEA.  The results computed from Glinka's point relaxation are also included.  The notched plate is subjected to 
Sz=50 ksi, and Mx=My=0; Material A.  Results in Figure A.5.22(a) are for y/r=0 (the free surface at the side of the 
plate), A.5.22(b) are for y/r=1.237 (a plane one quarter of the way through the plate), and A.5.22(c) are for y/r=2.5 
(at the mid-plane).  In Figure A.5.22(a), the results predicted by SwRI's isotropic shakedown module can not be 
visually differentiated from the point relaxation results. 
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 Figure I24(a) Figure I24(b) Figure I24(c) 
 
 
Figure I24. Comparison of stress components predicted by SwRI's isotropic shakedown module with the results obtained from 

FEA.  The results computed from Glinka's point relaxation are also included.  The notched plate is subjected to 
Sz=25 ksi, Mx=0, and My=2500 kip-in; Material A.  Results in Figure A.5.23(a) are for y/r=0 (the free surface at the 
side of the plate), A.5.23(b) are for y/r=1.237 (a plane one quarter of the way through the plate), and A.5.23(c) are 
for y/r=2.5 (at the mid-plane).  In Figure A.5.23(a), the results predicted by SwRI's isotropic shakedown module can 
not be visually differentiated from the point relaxation results. 
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 Figure I25(a) Figure I25 (b) Figure I25 (c) 
 
 
 
Figure I25. Comparison of stress components predicted by SwRI's isotropic shakedown module with the results obtained from 

FEA.  The results computed from Glinka's point relaxation are also included.  The notched plate is subjected to 
Sz=25 ksi, Mx=1600 kip-in, and My=0; Material A.  Results in Figure A.5.24(a) are for y/r=0 (the free surface at the 
side of the plate), A.5.24(b) are for y/r=1.237 (a plane one quarter of the way through the plate), and A.5.24(c) are 
for y/r=2.5 (at the mid-plane).  In Figure A.5.24(a), the results predicted by SwRI's isotropic shakedown module can 
not be visually differentiated from the point relaxation results. 
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Figure I26. Comparison of stress components predicted by SwRI's isotropic shakedown module with the results obtained from 

FEA.  The results computed from Glinka's point relaxation are also included.  The notched plate is subjected to 
Sz=20 ksi, Mx=1800 kip-in, and My=1800 ksi-in; Material A.  Results in Figure A.5.25(a) are for y/r=0 (the free 
surface at the side of the plate), A.5.25(b) are for y/r=1.237 (a plane one quarter of the way through the plate), and 
A.5.25(c) are for y/r=2.5 (at the mid-plane).  In Figure A.5.25(a), the results predicted by SwRI's isotropic 
shakedown module can not be visually differentiated from the point relaxation results. 
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Figure I27. Comparison of stress components predicted by SwRI's isotropic shakedown module with the results obtained from 

FEA.  The results computed from Glinka's point relaxation are also included.  The notched plate is subjected to 
Sz=55 ksi, Mx=My=0; Material A.  Results in Figure A.5.26(a) are for y/r=0 (the free surface at the side of the plate), 
A.5.26(b) are for y/r=1.237 (a plane one quarter of the way through the plate), and A.5.26(c) are for y/r=2.5 (at the 
mid-plane).  In Figure A.5.26(a), the results predicted by SwRI's isotropic shakedown module can not be visually 
differentiated from the point relaxation results. 
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Figure I28. Comparison of stress components predicted by SwRI's isotropic shakedown module with the results obtained from 

FEA.  The results computed from Glinka's point relaxation are also included.  The notched plate is subjected to 
Sz=30 ksi, Mx=0, and My=3500 kip-in; Material A.  Results in Figure A.5.27(a) are for y/r=0 (the free surface at the 
side of the plate), A.5.27(b) are for y/r=1.237 (a plane one quarter of the way through the plate), and A.5.27(c) are for 
y/r=2.5 (at the mid-plane).  In Figure A.5.27(a), the results predicted by SwRI's isotropic shakedown module can not 
be visually differentiated from the point relaxation results. 
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Figure I29. Comparison of stress components predicted by SwRI's isotropic shakedown module with the results obtained from 

FEA.  The results computed from Glinka's point relaxation are also included.  The notched plate is subjected to 
Sz=30 ksi, Mx=2500 kip-in, and My=0; Material A.  Results in Figure A.5.28(a) are for y/r=0 (the free surface at the 
side of the plate), A.5.28(b) are for y/r=1.237 (a plane one quarter of the way through the plate), and A.5.28(c) are for 
y/r=2.5 (at the mid-plane).  In Figure A.5.28(a), the results predicted by SwRI's isotropic shakedown module can not 
be visually differentiated from the point relaxation results. 
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Figure I30. Comparison of stress components predicted by SwRI's isotropic shakedown module with the results obtained from 

FEA.  The results computed from Glinka's point relaxation are also included.  The notched plate is subjected to 
Sz=25 ksi, Mx=2400 kip-in, and My=2400 kip-in; Material A.  Results in Figure A.5.29(a) are for y/r=0 (the free 
surface at the side of the plate), A.5.29(b) are for y/r=1.237 (a plane one quarter of the way through the plate), and 
A.5.29(c) are for y/r=2.5 (at the mid-plane).  In Figure A.5.29(a), the results predicted by SwRI's isotropic shakedown 
module can not be visually differentiated from the point relaxation results. 
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Figure I31. Comparison of stress components predicted by SwRI's isotropic shakedown module with the results obtained from 

FEA.  The results computed from Glinka's point relaxation are also included.  The notched plate is subjected to 
Sz=50 ksi, and Mx=My=0; Material B.  Results in Figure A.5.30(a) are for y/r=0 (the free surface at the side of the 
plate), A.5.30(b) are for y/r=1.237 (a plane one quarter of the way through the plate), and A.5.30(c) are for y/r=2.5 (at 
the mid-plane).  In Figure A.5.30(a), the results predicted by SwRI's isotropic shakedown module can not be visually 
differentiated from the point relaxation results. 
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Figure I32. Comparison of stress components predicted by SwRI's isotropic shakedown module with the results obtained from 

FEA.  The results computed from Glinka's point relaxation are also included.  The notched plate is subjected to 
Sz=25 ksi, Mx=0, and My=2500 kip-in; Material B.  Results in Figure A.5.31(a) are for y/r=0 (the free surface at the 
side of the plate), A.5.31(b) are for y/r=1.237 (a plane one quarter of the way through the plate), and A.5.31(c) are for 
y/r=2.5 (at the mid-plane).  In Figure A.5.31(a), the results predicted by SwRI's isotropic shakedown module can not 
be visually differentiated from the point relaxation results. 
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Figure I33. Comparison of stress components predicted by SwRI's isotropic shakedown module with the results obtained from 

FEA.  The results computed from Glinka's point relaxation are also included.  The notched plate is subjected to 
Sz=25 ksi, Mx=1600 kip-in, and My=0; Material B.  Results in Figure A.5.32(a) are for y/r=0 (the free surface at the 
side of the plate), A.5.32(b) are for y/r=1.237 (a plane one quarter of the way through the plate), and A.5.32(c) are for 
y/r=2.5 (at the mid-plane).  In Figure A.5.32(a), the results predicted by SwRI's isotropic shakedown module can not 
be visually differentiated from the point relaxation results. 
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Figure I34. Comparison of stress components predicted by SwRI's isotropic shakedown module with the results obtained from 

FEA.  The results computed from Glinka's point relaxation are also included.  The notched plate is subjected to 
Sz=20 ksi, Mx=1800 kip-in, and My=1800 kip-in; Material B.  Results in Figure A.5.33(a) are for y/r=0 (the free surface 
at the side of the plate), A.5.33(b) are for y/r=1.237 (a plane one quarter of the way through the plate), and A.5.33(c) 
are for y/r=2.5 (at the mid-plane).  In Figure A.33(a), the results predicted by SwRI's isotropic shakedown module can 
not be visually differentiated from the point relaxation results. 
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Figure I35. Comparison of stress components predicted by SwRI's isotropic shakedown module with the results obtained from 

FEA.  The results computed from Glinka's point relaxation are also included.  The notched plate is subjected to 
Sz=55 ksi, and Mx=My=0; Material B.  Results in Figure A.5.34(a) are for y/r=0 (the free surface at the side of the 
plate), A.5.34(b) are for y/r=1.237 (a plane one quarter of the way through the plate), and A.5.34(c) are for y/r=2.5 (at 
the mid-plane).  In Figure A.5.34(a), the results predicted by SwRI's isotropic shakedown module can not be visually 
differentiated from the point relaxation results. 
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Figure I36. Comparison of stress components predicted by SwRI's isotropic shakedown module with the results obtained from 

FEA.  The results computed from Glinka's point relaxation are also included.  The notched plate is subjected to 
Sz=30 ksi, Mx=0, My=3500 kip-in; Material B.  Results in Figure A.5.35(a) are for y/r=0 (the free surface at the side of 
the plate), A.5.35(b) are for y/r=1.237 (a plane one quarter of the way through the plate), and A.5.35(c) are for y/r=2.5 
(at the mid-plane).  In Figure A.5.35(a), the results predicted by SwRI's isotropic shakedown module can not be 
visually differentiated from the point relaxation results. 



 

 

I-66

x/r
0 1 2 3 4 5

σ/
σ o

-0.4

0.0

0.4

0.8

1.2

1.6

2.0

2.4

σx, FEA

σy, FEA
σz, FEA
σx, SwRI's Shakedown Module

σy, SwRI's Shakedown Module
σz, SwRI's Shakedown Module

σx, Glinka's Point Relaxation
σy, Glinka's Point Relaxation

σz, Glinka's Point Relaxation

y/r=0

x/r
0 1 2 3 4 5

σ/
σ o

-0.4

0.0

0.4

0.8

1.2

1.6

2.0

2.4

σx, FEA
σy, FEA

σz, FEA
σx, SwRI's Shakedown Module

σy, SwRI's Shakedown Module
σz, SwRI's Shakedown Module

σx, Glinka's Point Relaxation
σy, Glinka's Point Relaxation
σz, Glinka's Point Relaxation

y/r=1.237

x/r
0 1 2 3 4 5

σ/
σ o

-0.4

0.0

0.4

0.8

1.2

1.6

2.0

2.4
σx, FEA

σy, FEA
σz, FEA
σx, SwRI's Shakedown Module
σy, SwRI's Shakedown Module
σz, SwRI's Shakedown Module

σx, Glinka's Point Relaxation
σy, Glinka's Point Relaxation
σz, Glinka's Point Relaxation

y/r=2.5

 
 
 Figure I37a) Figure I37 (b) Figure I37 (c) 
 
 
 
Figure I37. Comparison of stress components predicted by SwRI's isotropic shakedown module with the results obtained from 

FEA.  The results computed from Glinka's point relaxation are also included.  The notched plate is subjected to 
Sz=30 ksi, Mx=2500 kip-in, and My=0; Material B.  Results in Figure A.5.36(a) are for y/r=0 (the free surface at the 
side of the plate), A.5.36(b) are for y/r=1.237 (a plane one quarter of the way through the plate), and A.5.36(c) are for 
y/r=2.5 (at the mid-plane).  In Figure A.5.36(a), the results predicted by SwRI's isotropic shakedown module can not 
be visually differentiated from the point relaxation results. 
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Figure I38. Comparison of stress components predicted by SwRI's isotropic shakedown module with the results obtained from 

FEA.  The results computed from Glinka's point relaxation are also included.  The notched plate is subjected to 
Sz=25 ksi, Mx=2400 kip-in, My=2400 kip-in; Material B.  Results in Figure A.5.37(a) are for y/r=0 (the free surface at 
the side of the plate), A.5.37(b) are for y/r=1.237 (a plane one quarter of the way through the plate), and A.5.37(c) are 
for y/r=2.5 (at the mid-plane).  In Figure A.5.37(a), the results predicted by SwRI's isotropic shakedown module can 
not be visually differentiated from the point relaxation results. 
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Figure I39. Comparison of stress components predicted by SwRI's isotropic shakedown module with the results obtained from 

FEA.  The results computed from Glinka's point relaxation are also included.  The notched plate is subjected to 
Sz=50 ksi, and Mx=My=0; Material A.  Results in Figure A.5.38(a) are for y/r=1.237 (a plane one quarter of the way 
through the plate), and A.5.38(b) are for y/r=2.5 (at the mid-plane).   
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Figure I40. Comparison of stress components predicted by SwRI's isotropic shakedown module with the results obtained from 

FEA.  The results computed from Glinka's point relaxation are also included.  The notched plate is subjected to 
Sz=50 ksi, and Mx=My=0; Material D.  Results in Figure A.5.39(a) are for y/r=1.237 (a plane one quarter of the way 
through the plate), and A.5.39(b) are for y/r=2.5 (at the mid-plane).   
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Figure I41. Comparison of stress components predicted by SwRI's isotropic shakedown module with the results obtained from 

FEA.  The results computed from Glinka's point relaxation are also included.  The notched plate is subjected to 
Sz=50 ksi, and Mx=My=0; Material E.  Results in Figure A.5.40(a) are for y/r=1.237 (a plane one quarter of the way 
through the plate), and A.5.40(b) are for y/r=2.5 (at the mid-plane).   
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Figure I42. Comparison of stress components predicted by SwRI's isotropic shakedown module with the results obtained from 

FEA.  The results computed from Glinka's point relaxation are also included.  The notched plate is subjected to 
Sz=50 ksi, and Mx=My=0; Material F.  Results in Figure A.5.41(a) are for y/r=1.237 (a plane one quarter of the way 
through the plate), and A.5.41(b) are for y/r=2.5 (at the mid-plane).   
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APPENDIX J 

ANISOTROPIC SHAKEDOWN METHODOLOGY FOR BIVARIANT 
STRESS FIELD 

 

J.1 INTRODUCTION 

The anisotropic shakedown methodology is an extension of the isotropic 

shakedown methodology described in the Quarterly Progress Report for April 1 through June 

30, 2002, to account for material anisotropy.  The load shedding and load redistribution 

schemes employed in the anisotropic shakedown module are similar to those used in the 

isotropic shakedown module.  The major difference between these two modules is the 

algorithm to determine the stress relaxation at a point (point relaxation) whose formulation 

depends on the material modeling.  Hence, the accuracy of the developed anisotropic 

shakedown module should be similar to the accuracy obtained by the isotropic shakedown 

module, provided the associated anisotropic constitutive relations accurately describe the 

materials’ behavior. 

The isotropic shakedown methodology is implemented in a software module called 

SHARP (Shakedown Analysis of Residual Plasticity).  The anisotropic shakedown 

methodology is implemented in a software module called SHARP_AN (Shakedown Analysis 

of Residual Plasticity _ Anisotropic).  This module is available through AFRL/MLLMN or 

directly from Southwest Research Institute. 

The shakedown methodology converts the incremental linear elastic solutions into 

equivalent elastic-plastic solutions while conserving forces and moments resulting from the 

remote loading.  All six components of stress are required for the shakedown analysis.  The 

z-component of stress that is normal to the load bearing area is considered the primary stress 

of concern.  The out-of-plane direction is in the y-direction, and this coordinate along with 

the x coordinate defines the load bearing section.  The designation of stresses conforms to the 

coordinate system employed in Figure J1, which shows the load bearing section (enclosed by 

dashed lines) corresponding to a notched plate. 
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Figure J1. Geometry, coordinate system, and loading conditions for finite element 
analysis used to verify SwRI's anisotropic shakedown module.  Various 
combinations of tensile stresses and moments were applied to the notched 
plate. In one set of calculations, the axis of the plate (z-direction) was 
assumed parallel to the <001> (so that the local and global coordinate 
systems are identical), while in another set of calculations the axis of the 
plate was assumed parallel to the <111> direction (so that the local and 
global coordinate systems were different). 

Two major tasks are performed in the anisotropic shakedown methodology.  The 

first task determines the stress relaxation at each nodal position using the linear elastic stress 

state. This procedure is referred to herein as the point relaxation procedure and it provides an 

approximate solution to the elastic-plastic stress state at each nodal position for the current 

load step from the corresponding incremental change in the applied linear elastic solution.  

The point relaxation procedures are based on Neuber’s rule that converts the incremental 

elastic strain energy density to the incremental elastic-plastic strain energy density. The 

second task performs the load shedding that occurs due to point relaxation and re-

distributions the surplus incremental forces and moments over the load bearing area.  A more 

detailed description of each of these tasks in given in Section J.2. 
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The shakedown methodology developed herein is based on an approximate elastic-

plastic stress analysis that is applicable to rectangular load bearing areas.  The input data 

needed to apply the methodology and to run the computer program SHARP_AN that 

performs the stress analysis consists of three parts: structural dimensions, material properties 

and linear elastic stress analysis results, each of which is outlined below.  

J.1.1 Structural Data Requirements 

The structural data consists of specifying the coordinates of the rectangular load 

bearing section. The load bearing section is defined by a rectangle bounded on one side by 

the x-coordinate with a width (L) extending from xmin to xmax, and on the other side by the y-

coordinate with a depth (t) extending from ymin to ymax.  The incremental elastic stress state is 

specified at the points (nodes) defined by the intersecting perpendicular gridlines that define 

(nx−1)×(ny−1) small rectangular elements corresponding to nx and ny gridlines that originate 

from the x- and y-axes, respectively.  The nodal coordinates are signified by (xi,yj) where i 

varies from 1 to nx and j from 1 to ny, and a rectangle element is represented by four corner 

nodes whose coordinates are given by (xi, yj), (xi+1, yj), (xi+1, yj+1), and (xi, yj+1). 

J.1.2 Material Data Requirements 

The material data is composed of discrete pairs of stress and strain values that 

define the uniaxial stress and strain behavior of an anisotropic material under monotonic 

loading when the direction of loading is along the <001> crystallographic direction.  Along 

the <001> direction, the anisotropic materials in this study display “pseudo-isotropic” 

behavior.  The coordinate system that is compatible with the <001> or equivalent direction is 

herein called the local coordinate system.  The stress-strain data should be measured at a 

strain rate typical of the strain rate experienced by the material in the application of interest.  

A routine that determines the constitutive behavior of the anisotropic material and that can be 

interfaced with SHARP_AN is also needed.  This constitutive routine should be compatible 

with material behavior measured on a specimen with its axis parallel to the <001> or 

equivalent direction.  The routine should implicitly contain the elastic stiffness matrix for the 

material and calculate the plastic response in the <001> direction.  The specification for this 

interface is described in more detail in Subsection J.2.1.  Finally, the user has to provide the 

elastic stiffness matrix with respect to the global coordinate system.  The global coordinate 



 J-4

system is the system consistent with the external loading direction, the direction for which 

the linear elastic stress results are obtained. The 6×6 global elastic stiffness matrix is needed 

in order to derive the global strain components from the global stress components.  

J.1.3 Stress Data Requirements 

The linear elastic stress analysis data consists of the incremental changes in the 

global stress components at the grid points or nodes of the elements that form a two-

dimensional model of the load bearing section as the applied load(s) are incrementally 

increased.  The elements have to be rectangular in shape but not necessarily of equal size.  

For example, they could coincide with the elements on the load bearing section 

corresponding to the finite element modeling of that plane.  The point relaxation calculations 

are performed in the local coordinate system.  Hence, the final stress analysis data provided 

by the user is the transformation matrix, Q, and its transpose, Qt, that operate on the global 

stresses, σglobal, to transform them into local stresses, σlocal (Qtσglobal Q=σlocal), and on the 

calculated local plastic relaxed stresses, to transform them back into the global stresses  

(Qσlocal Qt=σglcbal). 

 

J.2 STRESS RELAXATION AT A POINT (POINT RELAXATION) 

The point relaxation process is accomplished by applying Neuber’s rule using the 

linear-elastically determined equivalent stress and equivalent strain increments.  Neuber’s 

rule states that the incremental product of stress and strain is invariant for each load step 

irrespective of the constitutive relationship between stress and strain.  In contrast to the 

approach used in the isotropic counterpart SHARP, the anisotropic version SHARP_AN 

determines the plastic point relaxation of the stress components in the local coordinate 

system.  Thus, all stresses and strains defined in the global coordinate system are transformed 

to the local system before applying Neuber’s rule.   

In terms of incremental stresses, which is more applicable to multi-axial stressing 

and non-dimensional loading, Neuber’s rule can be formulated as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )E
eq

E
eq

kep
eq

kep
eq

kep
eq

kep
eq

kE
eq

E
eq

kep
eq

ep
eq

k εσεσεσεσεσ ∆=∆⋅+⋅∆⇒∆=∆ −− 11      
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where stress and strain are denoted by σ and ε, ( ) ( ) ( ) ep
eq

kep
eq

kep
eq

k σσσ 1−−=∆  and 
( ) ( ) ( ) ep

eq
kep

eq
kep

eq
k εεε 1−−=∆ .  The superscript k denotes the current step number.  The superscripts 

E and ep signify elastic and elastic-plastic quantities, and the subscript, eq, represents an 

equivalent quantity; for example, ep
eqσ  is used to denote the equivalent elastic-plastic stress.  

Currently, the anisotropic shakedown methodology is limited to isothermal and 

constant strain rate loading conditions. Thus, the so-called “pseudo-isotropic” stress-strain 

curve provided by the user needs to be representative of the actual operating temperature and 

strain rate.  This curve should be expressed mathematically in the form of the Ramberg-

Osgood equation 

( )
( ) ( )

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=

β

σ
σ

α
σ
σ

εε
o

ep
eq

k

o

ep
eq

k

o
ep
eq

k   (J1) 

in which σo, εo, α and β are material parameters.  σo and εo may be considered as the yield 

stress and strain in reference to the behavior of this “pseudo-isotropic” curve. 

Neuber's rule can be solved for the current equivalent elastic-plastic stress, ( ) ep
eq

k σ , 

using the elastic-plastic stresses and strains determined at the end of the previous load step 

together with the user-specified elastic stresses and strains. (In the SHARP_AN module, the 

elastic strains are derived from the stresses using the elastic modulus matrix).  The required 

solution is in the form of one of the roots of a non-linear equation derived by applying 

Neuber’s rule. This root needs to be determined using numerical methods.  The bisection 

method is used in the point relaxation module.  After the root is found, the elastic-plastic 

equivalent strain ( ) ep
eq

k ε  and the elastic-plastic equivalent strain increment ( ) ep
eq

k ε∆  can be 

computed from the constitutive relationship.  The incremental elastic-plastic stress 

components can thus be approximately determined by 

( )
( )

( )
( ) E

ij
k

E
eq

k

eq
eq

k
ep
ij

k σ
σ
σ

σ ∆⋅
∆

∆
=∆    (J2) 
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J.2.1 Generic Interface for the User-Specified Material Routines 

An overview of the anisotropic shakedown module is shown in Figure J2. This 

figure illustrates the interaction among the main shakedown routine, the point relaxation 

module and the user-specified material routines.  The user-specified material routines consist 

of three parts, as follows: 

GENERIC_INTF_I –  Contains a subroutine that updates the basic material 
properties; 

GENERIC_INTF_II –  Contains a subroutine that determines the incremental elastic-
plastic quantities after the equivalent stress and the equivalent 
strain are defined.  It may involve some elaborate analytical 
work to derive the appropriate equations from the material 
constitutive model; 

GENERIC_INTF_III – Contains a function that defines the equivalent stress for the 
specific anisotropic material model. 

 

 

Figure J2. An overview of the program structure of SwRI’s anisotropic shakedown module 
with the user-specified material routines; GENERIC_INTF_I, 
GENERIC_INTF_II, and GENERIC_INTF_III. 

 

The derivation on the Walker constitutive model is provided in Section J.2.2 as an example 

of how to make use of these user-specified routines. 

The generic interfaces for the user-specified material routines are provided so that 

users can implement a variety of anisotropic material constitutive relationships.  The 

 Anisotropic Shakedown Module
(Performing load shedding and 
load re-distribution) 

Point Relaxation Module 

GENERIC_INTF_I 

GENERIC_INTF_II 
GENERIC_INTF_III 
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descriptions of the parameters that form the arguments of the routines enabling them to 

interface with the main shakedown module are listed in Tables J1 to J3.  The routines 

presented herein to illustrate examples of possible interface routines are in FORTRAN, and 

floating point computation is in double precision.  These routines are provided as guidelines 

on how to construct the routines conforming to the generic interface.  

The material constants are declared and stored in the array argument CONSTANT 

of GENERIC_INTF_I and passed out into GENERIC_INTF_II.  The double precision 

function ANISO_SEQ contained in GENERIC_INTF_III provides the formulation for the 

equivalent stress for the given material model.  Note that S11, S12, …, and S33 are regular 

stress components, and, in contrast, A11, A12, …, and A33 (which signify the coordinates of 

the center of plasticity surface) are in deviatoric space.  Quantities in deviatoric space are 

defined by subtracting the dilatational component from the original quantities.  For example, 

the deviatoric stresses Sij are defined by ijkkijijS δσσ −=  in which the dilatational 

component is defined by ( ) 3332211 σσσσ ++=kk , and 1=ijδ  for ji = , and 0=ijδ  for 

ji ≠  where the subscripts i and j vary from 1 to 3.  Table J4 shows the general program 

structure of the user-specified material routines. 
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Table J1.  Definition of Arguments Used in the User Provided Routine 
GENERIC_INTF_I 

 
SUBROUTINE GENERIC_INTF_I(D6,Q,Qt,CONSTANT,TEMP) 

Argument 
Name 

Data 
Type 

Status Description 

D6 Double 
precision 

array 

Output Two-dimensional array of size 6×6 used to store 
the elements in the elastic stiffness matrix 
relating the strains to the stresses in the global 
coordinate system.  

Q Double 
precision 

array 

Output Two-dimensional array of size 3×3 used to store 
the transformation matrix that converts the 
tensors in the global coordinate system to those 
in the local coordinate system. 

Qt Double 
precision 

array 

Output Two-dimensional array of size 3×3 used to store 
the transpose of Q. 

Constant Double 
precision 

array 

Output One-dimensional array used to store user-
specified material constants that are needed by 
the constitutive model. These constants are 
passed as input arguments to the routines 
GENERIC_INTF_II and GENERIC_INTF_III.  
The maximum permissible dimension for this 
array is 2000. 

Temp Double 
precision 

User-
specified 

Temperature passed into GENERIC_INTF_I to 
allow for the fact that the constitutive model may 
incorporate the variation of material properties 
with temperature. 
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Table J2.  Definition of Arguments Used in the User Provided Routine 
GENERIC_INTF_II 

 
SUBROUTINE GENERIC_INTF_II (CONSTANT, SIG_PTC, DSIG_PTC, 

DEPS_ETC, OMEGA_PTC, EPS_PTC, DRTOTAL, TEMP, DTIME) 
Argument 

Name 
Data 
Type 

Status Description 

Constant Double 
precision 

array 

Input from 
GENERIC_INTF_I 

One-dimensional array used to store user-
specified material constants that are 
needed by the constitutive model. The 
constants are defined in 
GENERIC_INTF_I.  The maximum 
permissible dimension is 2000. 

Sig_ptc Double 
precision 

array 

Input from 
anisotropic 

shakedown module 

Two-dimensional array of size 3×3 used 
to store the predicted local elastic-plastic 
stress at the current load step determined 
by the anisotropic shakedown module. 

Dsig_ptc Double 
precision 

array 

Input from 
anisotropic 

shakedown module 

Two-dimensional array of size 3×3 used 
to store the predicted local elastic-plastic 
stress increment at the current load step 
determined by the anisotropic shakedown 
module. 

Deps_etc Double 
precision 

array 

Input from 
anisotropic 

shakedown module 

Two-dimensional array of size 3×3 used 
to store the computed local elastic strain 
increment used when applying Neuber’s 
rule in the shakedown analysis at the 
current load step.  The value can be 
different from the user-specified value 
due to the adjusted time increment, dtime. 

Omega_ptc Double 
precision 

array 

Input/Output Two-dimensional array of size 3×3 used 
to store the calculated translation of the 
center of the plastic surface according to 
the user-specified anisotropic material 
model.  The quantities are defined in 
deviatoric space and with respect to the 
local coordinate system. 

Eps_ptc Double 
precision 

array 

Input/Output Two-dimensional array of size 3×3 used 
to store the calculated local elastic-plastic 
strain according to the user-specified 
anisotropic material model. 
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Table J2 (continued).  Definition of Arguments Used in GENERIC_INTF_II  
 

SUBROUTINE GENERIC_INTF_II (CONSTANT, SIG_PTC, DSIG_PTC, 
DEPS_ETC, OMEGA_PTC, EPS_PTC, DRTOTAL, TEMP, DTIME) 

Argument 
Name 

Data 
Type 

Status Description 

DRtotal Double 
precision 

Input/Output Total local plastic strain. 

Temp Double 
precision 

Input from 
GENERIC_INTF_I 

Temperature used to determine the material 
properties (passed in from 
GENERIC_INTF_I). 

Dtime Double 
precision 

Input from 
anisotropic 

shakedown module 

Time increment for integration. 

 
 

Table J3. Definition of Arguments Used in the User Provided Routine 
GENERIC_INTF_III 

 
DOUBLE PRECISION FUNCTION ANISO_SEQ (CONSTANT, S11, S12, S13, S22, 

S23, S33, A11, A12, A12, A22, A23, A33) 
Argument 

Name 
Data Type Status Description 

Constant Double precision 
array 

Input from 
GENERIC_INTF_I 

One-dimensional array used to store 
user-specified specified material 
constants that are needed by the 
constitutive model. These constants are 
defined in GENERIC_INTF_I. 

S11 Double precision Input x-component of stress 
S12 Double precision Input xy-component of stress 
S13 Double precision Input xz-component of stress 
S22 Double precision Input y-component of stress 
S23 Double precision Input yz-component of stress 
S33 Double precision Input z-component of stress 
A11 Double precision Input x-component of the center of plasticity 

surface* 
A12 Double precision Input xy-component of the center of plasticity 

surface* 
A13 Double precision Input xz-component of the center of plasticity 

surface* 
A22 Double precision Input y-component of the center of plasticity 

surface* 
A23 Double precision Input yz-component of the center of plasticity 

surface* 
A33 Double precision Input z-component of the center of plasticity 

surface* 

(*) in deviatoric space. 
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Table J4.   The General Program Structure of the User-Specified Material Routines for 

SwRI’s Anisotropic Shakedown Module, SHARP_AN 
 

!=================================================================== 
subroutine Generic_intf_I(d6global,Q,Qt,constant,temp) 
! 
!  Generic Interface Part I - basic anisotropic material properties 
! 
      implicit none 
      double precision, intent(in)  ::  temp 
      double precision, intent(out) ::  d6global(6,6),Q(3,3),Qt(3,3),constant(11) 
!     
!  user-specified algorithm here 
! 
end  subroutine Generic_intf_I 
   
!=================================================================== 
subroutine Generic_intf_II(constant,sig_ptc,dsig_ptc,deps_etc,omega_ptc, eps_ptc,    & 
                           dRtotal, temp, dtime) 
! 
!   Generic Interface Part II  -  material constitutive model 
! 
      implicit double precision (a-h,o-z) 
      double precision, intent(in)   ::  temp, dtime, constant(11), sig_ptc(3,3),    & 
                                         dsig_ptc(3,3), deps_etc(3,3) 
      double precision, intent(inout)::  dRtotal, omega_ptc(3,3), eps_ptc(3,3) 
! 
!   user-specified algorithm here 
! 
end subroutine Generic_intf_II 
 
 
!=================================================================== 
double precision function aniso_seq(constant,s11,s12,s13,s22,s23,s33,a11,    & 
                                    a12,a13,a22,a23,a33) 
! 
!  Generic interface Part III – equivalent stress definition for anisotropic material 
! 
      implicit none 
      double precision, intent(in) :: constant(11),s11,s12,s13,s22,s23,s33,  & 
                                      a11,a12,a13,a22,a23,a33 
      double precision             :: M11mM12, M44, dev, xi11, xi12, xi13,   & 
                                      xi22, xi23, xi33 
! 
!   user-specified algorithm here 
! 
 end function aniso_seq 
!=================================================================== 
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J.2.2  Derivation of Example Generic Interface Routines Using Walker’s 
Constitutive Model 

A material constitutive model routine developed by Walker that is compatible with 

the requirements of a user provided material routine for the ANSYS1 stress analysis program 

was provided by Pratt & Whitney to SwRI to enable validation of the anisotropic shakedown 

module.  This constitutive model also served to guide SwRI in developing the specification 

for the generic interface routines listed in Tables J1 to J3.  The constitutive model is herein 

called the Walker model, although it was adopted by Walker from Nouailhas and Freed’s 

viscoplastic theory for anisotropic materials2. These routines and the values of the material 

constants used in them are proprietary to P&W and are not delivered to the HCF Team as 

part of the shakedown module.  However, Walker’s constitutive model for an anisotropic 

material is used herein to demonstrate the procedures to be followed when constructing the 

generic material interface routines for the shakedown module. 

As used in the validation of the shakedown module, Walker’s constitutive model is 

defined by the following differential equations: 

 

( )plasitc
klklijklij D εεσ ∆−∆=∆    (J3) 

 
( )

( ) ( )uvuvpquvpqpq

klklijkl
n

plastic
ij

SMS

SM
K
f

Ω−Ω−

Ω−
=∆

2
32

3ε   (J4) 

 

( ) ( ) κ−Ω−Ω−= uvuvpquvpqpq SMSf
2
3   (J5) 

 

RQN klijkl
plastic

klijklij ∆Ω−∆=∆Ω ε
3
2   (J6) 

 
n

plastic
klijkl

plastic
ij K

fMR =∆∆=∆ − εε 1

3
2   (J7) 

 

                                                 
1 ANSYS is a commercially available FEM software package. 
2 D. Nouailhas and A. D. Freed, “A Viscoplastic Theory for Anisotropic Materials,” Journal of Engineering 
Materials and Technology, Vol. 114, pp. 97-104, 1992 
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where the angle bracket notation is used to denote the Heaviside step function, ( )xxHx = , 

∆ denotes an incremental change in a quantity, [D] represents the elastic stiffness matrix 

relating the elastic strain to the stress, f is a yield function, exponents m and n and the 

quantities K and k are material constants, and [M], [N], and [Q] are material properties 

expressed as fourth rank tensors, denoted by the square brackets.  ∆R signifies the equivalent 

plastic strain increment.  All material properties used in the foregoing equations are assumed 

determined with respect to the local coordinate system (e.g., measured with the axis of the 

specimen parallel to the <001> or equivalent direction). 

The relationship of the Walker Model parameters to the arguments in the generic 

interface routines, GENERIC_INTF_I, GENERIC_INTF_I and GENERIC_INTF_III, is 

clarified in Table J5. 
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Table J5.  Relationship of Walker Model Parameters to the Arguments of the Routines GENERIC_INTF_I, 
GENERIC_INTF_I and GENERIC_INTF_III 

  
Argument Description Subroutine(s) Used Relationship to Walker Model 

Constant Array that contains 
material constants 

GENERIC_INTF_I 
GENERIC_INTF_II 
GENERIC_INTF_III 

Contains values for κ, K, and the non-zero elements of the tensors 
[D], [M], [N], and [Q]. 

Omega_ptc Center of plasticity 
surface in 
deviatoric space 

GENERIC_INTF_II Used in Equation (J6) to determine the current incremental change, 
∆Ωij in the center of the plasticity surface Ωij so this can be updated 
and the new value returned.  

Eps_ptc Total strain. GENERIC_INTF_II The incremental change in plastic strain, plastic
ijε∆ , is computed using 

Equations (J4) and (J5) and added to the total strain, ijε , which is then 

returned as the updated value. The elastic component, elastic
ijε∆  of the 

total strain is computed by inverting Equation (J3) to give the 
following expression for the total strain increment, 

plastic
ijklijklij D εσε ∆+∆=∆ −1  

DRtotal Total equivalent 
plastic strain. 

GENERIC_INTF_II Equation (J7) is used to determine the incremental change in the 
equivalent plastic strain and this is then added to the current total 
value and the new value returned. 

Function 
ANISO_SEQ 

Equivalent stress GENERIC_INTF_III The user provides a function that defines the equivalent stress in terms 
of material constants, the stress components and deviatoric stress 
components that define the center of the plasticity surface. The 
function should be consistent with the anisotropic constitutive model. 
In the Walker model the equivalent stress is given by the first term on 
the right hand side of Equation (J5), 

i.e. ( ) ( )uvuvpquvpqpq SMS Ω−Ω−
2
3  (see Equation (J9). 
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J.3 LOAD SHEDDING AND RE-DISTRIBUTION 

The methodology for load shedding and load re-distribution in SHAPR_AN is 

identical to the isotropic shakedown methodology developed in SHARP except that the 

equivalent stress used in the anisotropy constitutive model is different from that employed in 

the isotropic model. However, for completeness, the load shedding and re-distribution 

procedures used in SHARP are summarized here.  As indicated in Section J.2, although the 

point relaxation employed in SHARP_AN is performed in the local coordinate system, the 

corresponding load shedding and re-distribution are accomplished in the global coordinate 

system.  

The following steps reference corresponding section of the report where more 

detailed descriptions of the load shedding procedures are given. 

 
Step (1)  Interpolation of the incremental linear elastic stress values for the current load 

step to generate stress values at the nodal points of a much finer mesh of 
rectangular elements than the original mesh defined by finite element modeling of 
the load bearing section. (Section J.3.1). 

Step (2) Evaluation of the incremental increase in forces and moments for the current load 
step from the incremental change in the linear elastic stress and the estimated 
elastic-plastic stress state for the previous load step (Section J.3.2). 

Step (3) Estimation of the plastic zone size on the load-bearing area based on the 
equivalent stress derived from the applied incremental linear elastic stress for the 
current load step and the elastic-plastic stress derived in the previous load step 
(Section J.3.3). 

Step (4) Splitting the stress range (defined as the difference between the maximum and 
minimum values of an equivalent stress) on the load bearing section into specific 
stress bands, determining the area of the load bearing section occupied by each of 
the bands, and assigning the equivalent stress in each element of the fine mesh to 
one of the stress bands (Section J.3.4). 

Step (5) Evaluation of the areas over which load shedding will occur for each equivalent 
stress band (Section J.3.5). 

Step (6) Determination of the plastically relaxed stresses for each equivalent stress band 
(Section J.3.6) 

Step (7) Redistribution (load shedding) of the excess incremental load arising from plastic 
stress relaxation over the area associated with each equivalent stress band 
(Section J.3.7). 

Step (8) Calculation and re-distribution of the global incremental loads needed to maintain 
force and moment balance after the plastic stress relaxation process is completed 
over the load bearing section (Section J.3.8) 
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J.3.1  Generation of a New Bivariant Incremental Stress Array 

This procedure is required to provide a fine mesh consisting of small element sizes 

in order to increase the accuracy of the plastic stress relaxation and load shedding procedures 

detailed in Sections J.3.5 and J.3.7.  The stress values provided at the corner points of the 

elements constituting the user-defined mesh are interpolated to provide stress values at the 

corner points of the elements constituting a finer mesh.  The distribution of incremental 

stress, ( )yxE
ij ,σ∆ , across an element is assumed to be linear.  This means that if (x,y) is a 

coordinate position within an element of the user-defined mesh then the incremental stress 

within that element will vary as ( )yxE
ij ,σ∆  =b1+b2x+b3y+b4xy, where the coefficients b1, b2, 

b3, and b4 are determined by the incremental stress values at the coordinates of the four 

corner points of the element.  The shakedown methodology utilizes the results for the finer 

mesh which is specified to have mx nodes (mx−1 elements) along the x-axis between x=xmin 

and x=xmax, and my nodes (my−1 elements) along the y-axis between y=ymin and y=ymax.  In 

general, mx>nx and my>ny, where nx and ny are the number of nodes along the x-axis and y-

axis, respectively, in the user-specified mesh. 

J.3.2 Evaluation of the Applied Incremental Force and Moments at the Current 
Load Step 

The evaluation of the applied force Fz and moments Mx, My, at the current load step 

is based on the elastically determined stress increments at the current load step and the 

elastic-plastic stress solution determined from the previous load step.  The equations are 

given by 

( ) ( )( ) ( ) ( ) ( ) ( )[
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )]11

1
1111

1

11
11

1

1

1

1

1
11

,,,,

,,,,

,,
4
1

++
−

++++
−

++
−−

−

=

−

=

−
++

∆++∆+

+∆++∆+

+∆+−−= ∑∑

ji
E
z

k
ji

ep
z

k
ji

E
z

k
ji

ep
z

k

ji
E
z

k
ji

ep
z

k
ji

E
z

k
ji

ep
z

k

m

i

m

j
ji

E
z

k
ji

ep
z

k
jjiiz

k

yxyxyxyx

yxyxyxyx

yxyxyyxxF
x y

σσσσ

σσσσ

σσ

 (J8a) 

 

( ) ( )( ) ( ) ( ) ( ) ( )[
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )]11

1
1111

1

11
11

1

1

1

1

1
1

22
1

,,,,

,,,,

,,
8
1

++
−

++++
−

++
−−

−

=

−

=

−
++

∆++∆+

+∆++∆+

+∆+−−= ∑∑

ji
E
z

k
ji

ep
z

k
ji

E
z

k
ji

ep
z

k

ji
E
z

k
ji

ep
z

k
ji

E
z

k
ji

ep
z

k

m

i

m

j
ji

E
z

k
ji

ep
z

k
jjiiy

k

yxyxyxyx

yxyxyxyx

yxyxyyxxM
x y

σσσσ

σσσσ

σσ

 (J8b) 



 

 J-17

 

( ) ( )( ) ( ) ( ) ( ) ( )[
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )]11

1
1111

1

11
11

1

1

1

1

122
1

,,,,

,,,,

,,
8
1

++
−

++++
−

++
−−

−

=

−

=

−
++

∆++∆+

+∆++∆+

+∆+−−= ∑∑

ji
E
z

k
ji

ep
z

k
ji

E
z

k
ji

ep
z

k

ji
E
z

k
ji

ep
z

k
ji

E
z

k
ji

ep
z

k

m

i

m

j
ji

E
z

k
ji

ep
z

k
jjiix

k

yxyxyxyx

yxyxyxyx

yxyxyyxxM
x y

σσσσ

σσσσ

σσ

 (J8c) 

These equations are based on the interpolated values at the corner points of the 

elements constituting a finer mesh that has (mx−1) elements along the x-axis and (my−1) 

elements along the y-axis.  The symbols used to designate the stress component normal to the 

load bearing section are ∆σz for stress increment and σz for stress.  The superscript E denotes 

the linear elastic solutions derived from the data provided by the user, and the superscript ep 

represents the elastic-plastic solutions determined from the anisotropic shakedown module.  

The current and previous load steps are denoted by superscripts k and (k−1), respectively. 

J.3.3 Estimation of the Plastic Zone Size 

The plastic zone size, ay, is the area of the load bearing section where the equivalent 

stress values, eqσ , equal or exceed the yield stress, σyield.  An element is only included in this 

area if the equivalent stress values at all four corner points of the element satisfy this 

criterion.  A pseudo von-Mises type of equivalent stress, pseudo
eqσ , composed of the current 

elastic stress increment and the elastic-plastic stress from the previous step is defined by the 

equation 

( ) ( )kl
pseudo

klijklij
pseudo

ij
pseudo

klijkl
pseudo

ij
pseudo

eq SMSM Ω−Ω−==
2
3

2
3 ξξσ  (J9) 

where ij
pseudo

ij
pseudo

ij S Ω−=ξ .  Mijkl describes the material properties in terms of a fourth rank 

tensor [see Equation J4].  The term pseudo
ijS  is a pseudo deviatoric stress based on the current 

linear elastic stress increment ( ) E
ij

k σ∆  and the elastic-plastic stress ( ) ep
ij

k σ1−  obtained from the 

previous load step.  Its tensor representation is given by 

 ( ) ( )( ) ( ) ( )( ) 311 E
kk

kep
kk

k
ij

E
ij

kep
ij

kpseudo
ijS σσδσσ ∆+⋅−∆+= −−   (J10) 
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with 1=ijδ , if i=j, or 0=ijδ , if i≠j.  Ωij is the coordinate of the center of the current 

plasticity surface in the deviatoric space coordinate. 

J.3.4 Determination of the Stress Bands for Load Shedding 

The equivalent stress range ( ) ( )pseudo
eq

pseudo
eq minmax

σσ −  is divided into nr levels (i.e., nr−1 

stress bands) where the subscripts max and min denote the maximum and minimum 

equivalent stresses, respectively.  The area occupied by each of the stress bands is determined 

and elements of the fine mesh that fall within each of the areas that are identified.  Thus, the 

elements that fall within an area contain equivalent stresses with values between the upper 

and lower bounds that define the stress band.  If ay is the area over which the equivalent 

stress exceeds the yield stress, σyield, and atotal is the area of the load bearing section, then the 

number of stress bands, nl, that contain equivalent stresses that exceed σyield is 

 r
total

y
l n

a
a

n =  (J11) 

 

The stress ranges corresponding to each of the stress bands where yielding has occurred are 

defined as 

 
( )

l

yieldeq
inc n

σσ
σ

−
= max  (J12) 

It follows that the number of stress bands where the equivalent stress is lower than σyield is 

nr−nl and the stress ranges associated with these bands is 

 
( )

lr

eqyield
inc nn −

−
= min

σσ
σ   (J13) 

Once a stress band is determined, the associated area ak occupied by elements 

which have equivalent stress values above the lower limit of the band is evaluated.  During 

this process, each element is assigned to, and associated with, a specific stress band. 

J.3.5 Evaluation of Load Shedding Areas 

The plastic stress relaxation process, load shedding, and stress re-distribution, start 

in the area of the load bearing section that has the maximum equivalent stress, ( )pseudo
eq max

σ .  It 

then proceeds to the area with a stress band equal to the second highest equivalent stress, and 

so on until the area of the load bearing section containing the minimum equivalent stress, 
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( )pseudo
eq min

σ , is reached.  During this process, load shedding due to plastic stress relaxation 

transfers incremental loads onto adjacent load bearing areas.  The size of these areas, or re-

distribution zones, ( )k
relax aa , for the k-th equivalent stress band is defined by 

 ( ) ( ) ykk
relax aafaa ⋅=   (J14) 

where f(ak) is a dimensionless multiplication factor calculated from the equation 

 ( )
2

tanh
2

lowhigh

y

yklowhigh
k a

aa
af

αα
ζ

αα +
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−
=   (J15) 

This empirical factor acts as a smoothing function that re-distributes surplus 

incremental loads from locations inside the plastic zone over areas comparable to ay, and re-

distributes incremental loads from locations outside the plastic zone over areas many times 

greater than ay.  The forms for the parameters αhigh, αlow, and ζ are empirically chosen based 

on exploratory investigations using the results of elastic-plastic finite element stress analyses 

of notched plates for material behaviors with significantly different strain-hardening 

capacities.  The final forms are given by 

 lowhighlow αα
β
βας β

β

20  ,
1
1  ,03.0 1

1

=
−
+

== +
−

  (J16) 

where β is the Ramberg-Osgood strain hardening exponent (see Section J.2) 

J.3.6 Determination of the Plastically Relaxed Stresses 

The plastically relaxed stresses are calculated from the following stresses: 

(1) Linear elastic stress solution at the end of previous load step, ( ) E
ij

k σ1− . 

(2) Linear elastic stress increment for the current load step, ( ) E
ij

k σ∆ . 

(3) Elastic-plastic stress solution at the end of previous load step, ( ) ep
ij

k σ1− . 

The computation of the plastically relaxed stresses is performed using the point relaxation 

module.  For more details, refer to Section J.2. 
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J.3.7 Redistribution of Local Incremental Loads Resulting from Load Shedding 

The reduction of the pseudo stress component pseudo
zσ  within each element 

belonging to a given stress band, is converted into an incremental load which is then re-

distributed over an area that encompasses smaller stress bands.  The increment of load re-

distributed, mF∆ , within the m-th stress band is calculated by the difference between the 

pseudo elastic-plastic stress state ( ) ( )[ ]E
z

kep
z

k σσ ∆+−1  and the relaxed stress state ( ) ep
z

k σ∆  for 

the elements belonging to the stress band using a simple Trapezoidal rule 

 ∑
=

∆=∆
mn

i
iim AF

14
1 σ   (J17) 

In this equation, nm denotes the number of elements within the m-th stress band, Ai stands for 

the area of the i-th element, and iσ∆  the sum of the incremental reductions in the stress 

component normal to the load bearing section, ( ) ( )( )[ ]ep
z

kE
z

kep
z

k σσσ ∆−∆+− )(1 , evaluated at the 

four corner points of the i-th element.  The excess load is redistributed as an increment of 

stress, ( )mjz aa ,σ∆ , whose magnitude linearly varies over the redistribution zone size 

( )m
relax aa  according to the rule 

 ( ) ( ) ( ) ( ) mm
relax

jm
m

relax
mj

m
relax

m
mjz aaaaa

aa
aa

aa
F

aa +≤≤⎥
⎦

⎤
⎢
⎣

⎡ −
−

∆
=∆   ,  1

2
σ   (J18) 

The increments ( )mjz aa ,σ∆  are added to the incremental stress component E
zσ∆  of those 

nodes whose element belongs to the j-th stress band.  Thus, at the time when the plastic stress 

relaxation calculation for the m-th stress band is completed, the total stress consists of the 

pseudo elastic-plastic stress component at the end of the previous step, ( ) ( ) E
z

kep
z

k σσ ∆+−1 , plus 

the sum of all the incremental stresses ( )mjz aa ,σ∆  resulting from load shedding. 

J.3.8 Balance of Force and Moments, and Load Re-distribution 

After the stress relaxation calculations have been completed over the load bearing 

section, conservation of the force normal to the section, and conservation of moments with 

respect to the x- and y-axes, are checked.  In this procedure, the force and moments are 

compared with the force and moments evaluated before stress relaxation according to Section 

J.3.2.  If the difference in force is denoted by zF∆  and the differences in moments by xM∆  
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and yM∆ , then these are globally re-distributed as an incremental stress distribution 

( )yxz ,σ∆  over the whole load bearing section, where ( )yxz ,σ∆  is evaluated according to 

the following rule: 

 ( ) ( )yxCyCxCyx ep
zz ,, 323130 σσ ++=∆   (J19) 

where the coefficients Cij are given by 
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After the global re-distribution, the stress relaxation process is repeated starting 

with a new "pseudo" stress state given by 

( ) ( ) ( ) ( )yxyx z
E
z

kep
z

kpseudo
z ,, 1 σσσσ ∆+∆+= −   (J22) 

This process is repeated until the convergence criterion is met. 

J.4 INTERFACING WITH SwRI’s ANISOTROPIC SHAKEDOWN MODULE 

As part of the current program, SwRI developed and validated under monotonic 

loading conditions a computer module, SHARP_AN, that performs an approximate 

shakedown analysis for three-dimensional structures with material anisotropy where a 

bivariant stress distribution is induced on the load bearing section of interest. The program 

enhances the simple point relaxation procedure that makes use of Neuber’s rule by including 

the effects of load relaxation and load re-distribution over the load bearing area while 

maintaining force and moment balance on that area.  The object files accompanied with this 

report can be used to link with a driver and user-specified routines to conduct anisotropic 

shakedown analyses.  This section describes how the SHARP_AN routine can be interfaced 

with a calling program so that the module may be integrated into HCF related software that 

requires a shakedown analysis for its execution. 

Two data transfer mechanisms are used to pass information to and receive results 

from the anisotropic shakedown module.  One mechanism is through a COMMON data 

structure that contains arrays with prescribed dimensions, and the other mechanism is 

through the argument list of the routine itself.  To demonstrate the data passing mechanisms, 

several segments of computer code are listed below that illustrate the type of coding that the 

user should include in the program driving the anisotropic shakedown module.   

The computer code listed in Table J6 shows the parameters and the associated array 

sizes required to call the anisotropic shakedown module.  A description of the arrays and 

parameters listed in Table J6 is provided in Table J7.  The declaration for the data type 

employs the default Fortran 77 style.  

Depending on how the shakedown module is driven by the calling program, the 

declarations of the arrays listed in Table J7 can be placed in different routines in the calling 

program.  For large data arrays, the Fortran COMMON data structure is used for storage 
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efficiency.  Comments are used in Table J6 to separate the COMMON and DIMENSION 

declarations into two Code Segments, A and B.  The arrays declared in Code Segment A are 

used by the anisotropic shakedown module and the elements of these arrays need to have 

their values initialized as illustrated in Code Segment C contained in Table J8.  The 

parameters and arrays declared in Code Segment B are either input values specified by the 

user or output values of the plastically relaxed stress components (output), ep
ijσ , calculated by 

the shakedown module.  As can be seen from the declared dimensions, the current version 

limits the maximum dimension of the user-defined linear elastic stress arrays to be 100 by 

100, and the maximum dimension of the interpolated stress arrays to be 200 by 200. 

 
Table J6.  Listing of Computer Code Indicating How the Array Dimensions are 

Declared 
 
c===================================================================== 
c   Parameter and arrays required to drive SHARP_AN (Anisotropic Version of SHARP) 
c 

Implicit double precision (a-h,o-z) 
parameter (nso=100,nnx=200,nny=200,max_pt=nnx*nny) 

c  
c  *** CODE SEGMENT A *** 
c  arrays used by the anisotropic shakedown module.  They are declared outside the module 
c  for initialization.  The initialization can be found in Code Segment C. 
c 

dimension a1v(max_pt,6),sigvc(max_pt,6),sigv(max_pt,6), 
+               epsvc(max_pt,6),epsv(max_pt,6),sigev(max_pt,6), 
+               epsev(max_pt,6),erefv(max_pt) 
common/global_/a1v,sigvc,sigv,epsvc,epsv,sigev,epsev,erefv 

c 
c   *** CODE SEGMENT B *** 
c    

common/RO_law/E_eff,alpha,beta,sigo,epso,tri_max,tri_min,iduck 
common/sig_out/ss11r(nso,nso),ss12r(nso,nso),ss13r(nso,nso), 
+              ss22r(nso,nso),ss23r(nso,nso),ss33r(nso,nso) 
common/ds_old/xo(nso),yo(nso),dsxx(nso,nso),dsxy(nso,nso), 
+              dsxz(nso,nso),dsyy(nso,nso),dsyz(nso,nso),dszz(nso,nso) 

c=================================================================== 
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Table J7.  Descriptions for Parameters and Arrays Listed in Code Segment B 
 
Parameter 

Name 
Data 
Type 

Status Description 

E_eff Double 
precision 

User-
specified 

Young's module 

Alpha Double 
precision 

User-
specified 

Coefficient appearing in the plastic strain 
component of the Ramberg-Osgood stress-strain 
equation. 

Beta Double 
precision 

User-
specified 

Exponent appearing in the plastic strain 
component of the Ramberg-Osgood stress-strain 
equation. 

Sigo Double 
precision 

User-
specified 

Yield stress parameter appearing in the Ramberg-
Osgood stress-strain equation. 

Epso Double 
precision 

User-
specified 

Yield strain parameter appearing in the Ramberg-
Osgood stress-strain equation where 
epso=sigo/E_eff. 

Xo Double 
precision 

array 

User-
specified 

One-dimensional array of size nso used to store 
the x-coordinates of the user-defined bivariant 
stress distribution.  The values of x should be 
stored in the ascending order from the minimum 
value, xmin, to the maximum value, xmax.  The 
array does not need to be fully populated with nso 
non-zero values.  However, if there are only nx 
values of x, the array elements indexed from 
(nx+1) to nso should be filled with zeros. 

Yo Double 
precision 

array 

User-
specified 

One-dimensional array of size nso used to store 
the y-coordinates of the user-defined bivariant 
stress distribution.  The values of y should be 
stored in the ascending order from the minimum 
value, ymin, to the maximum value, ymax.  The 
array does not need to be fully populated with nso 
non-zero values.  However, if there are only ny 
values of y, the array elements indexed from 
(ny+1) to nso should be filled with zeros. 

Dsxx Double 
precision 

array 

User-
specified 

Two-dimensional array of size nso×nso used to 
store values of the incremental linear elastic stress 
component, ∆σx, of the bivariant stress field 
corresponding to position coordinates (x,y) 
contained in the arrays xo and yo.  The array 
should contain nx×ny values, and the remaining 
elements should contain zero values. 
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Table J7 (continued).    Descriptions for Parameters and Arrays Listed in Code 
Segment B 

 
Parameter 

Name 
Data 
Type 

Status Description 

dsxy Double 
precision 

array 

User-specified Two-dimensional array of size nso×nso used to 
store values of the incremental linear elastic 
stress component, ∆σxy, of the bivariant stress 
field corresponding to position coordinates (x,y) 
contained in the arrays xo and yo.  The array 
should contain nx×ny values, and the remaining 
elements should contain zero values. 

dsxz Double 
precision 

array 

User-specified Two-dimensional array of size nso×nso used to 
store values of the incremental linear elastic 
stress component, ∆σxz, of the bivariant stress 
field corresponding to position coordinates (x,y) 
contained in the arrays xo and yo.  The array 
should contain nx×ny values, and the remaining 
elements should contain zero values. 

dsyy Double 
precision 

array 

User-specified Two-dimensional array of size nso×nso used to 
store values of the incremental linear elastic 
stress component, ∆σyy, of the bivariant stress 
field corresponding to position coordinates (x,y) 
contained in the arrays xo and yo.  The array 
should contain nx×ny values, and the remaining 
elements should contain zero values. 

dsyz Double 
precision 

array 

User-specified Two-dimensional array of size nso×nso used to 
store values of the incremental linear elastic 
stress component, ∆σyz, of the bivariant stress 
field corresponding to position coordinates (x,y) 
contained in the arrays xo and yo.  The array 
should contain nx×ny values, and the remaining 
elements should contain zero values. 

dszz Double 
precision 

array 

User-specified Two-dimensional array of size nso×nso used to 
store values of the incremental linear elastic 
stress component, ∆σz, of the bivariant stress 
field corresponding to position coordinates (x,y) 
contained in the arrays xo and yo.  The array 
should contain nx×ny values, and the remaining 
elements should contain zero values. 
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Table J7 (continued).    Descriptions for Parameters and Arrays Listed in Code 
Segment B 

 
Parameter 

Name 
Data 
Type 

Status Description 

ss11r Double 
precision 

array 

Output Two-dimensional array of size nso×nso used to 
store values of the plastically relaxed stress 
component, ep

xσ , of the bivariant stress field 
corresponding to position coordinates (x,y) 
contained in the arrays xo and yo. 

ss12r Double 
precision 

array 

Output Two-dimensional array of size nso×nso used to 
store values of the plastically relaxed stress 
component, ep

xyσ , of the bivariant stress field 
corresponding to position coordinates (x,y) 
contained in the arrays xo and yo. 

ss13r Double 
precision 

array 

Output Two-dimensional array of size nso×nso used to 
store values of the plastically relaxed stress 
component, ep

xzσ , of the bivariant stress field 
corresponding to position coordinates (x,y) 
contained in the arrays xo and yo. 

ss22r Double 
precision 

array 

Output Two-dimensional array of size nso×nso used to 
store values of the plastically relaxed stress 
component, ep

yσ , of the bivariant stress field 
corresponding to position coordinates (x,y) 
contained in the arrays xo and yo. 

ss23r Double 
precision 

array 

Output Two-dimensional array of size nso×nso used to 
store values of the plastically relaxed stress 
component, ep

yzσ , of the bivariant stress field 
corresponding to position coordinates (x,y) 
contained in the arrays xo and yo. 

ss33r Double 
precision 

array 

Output Two-dimensional array of size nso×nso used to 
store values of the plastically relaxed stress 
component, ep

zσ , of the bivariant stress field 
corresponding to position coordinates (x,y) 
contained in the arrays xo and yo. 

tri_max, 
tri_min 

Double 
precision 

Declaration Parameters allocated for SHARP_AN 

iIduck Integer Declaration Parameter allocated for SHARP_AN 
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The arrays declared in Code Segment A need to be initialized before the anisotropic 

shakedown module is called for the first time.  The initialization should be placed outside of 

the loop that drives the incremental loading.  A segment of code illustrating how to properly 

initialize the arrays declared in Code Segment A is listed in Table J8.   

To specify the pseudo elastic-plastic stress and strain curve, the data pairs 

corresponding to the discrete points of stress and strain need to be defined.  The curve should 

be specified outside of the incremental loading loop that calls SHARP_AN, as indicated in 

Code Segment D shown in Table J9.  An example of such a routine in a form of FORTRAN 

SUBROUTINE is illustrated in Table J10.  The routine reads the data pairs from a text file 

whose file unit is denoted by iunit and interprets the data whose plastic strains are within 1% 

to estimate the effective Young’s modulus, E_eff, and Ramberg-Osgood parameters, sigo, 

epso, alpha, and beta (see Table J7). 

The statement to drive the anisotropic shakedown routine is shown in Code 

Segment E of Table J9.  There are six parameters in the argument list of the routine 

SHARP_AN.  A description of each of the arguments can be found in Table J11.  Note that 

since the linear elastic stress increments relative to the stress state at the previous step are 

used in the calculations for the elastic-plastic stress increments for the current step, a segment 

of code may be needed to assign the incremental stress values to these stress arrays from 

global stress arrays that may contain all the linear elastic stress results for every load step. 

A non-zero error code generated by the anisotropic shakedown module indicates an 

error is detected in the module.  A sample subroutine is provided to show what the various 

error codes represent.  The listing of these error descriptions is displayed in Table J12. 
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Table J8.  Segment of Computer Code Illustrating How to Initialize the Arrays 

Declared in Code Segment A 
 
c===============================================================
====== 
c  *** CODE SEGMENT C ***: Initializing the arrays declared in Code Segment A 
c 

do i=1,max_pt 
     erefv(i)=0. 
     do j=1,6 
          a1v(i,j)=0. 
          sigvc(i,j)=0. 
          sigv(i,j)=0. 
          epsvc(i,j)=0. 
          epsv(i,j)=0. 
          sigev(i,j)=0. 
          epsev(i,j)=0. 
     End do 
End do 

c===============================================================
====== 

 
 

Table J9.  Segment of Computer Code Showing How to Call SwRI's Anisotropic 
Shakedown Module 

 
 

c===================================================================== 
c ***CODE SEGMENT D *** 
c  User needs to provide a segment of code to define the pseudo  
c  stress-strain curve 
c 
            call pseudo_curve(inunit) 
c 
c  before calling the anisotropic shakedown module, set kinit=0 
c 
kinit=0 
c 
c===================================================================== 
c  *** CODE SEGMENT E *** : Computing loop starts from here 
c       
do istep=1,nstep 
c 
c   User needs to provide a segment of code here to read the linear elastic stress increment 

**** CODE FOR THE INPUT OF STRESS INCREMENT **** 
c 
     print '(a,i3)','---  Processing Step ',istep 
      call SHARP_AN(kinit,istep,iopt,ierr,dtt,temp) 
end do 
c=====================================================================
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c=================================================== 
      subroutine pseudo_curve(iunit) 
      implicit none 
      integer iunit,ndat,nfit,iduck,i,i1,i2 
      double precision se_mono,ee_mono,smono,emono, 
     +                 E_eff,alpha,beta,sigo,epso,tri_max,tri_min,a,b, 
     +                 a11,a12,a21,a22,c1,c2,det,ep,pp1,pp2 
      common/RO_law/E_eff,alpha,beta,sigo,epso,tri_max,tri_min, 
     +                 iduck 
      common/mono_se_curve/se_mono(150),ee_mono(150),ndat 
* 
*   read the pseudo- stress/strain curve 
* 
      ndat=0 
11    read(iunit,*,end=12) smono,emono 
      ndat=ndat+1 
      se_mono(ndat)=smono 
      ee_mono(ndat)=emono 
      goto 11 
12    continue 
      E_eff=(se_mono(2)-se_mono(1))/(ee_mono(2)-ee_mono(1)) 
      do 13 i=1,ndat-1 
         i1=i 
         i2=i1+1 
         pp1=ee_mono(i1)-se_mono(i1)/E_eff 
         pp2=ee_mono(i2)-se_mono(i2)/E_eff 
         if(pp1.le.0.002.and.pp2.ge.0.002) then 
            sigo=(se_mono(i2)-se_mono(i1))/(pp2-pp1)*(0.002-pp1)+ 
     +           se_mono(i1) 
            goto 14 
         endif 
13    continue 
14    epso=sigo/E_eff 
* 
*   determine the beta factor by selecting plastic strain less than 1% 
* 

       
 
 
 
      nfit=0 
      a11=0. 
       
 
      a12=0. 
      a21=0. 
      a22=0. 
      c1=0. 
      c2=0. 
      do 100 i=1,ndat 
         ep=ee_mono(i)-se_mono(i)/E_eff 
         if(ep.gt.0.and.ep.le.0.01) then 
            nfit=nfit+1 
            a12=a12+dlog10(ep) 
            a21=a21+dlog10(ep) 
            a22=a22+dlog10(ep)**2 
            c1=c1+dlog10(se_mono(i)) 
            c2=c2+dlog10(se_mono(i))*dlog10(ep) 
         endif 
100   continue 
      if(nfit.eq.0) stop '[ERROR.pseudo]: no data within [0,1%]!' 
      a11=nfit 
* 
*   assume y=a+b*x 
* 
      det=a11*a22-a12*a21 
      a=(a22*c1-a12*c2)/det 
      b=(-a21*c1+a11*c2)/det 
      beta=1./b 
      alpha=sigo**beta/epso*10.**(-a*beta) 
      return 
      end

Table J10.  A Sample Subroutine Used to Estimate the Ramberg-Osgood Parameters Based on the Provided 
Pseudo Stress/Strain Curve 
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Table J11.   Parameters and Arrays Passed Through the Argument List of the 
Anisotropic Shakedown Module 

 
SUBROUTINE SHARP_AN(kinit, istep, iopt, ierr, dtt, temp) 

Parameter 
Name 

Data 
Type 

Status Description 

Kinit Integer User-specified 
Initially 

Set to zero (0) initially for SHKDN_3D_HCF to 
generate x- and y-coordinates constituting a finer 
mesh.  After the first increment, it is automatically 
reset to one (1) within SHKDN_3D_HCF. 

Istep Integer User-specified Current load increment number 
Iopt Integer Dummy Hard-coded to check the force and moments balance 
Ierr Integer Output Error code (see Table C.4.7) 
Dtt Double 

precision 
User-specified Time increment associated with the stress and strain 

increment 
Temp Double 

precision 
User-specified Operating temperature 

 
 

Table J12.  Sample Error Code Handler 
c===================================================================== 
      subroutine errmsg(ierr) 
      if(ierr.eq.0) return 
      open(23,file='error.msg') 
      if(ierr.eq.1) then 
         write(23,101) 
      elseif(ierr.eq.2) then 
         write(23,102) 
      elseif(ierr.eq.3) then 
         write(23,103) 
      elseif(ierr.eq.4) then 
         write(23,104) 
      elseif(ierr.eq.5) then 
         write(23,105)  
      elseif(ierr.eq.7) then 
         write(23,107)  
      elseif(ierr.eq.8) then 
         write(23,108) 
      endif 
      close(23) 
101   format('[ERROR]: too few data points to generate a new bi-',/, 
     +       '         variant stress array! At least 2 by 2 required') 
102   format('[ERROR]: the values of the x-coordinate array are not',/, 
     +       '         in ascending order!') 
103   format('[ERROR]: the values of the y-coordinate array are not',/, 
     +       '         in ascending order!') 
104   format('[ERROR]: reach the max. declared array size. Increase',/, 
     +       '         the value of nbmax in the parameter statement!') 
105   format('[ERROR]: reach max. number of iterations (13)!') 
107   format('[ERROR]: no single root found when searching for the',/, 
     +       '         equivalent stress using Neuber rule!') 
108   format('[ERROR]: iterations exceeded when searching for the',/, 
     +       '         equivalent stress using Neuber rule!') 
      return 
      end 
c===================================================================== 
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J.5 VERIFICATION OF P&W’s ANSYS USER MATERIAL ROUTINES 

A modified version of the ANSYS user material subroutines provided by P&W was 

used to validate the anisotropic shakedown methodology.  The modified version corrected 

incompatibility problems between the received version and the current version of ANSYS 

that led to overwriting the state variables used internally by ANSYS.  The modified ANSYS 

user material routines implement a constitutive model for the anisotropic material PWA 1484 

developed by Walker for P&W.  This routine was linked with ANSYS to create a linked-by-

licensee version that facilitated finite element stress analysis based on the Walker material 

model.  The modules consist of a user routine (USERPL) for interfacing the Walker 

anisotropic constitutive model of PWA 1484 with ANSYS, and a software module 

(HYPELA) that is called by USERPL to implement the anisotropic constitutive relationship 

for PWA 1484.  The following summarizes the major activities associated with the 

verification of P&W’s ANSYS user material routines as part of the development of SwRI’s 

anisotropic shakedown module: 

J.5.1 Derivation of Simple Analytical Stress Solutions for the Verification of Linked-
by-Licensee FEA 

Two analytical one-dimensional stress solutions, denoted as Simple Tension Model 

(STM) and Simple Shear Model (SSM), were derived using Walker’s material model 

assuming that the axis of the structure was parallel to the <001> crystallographic plane.  The 

derived solutions were used to benchmark results from finite element analysis.  The two 

solutions are in incremental form and require several iterations to converge.   

The STM solution represents a tensile bar with square cross-section subjected to a 

displacement-controlled loading in its longitudinal direction.  Under the assumption that the 

material responses to such a loading are identical throughout the whole specimen, the 

following conditions prevail: 

0 ,0 231312321 =====≠= σσσσσσσ  

0 and ,
2
1 ,0 2313121321 =∆=∆=∆∆−=∆=∆≠∆ ppppppp εεεεεεε   (J23) 

where σij denote the stress components, εij are the strain components, and ∆ is used to 

represent an incremental change in the variable.  The superscript p signifies the plastic 
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component of strain.  The subscripts 1, 2, and 3 stand for the stressing direction; i.e., σ1 

stands for the normal stress applied to the surface perpendicular to the loading direction.   

Such a simple loading condition leads to further simplification of the differential 

equations employed in Walker’s constitutive model.  The deviatoric stresses and the location 

of the center of the plasticity surface become 

0 ,
3
1 ,

3
2

132312332211 ===−=== SSSSSS σσ  

0 ,
3
1 ,

3
2

132312332211 =Ω=Ω=ΩΩ−=Ω=ΩΩ=Ω   (J24) 

where Ω represents the unit-directional change of the center of the plasticity surface in the 

regular stress domain in contrast to Ωij in the deviatoric space.  The plastic strain increment 

derived from Equation (J4) is given by 

( ) tsignMM
K

MM
n

plastic ∆⋅Ω−⋅−⋅
−−Ω−

=∆ σ
κσ

ε 1211
1211

11   (J25) 

and plasticplasticplastic
113322 2

1 εεε ∆−=∆=∆  due to the incompressibility.  The change of the center 

of plasticity surface is given by Equation (J6) and becomes 

 ( ) ( ) RQQNN plastic ∆Ω−−∆−=∆Ω 11121111121111 3
2 ε   

 (J26) 

with t
K

MM
R

n

∆⋅
−−Ω−

=∆
κσ 1211 .  Expanding the differential equation (J3) leads to 

a system of equations for ∆σ11, ∆ε22, and ∆ε33.  The equations are given by 
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The STM solution can be determined by integration over time using the above system of 

equations in which Dig denote the elements of the elastic stiffness matrix defined in Equation. 

(J3). 

The SSM solution represents a torsion bar with circular cross-section subjected to a 

shear displacement linearly varying from the center of the circular cross-section to the 

exterior surface.  In this condition, all normal stress and strain components are zero.  

Assuming that only shear stress and strain components denoted by τ and γ, respectively, are 

induced in the bar, then the following conditions prevail: 

 0 ,0 231232131 =====≠= σσσσστσ  

 0 ,0 231232131 =∆=∆=∆=∆=∆≠∆=∆ εεεεεγε   (J28) 
 
Further simplification based on this one-dimensional model reduces the variables to 
 
 0except  ,0 1313 ≠=== τσSSij  

 0except  ,0 13 ≠Ω=Ω=Ω ij  (J29) 

The only non-zero plastic strain component is given by [see Equation (J4)] 

 ( )Ω−⋅⋅
−Ω−⋅

=∆ τ
κτ

ε signM
K

M
n

plastic

3
3

2
3 4444

13   (J30) 

and the change of the center of the plasticity surface becomes 

 RQN plastic ∆Ω−∆=∆Ω 1344124413 3
2 ε      

where 
n

K
M

R
κτ −Ω−⋅

=∆ 443
.  The shear stress can be determined by integration over 

the time domain using the simplified equation (J6) for this one-dimensional model reduces to 

 ( )plasticD 13134413 εεσ ∆−∆=∆   (J32) 

The stress response can thus be determined through step-by-step integration over time.  Note 

that the strain increments are provided by the user with the corresponding time increments. 
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J.5.2  Verification for User Material Routines for ANSYS against Analytically-
Derived Solutions 

The validation of the enhanced USERPL was performed against the one-

dimensional STM and SSM solutions.   The material constitutive relationship was specified 

according to the corrected P&W routine, HYPELA, at a uniform temperature of 1400oF.   

Figure J3 shows the finite element modeling used to simulate the STM.  The tensile 

bar has a 1"×1" square cross-section with a length 5".  One end of it was fixed and free to 

expand or contract in the xy-plane.  The other end was subjected to a displacement-controlled 

loading.  Three applied strain rates were employed over time steps of 30 sec, 300 sec, and 

3000 sec, respectively, such that at the end of the loading the final elongation was always 

δz=0.25 inch, which corresponds to a final strain εz=0.05 in/in.     

Figure J4 presents the comparison of the STM results with the finite element results 

and shows that the FEA results predicted using USERPL and HYPELA are in exact 

agreement with the STM analytical solutions.  The results also demonstrate that at 1400oF 

there is a significant effect of strain rate on the stress-strain relationship.  Also given in the 

figure (solid line) are the FEA results calculated assuming a temperature of 1100oF.  At this 

temperature, which is typical of the blade attachment area, the stress-strain relationship is 

independent of the applied strain rate.  

A finite-element model of the SSM is shown in Figure J5 where the cylindrical bar 

has a radius of 1" and is 5" long.  The applied torsion is displacement-controlled and is 

applied over time intervals of 30 sec, 300 sec, and 3000 sec, respectively, at loading rates that 

result in a final angular rotation of 0.25 radian at one end of the bar.  The other end of the bar 

is rigidly fixed.   

Figure J6 shows the comparison of the SSM solutions with the finite element results.  

The agreement between the two sets of results is excellent. 
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Figure J3.  One-dimensional finite element modeling used to validate the P&W user routines 
linked with ANSYS by licensee; Simple Tension Model. 
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Figure J4.  Comparison between the STM analytical solutions and the FEA results using a 
linked-by-licensee version of ANSYS. 
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Figure J5.  One-dimensional finite-element modeling used to validate the P&W user routines 

linked with ANSYS by licensee; Pure Shear Model. 
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Figure J6.  Comparison between the SSM solutions and the FEA results using a linked-by-
licensee version of ANSYS. 
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J.6 VERIFICATION OF THE ANISOTROPIC SHAKEDOWN MODULE 
AGAINST FINITE ELEMENT RESULTS 

Three-dimensional elastic-plastic finite element analyses were performed to 

validate the anisotropic shakedown methodology.  The anisotropic shakedown module used 

as input bivariant stress fields derived from three dimensional anisotropic linear elastic finite 

element computations employing ANSYS.  The elastic finite element results were obtained 

based on the anisotropic linear elastic relationship derived from the Walker’s constitutive 

model. In the finite element elastic analyses, the USERPL and HYPELA provided by P&W 

were modified so that only the elastic stiffness matrix instead of the instantaneous tangential 

matrix was passed back to ANSYS.   

The validation was performed for a single edge notched plate of width (W) equal to 

10 inches, thickness (t) equal to 5 inches, and height (h) equal to 20 inches, containing a 

semi-circular through-thickness notch with a radius (r) equal to 1 inch (see Figure J1).  This 

plate was subjected to various combinations of tensile load and out-of-plane bending 

moment, as illustrated in Figure J1.  The combinations of loads used in the validation 

analyses are listed in Table J13.  Two sets of computations were performed. In one, the axis 

of the plate was assumed parallel to the <001> direction, while in the other the axis was 

assumed parallel to the <111> direction.  The local and global coordinate systems are 

identical for the specimens whose axes are parallel to the <001> direction.  The nonlinear 

material behavior used for the anisotropic shakedown module is the one at 1100oF that was 

included in Figure J4.  At this temperature, the effect of strain rate is minimal.  The 

comparison between the predicted results by the shakedown module and the FEA results for 

a variety of load combinations can be found in Figures J7 to J11.  Figure numbers associated 

with specific load combinations and crystallographic planes can be found in Table J13. 

Each figure shows the comparison of predicted results by SwRI’s anisotropic 

shakedown module with FEA results for different planes parallel to the free surfaces through 

the plate thickness.  For symmetrical loading conditions and the <001> direction, only results 

on three planes are plotted.  The locations of these planes are y/r=0.  (at the free surface), 

y/r=1.237 (a plane one quarter of the way through the plate), and y/r=2.5 (the mid-plane).  

For loading parallel to the <111> direction, results are also given on the two additional 

planes corresponding to y/r=3.763 (about three-quarters of the way through the plate) and 

y/r=5 (the other free surface).  
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The results obtained by applying the anisotropic shakedown module developed by 

SwRI are, as in the case of the isotropic shakedown module, SHARP, in excellent agreement 

with the FEA results obtained using the link-by-licensee version of ANSYS with Walker’s 

constitutive model, except for the through-thickness (out-of-plane) component of stress, yσ .  

The reason that this stress component is not estimated as accurately as it is by the isotropic 

module is the fact that the out-of-plane friability corrections that were developed in that case 

were not implemented in the anisotropic module.  The main reason for this is that evaluation 

of these corrections for isotropic materials involved performing finite element computations 

for materials with a range of strain hardening capabilities by varying the exponent in the 

Ramberg-Osgood equation to simulate low and high strain hardening capacities.  This option 

was not available for anisotropic material studied in the present work because the material 

strain hardening response for this material is embodied in the Walker constitutive 

relationship and is dictated by material constants that are propriety to P&W.  In addition, 

whereas strain hardening capacity is easily changed in a Ramberg-Osgood equation by 

changing the exponent, it is not clear which parameters in the Walker constitutive model 

influence strain hardening and whether these parameters could be readily characterized by a 

one parameter term equivalent to the Ramberg-Osgood exponent.  

The deficiency of the simple point relaxation is also apparent from the results 

shown in Figures J7 to J11.  However, the deficiency is not as great as that observed under 

some circumstances in the development of the isotropic shakedown module.  The reason is 

that the anisotropic material investigated herein displays significant strain hardening 

capability, as illustrated by the stress-strain curve for 1100°F shown in Figure J4.  The major 

discrepancies between the point relaxation model predictions and the finite-element results 

observed in the isotropic case occurred for materials like Ti-6Al-4V that exhibited little strain 

hardening capability (high Ramberg-Osgood exponents).  As strain hardening capability 

increases, the Ramberg-Osgood exponent decreases, and the changes between linear elastic 

and elastic-plastic results becomes less significant.  (In the limit of the Ramberg-Osgood 

exponent becoming one, the material behaves in a linear elastic manner.)  Thus, materials 

with a high strain hardening capability result in less load redistribution for a given applied 

load than do materials with low hardening.  This means that the point relaxation model will 

become more accurate with increasing strain hardening, as borne out by the present results. 



 

 

J-39

 

Table J13.  Load Combinations Used in the Verification of SwRI’s Anisotropic Shakedown Module 
 

Applied Loads Orientation of 
Specimen Axis 

Load Case 
Sz (ksi) Mx (kip-in) 

Figure No. Showing the Comparison of 
the Distributions of Three Normal 

Stress Components 
A 105 0 Figure J7 <001> 
B 110 0 Figure J8 
A 105 0 Figure J9 
B 110 0 Figure J10 

<111> 

C 66 112.5 Figure J11 
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 Figure J7(a) Figure J7(b) Figure J7(c) 
 
Figure J7.   Comparison of stress components predicted by SwRI’s anisotropic shakedown module with the results obtained from 

FEA.  The results computed from point relaxation are also included to show the effects of load shedding and re-
distribution.  The notched plate is subjected to Sz=105 ksi, and the axis of the plate is parallel to the <001> direction.  
Results in Figure J7(a) are for y/r=0 (the free surface at the side of the plate), J7(b) are for y/r=1.237 (a plane one 
quarter of the way through the plate), and J7(c) are for y/r=2.5 (at the mid-plane).   
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 Figure J8(a) Figure J8(b) Figure J8(c) 
 
Figure J8.   Comparison of stress components predicted by SwRI’s anisotropic shakedown module with the results obtained from 

FEA.  The results computed from point relaxation are also included to show the effects of load shedding and re-
distribution.  The notched plate is subjected to Sz=110 ksi, and the axis of the plate is parallel to the <001> direction.  
Results in Figure J8(a) are for y/r=0 (the free surface at the side of the plate), J8(b) are for y/r=1.237 (a plane one 
quarter of the way through the plate), and J8(c) are for y/r=2.5 (at the mid-plane). 
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 Figure J9(a) Figure J9(b) Figure J9(c) 
 
Figure J9.   Comparison of stress components predicted by SwRI’s anisotropic shakedown module with the results obtained from 

FEA.  The results computed from point relaxation are also included to show the effects of load shedding and re-
distribution.  The notched plate is subjected to Sz=105 ksi, and the axis of the plate is parallel to the <111> direction.  
Results in Figure J9(a) are for y/r=0 (the free surface at the side of the plate), J9(b) are for y/r=1.237 (a plane one 
quarter of the way through the plate), and J9(c) are for y/r=2.5 (at the mid-plane). 
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 Figure J9(d) Figure J9(e)  
 
Figure J9.   (continued) Comparison of stress components predicted by SwRI’s anisotropic shakedown module with the results 

obtained from FEA.  The results computed from point relaxation are also included to show the effects of load 
shedding and re-distribution.  The notched plate is subjected to Sz=105 ksi, and the axis of the plate is parallel to the 
<111> direction.  Results in Figure J9(d) are for y/r=3.763 (a plane about three quarters of the way through the plate), 
and J9(e) are for y/r=5.0 (at the other free surface). 
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 Figure J10(a) Figure J10(b) Figure J10(c) 
 
Figure J10.   Comparison of stress components predicted by SwRI’s anisotropic shakedown module with the results obtained from 

FEA.  The results computed from point relaxation are also included to show the effects of load shedding and re-
distribution.  The notched plate is subjected to Sz=110 ksi, and the axis of the plate is parallel to the <111> direction.  
Results in Figure J10(a) are for y/r=0 (the free surface at the side of the plate), J10(b) are for y/r=1.237 (a plane one 
quarter of the way through the plate), and J10(c) are for y/r=2.5 (at the mid-plane). 
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Figure J10.   (continued) Comparison of stress components predicted by SwRI’s anisotropic shakedown module with the results 

obtained from FEA.  The results computed from point relaxation are also included to show the effects of load 
shedding and re-distribution.  The notched plate is subjected to Sz=110 ksi, and the axis of the plate is parallel to the 
<111> direction.  Results in Figure J10(d) are for y/r=3.763 (a plane about three quarters of the way through the 
plate), and J10(e) are for y/r=5.0 (at the other free surface). 
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Figure J11.   Comparison of stress components predicted by SwRI’s anisotropic shakedown module with the results obtained from 

FEA.  The results computed from point relaxation are also included to show the effects of load shedding and re-
distribution.  The notched plate is subjected to Sz=66 ksi and Mx=112.5 kip-in, and the axis of the plate is parallel to 
the <111> direction.  Results in Figure J11(a) are for y/r=2.5 (at the mid-plane) and J11(b) are for y/r=3.763 (a plane 
about three quarters of the way through the plate). 
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Figure J11.  (continued) Comparison of stress components predicted by SwRI’s anisotropic shakedown module with the results 

obtained from FEA.  The results computed from point relaxation are also included to show the effects of load 
shedding and re-distribution.  The notched plate is subjected to Sz=66 ksi and Mx=112.5 kip-in, and the axis of the 
plate is parallel to the <111> direction.  Results in Figure J11(c) are for y/r=4.657 (a plane about one-eight of the way 
through the plate from the other free surface), and J11(d) are for y/r=5.0 (at the other free surface). 
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APPENDIX K 

ENHANCEMENT OF THE WORST CASE NOTCH (WCN) MODEL TO 
INCLUDE THREE-DIMENSIONAL CRACK GROWTH AND NOTCH 

PLASTICITY 

 

Recent fracture mechanics analyses of sharp notches based on the so-called worst 

case notch (WCN) model have demonstrated the HCF threshold cyclic stresses for sharp 

notch-like features are no longer simply given by the smooth specimen endurance limit (∆σe) 

divided by kt [1].  In order to predict threshold behavior, it is necessary to include the local 

stress gradient in the modeling, and to take account of the crack growth behavior of initiated 

cracks. The WCN approach [2-3] is based on predicting whether initiated microcracks will 

propagate to failure or arrest within the notch stress field. 

K.1 WCN MODEL 

The WCN approach assumes that cracks can initiate relatively early in the life of a 

component containing a notch-like feature, such as FOD.  As illustrated in Figure K1, the 

method enables the boundaries between crack initiation, crack growth followed by arrest, and 

crack growth to failure to be defined.  The classical S-N approach for a notch with stress 

concentration factor, tk , predicts that crack initiation occurs at a remotely applied threshold 

cyclic stress )( localth RS∆ given by 

t

locale
localth k

R
RS

)(
)(

σ∆
=∆   (K1) 

where ∆σe is the smooth bar endurance limit, local

local

local S
SR

max

min=  is the local stress ratio 

determined at the notch tip, and localSmin  and localSmax are the local notch-tip stresses at maximum 

and minimum load corresponding to the remotely applied stresses remoteSmin  and remoteSmax , 

respectively.  In the absence of notch plasticity and residual stresses at the notch, 

t
localremote kSS /minmin = and t

localremote kSS /maxmax = . 
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Figure K1. Schematic representation of the Worst Case Notch (WCN) concept. 

 

The growth/arrest boundary in Figure K1 is determined by equating the effective 

applied cyclic stress intensity factor (∆Keff) to the threshold cyclic stress intensity factor for 

fatigue crack propagation (∆Kth). The effective stress intensity factor (SIF) is related to the 

total range SIF, ∆K, corrected for stress ratio effects.  

In the WCN approach, ∆Kth is modified for the behavior of small fatigue cracks 

through the introduction of a crack-size dependence. This means that for a three-dimensional 

crack (e.g., a semi-elliptical surface flaw), ∆Sth, is not only a function of the notch geometry 

(notch depth, b, root radius, ρ), R, and material variables, but also of the crack depth, a, its 

surface length, 2c=l, and two so-called small crack parameters, ao and co associated with the 

deepest and surface points on the crack. In the case of two-dimensional cracks (e.g. through-

thickness flaws) only one small crack parameter, ao, is needed to apply the WCN model and 

its definition is unambiguous.  However, for three-dimensional cracks, there are several 

possible ways of defining ao and co within the WCN crack growth model.  The approach 

adopted herein is to define ao and co so that the resulting 3-D WCN model predictions are 

consistent with the following: 
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(a) The threshold cyclic stress range for crack initiation is equal to the value 

predicted by the classical S-N approach; 

(b)  At the instant of crack initiation, the initiated crack has the same cyclic crack 

tip driving forces at the deepest and surface points; 

(c) At notches with very high stress concentrations, the predicted values of the 

threshold cyclic stresses that would just propagate an initiated crack to failure 

are independent of the stress concentration factor, consistent with the WCN 

predictions for 2-D cracks; 

(d) In the limit that an initiated crack is specified to have an aspect ratio a/c=0 the 

3-D WCN model becomes identical to the original 2-D WCN model.   

In the 2-D WCN model, the parameter ao appears in the definition of a small crack cyclic 

threshold SIF.  In order to satisfy the foregoing conditions (a) through (d), the parameters ao 

and co that appear in the 3-D WCN model are introduced into the definition of two crack-

size-dependent, small-crack cyclic threshold SIFs, sc
athK ,∆  and sc

cthK ,∆ , which are defined 

through the equations: 

( ) ( )

2/1

, ,, ⎥
⎦

⎤
⎢
⎣

⎡
+

∆=∆
io

thio
sc

ath Raa
aKRaaK  (K2a) 

 

( ) ( )
( ) 2/1

, ,,,, ⎥⎦
⎤

⎢⎣
⎡ +
⎥
⎦

⎤
⎢
⎣

⎡
+

∆=∆
c

Rcc
Rca

aKRccaK io

io
thio

sc
cth  (K2b) 

 

In these equations, the subscript i signifies that the stress ratio, R, is that corresponding to the 

initiation of cracking, whereas R corresponds to the instantaneous value of the ratio, 

Kmin/Kmax, determined for a propagating crack. The subscripts a and c signify the crack-tip 

positions corresponding to the deepest and surface points on the crack front, respectively. 

The form of Equation (K2) is dictated by the condition that equation (K1) is 

recovered as the initiated crack goes to zero size (a→0, c→0) so that the crack initiation 
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endurance at a notch with stress concentration factor, kt goes to a value given by the classical 

S-N approach as ∆σe/kt.  

Explicit expressions for the parameters ao and co can be derived from the following 

equations that govern the conditions for crack propagation in the 3-D WCN model in the 

limit of a vanishing small crack  (a→0, c→0), 

( )
( ) ),,,(),,,(

),,(),,,(

,,

,,

io
sc

cthtieceff

io
sc

athtieaeff

RccaKkRcaK

RaaKkRcaK

∆=∆∆

∆=∆∆

σ

σ
    (K3) 

by writing 

( ) ( ) ( )

( ) ( ) ( )iRtc
t

ie
ceff

iRta
t

ie
aeff

RfkcaF
k

R
c
aaK

RfkcaF
k

R
aK

,,
)(

,,
)(

2/1
,

2/1
,

σ
π

σ
π

∆
=∆

∆
=∆

    (K4) 

where Fa and Fc are combined shape and free surface magnification factors that also take 

account of the stress gradient at the notch, and fR is a function that incorporates the effects of 

stress ratio. From Equations (K3), (K4) and (K2)  
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1,/
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1,/
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⎦
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⎣
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∆
=
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⎦
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=

iRtcie
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io

iRtaie
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io

RfkcacaFR
Kk

Rcac

RfkcacaFR
Kk

Rcaa

σπ

σπ
      (K5) 

Note that ao and co depend on the assumed aspect ratio of a vanishing small initiated crack 

through the dependence of the functions Fa and Fc on aspect ratio. As the crack size goes to 

zero, then the stress gradient at a notch is no longer important and Fa and Fc can be written 

as: 

)0,0(),0,0(
)0,0(),0,0(

→→=→→
→→=→→

cafkkcaF
cafkkcaF

cttc

atta  

and Equation (K5) becomes 
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 (K6) 

It is clear from this equation, that ao and co are independent of notch geometry. 

The terms fa and fc represent the magnification factors for surface cracks emanating 

from planar surfaces. Typical values for fa and fc for thumbnail (three-dimensional) and 

through-thickness (two-dimensional) cracks are given in Table K.1, these values bound the 

likely aspect ratios of initiated cracks. Note also that ao and co will have different values 

because of the different values of fa and fc due to surface interaction effects.  

Table K1.  Example Values for the Functions fa and fc for Thumbnail and Through-
Thickness Cracks, and Typical Values for ao and co  for Ti-6-4 

Thumbnail Through-thickness 
a/c=0 

fa fc ao (mils) co (mils) fa fc ao (mils) co (mils) 
1.04(2/π) 1.22(2/π) 3.16 2.65 1.12 --- 1.10 --- 

 

 

K.2 DETERMINING THRESHOLD STRESSES USING THE WCN MODEL 

 In the case of cracks that have a single degree of freedom (e.g. a/c=0), then, as 

demonstrated in [1], the WCN model can be applied without explicitly performing fatigue 

crack growth calculations.  However, for the two degree of freedom cracks addressed in the 

present work on 3-D WCN modeling, the crack arrest/propagation behavior of initiated 

cracks can only be predicted by performing explicit crack growth evaluations to identify the 

values of ∆Sth that result in growth leading to arrest, and growth leading to failure. These 

computations are performed as described below, where it is assumed that a static residual 

stress may be present from shakedown following first application of the maximum load. 

(1) Determine the value of ∆Sth at the initiation of crack growth.  This is 

straightforward if there are no residual stresses at the notch tip.  In this case, 
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remote

remote

remotelocal

local

local
t

locale
localth S

SR
S
SR

k
R

RS
max

min

max

min   ,
)(

)( ===
∆

=∆
σ

   

The subscript remote signifies quantities based on the remote loading conditions.  

If the local notch-tip stress conditions result in yielding, then Rlocal and Rremote are no 

longer equal.  In this case it is necessary to perform an elastic-plastic shakedown 

analysis to obtain the stress state at the notch tip from which Rlocal can be determined. 

If σ(x=0) represents the stress at a notch tip normal to the plane containing an 

initiated crack obtained from a shakedown analysis, then 

    ,  , minmaxminmax
remoteremoteremoteremote

t
locallocal SSSSkSS −=∆∆−== σσ ,  

In this equation, it is assumed that shakedown occurred at the notch tip from stress 

relaxation due to plasticity at the first application of the maximum remote load.  This 

assumption implies that further deformation changes at the notch due to load cycling 

remain elastic. 

Assuming that Rremote remains constant during cycling, then the value of ∆Sth 

corresponding to crack initiation can be derived by iteration as follows.  First, as an 

initial guess set Rlocal= Rremote, then 

(a) Evaluate 
t

localeremote

k
R

S
)(σ∆

=∆  and hence 
)1(max

global

remote
remote

R
SS
−
∆

=  and 

remote
t

local SkS maxmax = ; 

(b) Apply an elastic-plastic stress analysis to determine the maximum local notch 

stress σ(x) after shakedown and the residual stress field σresidual(x) at the notch 

due to shakedown, where  

),,,()()( max t
remote

notchresidual kxSxx ρσσσ −= . 

 In this equation, ),,,( max t
remote

notch kxS ρσ is the elastically calculated stress field 

at the notch at maximum load. 
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(c) Re-evaluate 
)0(

)0(
=
∆−=

=
x

Skx
R

remote
t

local σ
σ

 and return to step (a) until Rlocal 

differs insignificantly from its previous value.  

(2) Set Ri=Rlocal and determine ao and c0 using equation (K6) for an assumed initial 

aspect ratio, a/c, and calculate 
t

ie
i

initiation
th k

R
RS

)(
)(

σ∆
=∆  

(3) Incrementally increase the value of the remote threshold cyclic stress range, thS∆ , 

from a starting value of )( i
initiation
th RS∆ , and at each step perform a shakedown 

analysis to obtain the new value of the plastically relaxed stress, σ(x) (from which 

the value of Rlocal and σresidual(x) can be determined). 

(4) Perform a fatigue crack growth calculation using the small crack threshold SIFs 

given by Equation (K2) and an effective applied cyclic SIF that takes appropriate 

account of stress ratio effects and any shakedown residual stress as the crack 

propagates.  The effective cyclic SIF is given by 
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 The instantaneous stress ratios Ra and Rc during propagation are defined by the 

equations 
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 Note that during the crack growth calculations, the following conditions can arise 
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(5) Observe in the calculations the value, failure
thS∆ , when propagation to failure is first 

observed. Then: 
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K.3 2-D WCN MODEL 

It is informative to compare the explicit crack growth approach developed for 3-D 

cracks to the methodology applied for 2-D through-thickness cracks.  In the latter case, an 

explicit crack growth calculation is not required in the absence of residual stresses and the 

crack arrest/propagation condition can be determined from the equation:  
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)( 2/1+
∆

=∆
π

 (K8) 

by seeking the maximum value of ∆Sth(a) as the crack depth increases from zero where 
initiation
thth SS ∆=∆ .  This maximum value is equal to failure

thS∆ .  For notches that are shallow but 

have kt values greater than kw, where 
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then it was shown previously [1] that failure
thS∆  can be approximately determined from the 

equation 
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 (K10) 

where b is the depth of the notch. Note that the value of failure
thS∆  predicted by this equation is 

independent of kt. This means that for notches or FOD that satisfy the condition kt>kw the 2-
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D WCN model predicts saturation threshold cyclic stresses, saturation
thS∆  that have a value that 

varies only with the notch or FOD depth, b.  

K.4 ASPECTS OF FATIGUE CRACK GROWTH AND THE WCN MODEL  

K.4.1 Notch Stresses 

The following approximate expressions for determining the linear elastic stress field 

at notches derived from the work of Amstutz and Seeger [4] have been described and 

validated in [1].  The stress concentration factors for surface notches that are typical of FOD 

and have root radii ρ are given by the equation 
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where A(b) is the load bearing area for a notch of depth b, and A(0) is the load bearing area 

in the absence of a notch (b=0).. 

The stress field at a distance x from a notch tip is approximately given by the expression 
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K.4.2 Shakedown Residual Stresses  

To allow for shakedown, an approximate elastic-plastic stress analysis is needed 

that can be used at every incremental increase in applied cyclic stress range to determine the 

local notch-tip stress state.  The methodology used here was based on the shakedown module 

included in the computer code, DARWINTM developed previously by SwRI [5].  

Alternatively, one could use the shakedown analysis developed in the current program (see 

Appendix A).  (However, the shakedown analysis in Appendix A was not available when the 

current WCN analysis was developed.)  The DARWINTM shakedown module is applicable to 

uniaxially varying stress fields.  It includes the effects of multi-axial stressing due to the three 

principal stresses but not the influence of shear stresses.  The latter are considered to have 

insignificant effects on the plastic relaxation of stress fields at notches due to applied remote 

tension loading.  The shakedown module requires as input the elastic stress field ahead of a 

notch.  This was derived using the method of Amstutz and Seeger, as described in the Section 

B.4.1.  The Amstutz and Seeger equations only predict the stress component, σz, normal to 

the plane containing the notch.  The other two principal stress components, σy and σx used in 

the shakedown analysis were obtained from the following equations based on the plane strain 

stress fields ahead of a round hole subject to tension loading: 
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where x is the distance from the notch tip, and ν is Poisson’s ratio.  A Ramberg-Osgood 

equation containing constants applicable to Ti-6-4 was used to describe the uniaxial stress-

strain behavior. Typical results of a shakedown analysis based on this methodology are 

presented in Figure K2. 
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Figure K2.  Example results obtained from applying the shakedown module from 
DARWINTM to predicting the residual stress at a notch tip due to stress  

  relaxation and re-distribution from plastic deformation. 
 
 
K.4.3 Stress Intensity Factors 

The steep stress gradients associated with sharp notches and residual stress fields at 

notches that have undergone shakedown mean that SIF’s for cracks at these notches have to 

be determined using the weight function (WF) method.  The WFs used in the present work 

are a combination of the WFs derived in Reference 1 for through-thickness cracks, and the 

WFs for surface cracks in plates contained in NASGRO [6]. If the WFs for the a and c 

locations on surface cracks are denoted as Wa(x,a/c,a/ρ,ρ/b) and Wc(x,a/c,a/ρ,ρ/b), then the 

corresponding SIFs for surface cracks at notches subjected to an arbitrary univariant stress 

can be written as 
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In the current studies, σarbitrary is equal to the elastic notch stress field given by Equation 

(K12), the shakedown stress field corresponding to the maximum load, σ(x), or the 

shakedown residual stress, σresidual(x).  

K.4.4 Fatigue Crack Growth 

To implement the WCN model described above it is necessary to specify a fatigue 

crack growth equation. In the present work, the following equation was employed: 
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 where Kcrit is the fracture toughness and Kmax the SIF at maximum load. This general 

equation covers crack growth behavior from fatigue initiation at threshold through to failure 

from the onset of static failure modes. In the case of surface cracks, crack growth and crack 

shape evolution are governed by the fatigue crack propagation rates at the deepest and 

surface points. Thus, once crack growth was predicted to initiate at a notch, the aspect ratio 

of the growing crack can change, and arrest could be occur at one crack tip position while 

growth continued at the other.  However, use of Equation (K6) guarantees that crack 

initiation occurs at both crack tip positions simultaneously.    

The predicted lifetime of a notch containing an initiated crack is not calculated in 

the WCN analysis, as the parameter of interest is failure
thS∆ .  However, it is necessary to 

specify an initial crack size and crack shape for the start of the fatigue crack growth 

calculations. The size chosen for the depth of the initial crack was a=1×10-8b, with half the 

surface length set equal to  
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this value divided by the assumed initial aspect ratio (a/c) of the flaw. Although the choice of 

initial flaw size effects the lifetime, the value chosen was small enough not to change the 

calculated value of failure
thS∆ . 

A method of refining and coarsening the time step used in the crack growth 

integration scheme was employed in order to reduce computation time.  The ability to 

automatically coarsen an integration step was important since the majority of the 

computation time is taken in determining the growth of very small cracks.  The accuracy of 

the crack growth integration procedure was maintained by automatically refining the 

integration step as the crack size increased.  This was necessary because the crack 

propagation rate per cycle increased as the crack size increased, and errors in the integration 

routine would have accumulated without step refinement because of the coupled nature of the 

growth at the deepest and surface points on the crack.  

K.5 WCN MODEL PREDICTIONS 

K.5.1 Saturation Threshold Cyclic Stress 

When applied to a 2-D crack problem (a crack with one degree of freedom), the 2-D 

WCN model predicts a saturation threshold cyclic stress that becomes independent of kt for a 

constant notch depth, b, and decreasing notch radius, ρ, consistent with the predictions of 

Equation (K10). The 3-D WCN model developed herein also predicts this kind of threshold 

behavior when a/c is set to zero to simulate a through-thickness crack.  The results of an 

analysis illustrating this point are shown in Figure K3.  In this figure, the cyclic threshold 

stress is normalized by the saturation threshold value obtained for a notch with a high kt.  The 

value of this saturation cyclic threshold stress obtained from explicit crack growth 

calculations was found to be equal to the saturation value, saturation
thS∆ , predicted by Equation 

(K10). 

K.5.2 Effect of Shakedown on Threshold Behavior 

Two sets of results are shown in Figure K3.  One corresponds to the case where the 

notch conditions are assumed to remain elastic, and the other to the case where shakedown is 

allowed to occur. The threshold values determined for the two cases are not equal at the 
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initiation of cracking for kt greater than eight, and the two sets of values differ slightly at the 

saturated threshold stress, saturation
thS∆ , corresponding to failure at high kt values.  The reason 

for this can be seen from the plot of the local stress ratio that is also presented on the figure.  

At the higher cyclic stresses needed to initiate and propagate cracks to failure, shakedown 

has occurred at the notch tip and changed the local stress ratio at initiation so that it is no 

longer simply related to the remote stress ratio, specified as being 0.5 in this example.  

Indeed, at high kt values, the local stress ratio becomes negative.  Although these negative 

stress ratios will increase the threshold cyclic stress needed to initiate cracking, they clearly 

do not significantly influence the threshold needed to cause propagation to failure.  This is a 

consequence of the fact that the residual stress field due to shakedown is still localized at the 

notch tip, and cracks can readily propagate to depths where the localized residual stress has 

little influence on the cyclic SIF.  Threshold cyclic stresses that fall between the initiation 

and failure envelopes shown in Figure K3 will initiate cracks either on the initiation 

envelope, or at cyclic stress values above this envelope if shakedown occurs, but these cracks 

are predicted to eventually arrest. 
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Figure K3. Results of applying the three-dimensional WCN model to predicting the effects of 

increasing notch severity on the crack growth behavior of two-dimensional cracks 
with one degree of freedom. Two sets of results are presented, with and without 
shakedown (i.e., with and without stress relaxation at the notch tip due to plastic 
deformation). 
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K.5.3 Through-thickness versus Thumbnail Cracks 

The results of an example application of the 3-D WCN model assuming that 

thumbnail cracks with two degrees of freedom initiate are shown in Figure K4.  Also shown 

on this figure are the predictions for 2-D crack with the one-degree of freedom presented in 

Figure K3.  Although the threshold behaviors in the two cases are similar, the thumbnail 

crack model for notches with high kt values predicts that failure will occur at threshold cyclic 

stresses less than those predicted for the 2-D crack.  It should be noted that the calculated 

values of ao and co are different for the two cracks, and that in the fatigue crack growth 

calculations the 3-D thumbnail crack was allowed to grow at both the deepest and surface 

locations of the crack front, so that situations could occur during growth where one location 

was propagating when the other crack-tip location was not, and vice versa. 
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Figure K4.  Results of applying the three-dimensional WCN model to predicting the effects 

of increasing notch severity on the crack growth behavior of two-dimensional 
(2-D) and three-dimensional (3-D) cracks, including the effects of shakedown. 
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This point is illustrated in Figure K5 that shows values of applied effective cyclic 

SIF’s and threshold values plotted against half the surface length, c, of a crack for a cyclic 

stress range just less than saturation
thS∆ . In this example, the deepest point on the crack is 

predicted to arrest even though the surface point continues to grow until its applied cyclic 

SIF falls below the threshold value for the surface point and the whole crack is arrested.  

If the values for ao given in Table K1 for thumbnail and through-thickness cracks are 

substituted into Equation (K10) using a value b=25mils, then the ratio of the saturated 

thresholds for thumbnail to through-thickness cracks is predicted to be 0.89.  In other words, 

the difference in the ao values for thumbnail and through-thickness cracks is sufficient to 

produce a saturated threshold cyclic stress for the former that is significantly lower than the 

saturation value for the latter, assuming that the thumbnail crack rapidly grows into a 

through-thickness crack after initiation.  

Figure K6 illustrates the predicted crack growth behaviors for the deepest points on 

thumbnail and through-thickness cracks for a cyclic SIF equal to the saturation
thS∆  

corresponding to each type of flaw.  Although the cyclic SIF for the deepest point on the 

thumbnail crack is less than that for the through-thickness crack, nevertheless, the thumbnail 

crack propagates to failure because the threshold cyclic SIF at the deepest point is less than 

that for the through-thickness crack.  

K.5.4 Effect of Initiated Crack Geometry on Threshold Stress  

The effect of different initiated crack aspect ratios on threshold behavior is 

illustrated in Figure K7.  These results, which were calculated assuming shakedown did not 

occur, demonstrate how the value of saturation
thS∆  increases as the aspect ratio of the cracks 

decreases. 

K.5.5 Effect of Yield Stress on Threshold Stress  

The effect of increasing severity of plastic shakedown on threshold behavior is 

shown in Figure K8 were the predicted results of applying the 3-D WCN model is displayed. 

The increase in plastic shakedown severity is simulated in the calculations by reducing the 

yield stress. It can be seen that the decrease in stress ratio, R, due to shakedown can be 

drastic, in some  
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           (a)          (b) 
 
 
 

Figure K5.  This example application of the 3-D WCN model illustrates (a) arrest at the deepest point on a crack prior to arrest at 
the surface point and total arrest of the crack at a cyclic stress range just below saturation

thS∆ , and (b) the condition when 
the cyclic stress range equals saturation

thS∆  and arrest is just avoided at the deepest point and the crack continues to 
propagate to failure. 
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Figure K6.  Comparison of the crack growth behaviors of thumbnail (3-D) and through-

thickness (2-D) cracks at a cyclic stress range equal to saturation
thS∆ .  The results 

illustrate that although the cyclic SIF at the deepest point on the thumbnail is less 
than that for the through-thickness crack, it still propagates to failure because 

sc
athK ,∆  is lower for the thumbnail than for the through-thickness crack. 
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Figure K7.  Application of the 3-D WCN model to illustrate the effects of different  
 assumed aspect ratios for initiated cracks on the threshold cyclic stress. 
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Figure K8.  Application of the 3-D WCN model to illustrate the effects of changes in yield 

stress on the threshold cyclic stress. In these calculations, the effects of decreasing 
yield stress are to increase plastic deformation at the notch tip and increase the 
relative severity of the compressive residual stress due to shakedown, causing the 
stress ratio, R, at the notch tip to become increasingly negative. 
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cases elevating the initiation threshold values above the values of saturation
thS∆  for calculations 

involving higher yield stresses.  

K.6 SUMMARY AND CONCLUSIONS 
 

1. A 3-D WCN model has been developed for cracks with two degrees of freedom, 

such as surface flaws. In order to implement the model it is necessary to perform explicit fatigue 

crack growth calculations to determine whether initiated cracks will propagate to failure or 

arrest. 

2. The model reproduces the predicted crack initiation and growth behavior of 2-D 

cracks with one degree of freedom, such as through-thickness flaws, that were predicted using 

the 2-D WCN model described in Reference 1.  

3. In order to implement the 3-D WCN model it is necessary to determine two small 

crack parameters, ao and co, that are associated with the deepest and surface points on the crack 

front, respectively.  In the 3-D WCN model, these parameters are defined within the context of a 

crack-size dependent small crack cyclic threshold SIF so that the smooth specimen endurance is 

predicted when an initiated crack becomes vanishing small, and so that the 2-D WCN model is 

recovered for cracks with one degree of freedom. 

4. The 3-D WCN model has also been extended to include the effects of residual 

stresses from shakedown at the notch tip. Shakedown occurs when plastic yielding occurs at the 

notch. The effects of shakedown are to change the local stress ratio at the notch so that it is no 

longer equal to the remotely applied stress ratio. 

5. For notches with high kt values, the threshold cyclic stress that results in crack 

propagation to failure is predicted to saturate at a value saturation
thS∆  and become independent of 

the severity of the notch.  This is predicted to be the case for cracks with both one and two 

degrees of freedom.  

6. The saturation threshold saturation
thS∆  is lower for 3-D thumbnail cracks than for 2-D 

through-thickness cracks, partly due to the fact that the parameter ao for a thumbnail is greater 

than that for a through-thickness crack. 
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7. Plastic shakedown is predicted to have a significant effect on threshold behavior 

by causing compressive residual stresses at the notch tip that elevate the cyclic threshold stress 

ranges for crack initiation and propagation.  
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APPENDIX L 

ANALYTICAL INVESTIGATION OF AIRFOIL LEADING EDGE 
FOREIGN OBJECT DAMAGE EVENTS 

 
 
L.1 INTRODUCTION 

Under the High Cycle Fatigue (HCF) Initiative, the U.S. Air Force selected gas 

turbine engine manufacturers and academia have been investigating high cycle fatigue 

behavior of engine components with a goal of achieving twice the damage tolerance of 

current components.  A major source of concern in the high cycle fatigue behavior of gas 

turbine airfoils is the introduction of damage from foreign object impact events.  In order to 

better understand the factors influencing high cycle fatigue crack growth emanating from 

foreign object damage (FOD) impact sites in gas turbine engine airfoils, an analytical study 

was conducted with the commercial explicit finite element code MSC/DYTRAN [1].  

DYTRAN, a commercial explicit finite element package, is utilized to model hard body 

foreign object damage events of titanium airfoils.  The titanium airfoils are simulated by 

tapered specimens with representative airfoil leading edge radii and are impacted with a 

1.33mm steel ball or equal mass steel cube.  The analysis includes rate dependent material 

properties and utilizes a simple material failure model.  FOD specimen geometries contained 

in this analysis correspond to actual test specimens used in FOD experiments and post-FOD 

fatigue testing.  All of the impact experiments and the corresponding analysis were 

conducted at room temperature (≈ 22°C).  These impact events can generate significant 

deformation and correspondingly high residual stresses.  These residual stresses play a major 

role in the resulting post-FOD fatigue life of the airfoils.  Of particular interest is the residual 

stress state in the airfoil after impact and the calculated fatigue life to failure of the damaged 

specimens.   

Characteristic materials, airfoil leading edge geometries and impact conditions 

representing gas turbine compressor fan blades were selected for the analytical investigation.  

Titanium (Ti-6Al-4V) specimens with representative leading edge radii were impacted with a 

steel ball and cube at angles and velocities typical of compressor airfoils.  A design study of 

impactor shape, speed, angle, specimen leading edge radii, centrifugal load, and impact site 
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location was conducted with DYTRAN.  The results of the analysis and the relative effects of 

these variables will be presented. 

L.2 FOD ANALYSIS PAST HISTORY 

Two specimen geometries representing typical compressor fan airfoil leading edges 

were selected for this program and were machined for impact testing.  A “sharp” edge 

specimen with a 0.127 mm (0.005 in) leading edge radius (LER) and a “blunt” edge 

specimen with a 0.381 mm (0.015 in) LER as shown in Figure L1 were modeled.  The angle 

of impact relative to the specimen cross-section was varied from 0° to 60° as shown in Figure 

L2, and the impact velocity was varied from 182.9 m/s (600 ft/s) to 365.8 m/s (1200 ft/s).  

 
Sharp Edge Specimen

Blunt Edge Specimen

0.127 mm Edge Radius

19.05 mm Constant
X-Section Gage

0.381 mm Edge Radius

19.05 mmConstant
X-Section Gage

A

A

Section A-A

B

B

Section B-B  
 

Figure L1. Leading edge specimen geometries. 
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0°
15°

30°
45°  

Figure L2. Impact angles. 
 

Past analysis in the HCF Final Report [2] documents the development of the finite 

element models for the explicit DYTRAN analysis.  Figure L3 shows a representative finite 

element mesh for a sharp edged specimen being impacted at 30°.  As with all finite element 

analysis, whether it is explicit or implicit, the density of the mesh plays a role in the stress 

predictions.   

 

RCONN Interface

 

 
Figure L3. Finite element model of sharp edge specimen impacted at 30°. 

 
 

The past HCF Final Report [2] documents a specimen mesh refinement study conducted with 

the ball mesh density kept constant.  Figure L4 shows three successively finer meshes used in 

the past refinement study.  The past mesh density study determined that the medium mesh 



L-4 
 

density predicted the experimental deformation results with the most accuracy.  As a result of 

this past mesh refinement study, the medium mesh density model was selected for this 

follow-on analytical investigation.  

 

Section A-A
Coarse

A

A

Out-of-Plane View

Section B-B
Medium

B

B

Out-of-Plane View

Fine
Section C-C

C

C

Out-of-Plane View

 

Figure L4. Specimen mesh refinement. 
 

 
 
L.2.1 Material Modeling 
 

Ballistic events introduce high strain rates and titanium has been shown to be highly 

rate sensitive.  The same strain rate dependent constitutive material model used in the past 

HCF Final Report [2] was used for this analysis.  The material model allows for the modeling 

of a nonlinear, plastic material with isotropic hardening and the von Mises flow rule.  Strain 

rate dependent stress-strain curves are supplied to the analysis.  The strain rate dependent 

bilinear stress-strain response input into the DYTRAN analysis is shown in Figure L5. This 

material model has an elastic modulus of 114 GPa (16.6 Msi), a tangent modulus of 1.1 GPa 

(0.160 Msi), and a quasistatic yield stress of 951 MPa (138 Ksi). 
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Figure L5.  Rate dependent stress-strain behavior utilized in analysis. 
 

  
Material failure can be modeled in DYTRAN; however, the failure routines are not 

sophisticated and cannot accurately model the failure process.  This means stipulations must 

be placed on the failure prediction.  A basic material failure model based on the Von Mises 

yield function was selected for evaluation.  This chosen material model allows for failure of 

the element by specifying the effective plastic strain at failure.  Once the failure limit is 

reached, the element looses all its strength.  The single effective plastic strain variable 

utilized does not distinguish between different deformation modes. Once the limit is reached 

regardless if it is tension, compression, shear, or mixed, the elements fails.  The high strain 

rate effective plastic strain at failure utilized in this analysis is 35%.  The selection of 35% 

was based on a combination of literature surveys and finite element correlation with impact 

specimens exhibiting failure.  The steel ball and cube were modeled as linear elastic with a 

modulus of 204 GPa (29.6 Msi) and a density of 7832 kg/m3 (0.283 lb/in3). 

L.2.2 Fatigue Life to Failure Material Model Characterization 
 

The residual stress field resulting from the impact and it’s affect on the fatigue life 

of the specimen is of great interest.  To investigate this a cycles to failure model based upon 

a Walker methodology has been developed.  The Walker strain equation is shown below.  

Figure L6 illustrates the consolidated Walker fatigue curve.  Walker material constants for 



L-6 
 

the consolidated room temperature HCF-LCF fatigue model have been developed for fatigue 

life predictions made within this report. 

 
 
 
 

Where: 
    εWalker = Walker strain 
    σmax    = Max stress 
    E        = Modulus of elasticity 
    m       = Walker strain exponent 
    ∆εeq     = Equivalent strain range 
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Figure L6.  TI64-L RT consolidated HCF and LCF PRDA fatigue results 

 
 

The ±2.19 sigma curves are the expected scatter band of the smooth data based 

upon a median ranks prediction.  As can be seen, at longer lives the Walker curve becomes 

flatter and the effect of scatter on the HCF lives is much greater than the effect on LCF lives.  

Overall consolidating both LCF and HCF material data into a single Walker fatigue model 

that matched specimen lives from 1000 to 1E9 cycles produced a good fit.  The Walker 

model shown in Figure L6 is used to perform fatigue life investigations for the following 

analytical studies. 

 

εWalker = σmax/E * (∆εeqE/σmax)m 
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L.3 ANALYTICAL RESULTS 

Past analysis documented in the HCF Final Report [2] calibrated the mesh densities 

used in this analysis with selected ballistic experiments performed by UDRI.  This past 

correlated mesh density has been carried forward and used in the analytical studies 

performed here.  It should be noted that mesh density as well as the simple material failure 

model affect the analytical results.   Results will be presented but it should be noted that the 

results are subject to the previously discussed modeling limitations.     

L.3.1 Centrifugal Loading Analytical Study 

This analytical study involves investigating the effect that centrifugal loading might 

have on the local residual stress field around the impact site.  The centrifugal (CF) load was 

simply simulated as a mean stress by applying a tensile load to the specimen.  This was done 

for modeling simplicity, possible future test comparisons, and to eliminate a CF load stress 

gradient effect.  The sharp edge  (0.005” radius) specimen is used in this study.  Specimens 

are impacted at different angles and impact velocities while experiencing 0ksi, 20ksi, and 

40ksi static stress fields simulating the blade CF load.  The specimens are then statically 

loaded to a nominal 40ksi stress after impact for comparison of the local stress fields.  

Figures L7 through L9 show cross sections of the blade specimen at the impact site.  In these 

figures the blade has been sectioned through the airfoil to reveal the internal spanwise stress 

distribution in the 3 direction denoted by the S33 symbol on the legend.  Figures L7 through 

L9 are for impact angles of 0° and 30°.  The 1.33 mm steel ball with a 1000 ft/sec velocity 

was used.  Figure L7 shows the case where the blade was not preloaded during impact.  The 

blade is then statically loaded to the nominal 40 ksi for comparison.  Figure L8 shows the 

case where the blade is preloaded to 20 ksi at impact, and than statically loaded to 40 ksi for 

comparison.  Figure L9 shows the case where the blade is preloaded to 40 ksi at impact. 

Figures L7 through L9 clearly illustrate the effect of blade preloading on the local 

stress distribution around the impact site.  Higher blade preloading seems to produce regions 

of locally higher tensile and compressive spanwise stress.  These findings are controlled to a 

degree by the type of material failure model used in the analysis, and while the details of the 

stress distribution might change, the interaction of the FOD and CF stress fields would be 

similar. 
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      0° Impact 40 ksi Nominal Stress 30° Impact 40 ksi Nominal Stress  

  

 
Figure L7.  Impact occurred under a 0ksi Preload condition. 

 
 
 

   
      0° Impact 40 ksi Nominal Stress 30° Impact 40 ksi Nominal Stress  

  

 
Figure L8.  Impact occurred under a 20 ksi Preload condition. 

 
 
 

   
      0° Impact 40 ksi Nominal Stress 30° Impact 40 ksi Nominal Stress  

  

 
Figure L9.   Impact occurred under a 40 ksi Preload condition. 
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The fatigue life investigation of the preloaded blades uses the Walker model shown 

in Figure L6.  Figure L10 shows the predicted fatigue life to failure for the three preloaded 

blade conditions investigated.  After impact at a preloaded condition, the blade is cycled 

between 0 ksi and 20 ksi nominal stress levels to investigate the fatigue life to failure effects.  

Figure L10 compares the predicted life with and without residual stress effects, as well as, 0°, 

30°, and 60° impact angle information.  Figure L10 results are based on a 1000 ft/sec impact 

velocity with a 1.33 mm steel ball and the sharp blade 0.005” radius. 

Figure L10 illustrates that the fatigue lives for the cases with residual stress are not 

influenced greatly by blade CF load levels.  This finding is subject to the analysis 

assumptions and further analysis needs to be done.  A more refined material failure model 

may affect the residual stress distribution and therefore produce a different conclusion 

regarding fatigue life.  FOD analysis refinement and experimental testing need to be done in 

order to predict and correlate how CF load really affects the fatigue life of a damaged blade.   

Figure L10 also compares effects on fatigue life with and without residual stress.  

Including the residual stress distribution has a significant effect on predicted fatigue life.  On 

average, the fatigue life is several orders of magnitude less when residual stresses are 

included.  The “without residual stress” curves show a great deal of variance in predicted life.   

Including residual stress smoothes out the curves, and reduces the predicted fatigue life.  The 

large variance in life of the “without residual stress” curves might be partly attributed to the 

mesh density at the FOD site that actually is a faceted surface.   The material failure model 

has a great impact on the residual stress distribution, and therefore the fatigue life prediction 

also.   

Figure L11 illustrates that as the cyclic stress increases to 0 ksi – 40 ksi – 0 ksi, 

residual stress due to impact has less effect on the predicted life.  Comparing Figures L10 

and L11 suggests that residual stress is more critical in the HCF regime than the LCF regime.  

Figure L11 shows that as impact angle increases, fatigue life decreases. 
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Figure L10.  Predicted fatigue life of preloaded blade. 

 
 
 

 

Blade Preload Effects with angle of impact
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Figure L11. Predicted fatigue life of preloaded blade cycled to 40 ksi nominal stress. 
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L.3.2 Sphere versus Cube Impact Analytical Study 
 

A comparison study of a sphere impactor to an equal mass cube was performed.  

The sharp edge blade specimen was used for this study.  This study fixed the impact angle at 

45°, and used the 1.33 mm steel ball.  Figure L12 compares the two local model mesh 

geometries.  The cube is oriented such that a sharp cube edge impacts the blade specimen 

leading edge.  This produces the characteristic V – notch FOD.  

 

 
 

Figure L12. Local sphere and cube impact models. 
 
 

Figures L13 through L15 compare blade spanwise stress results of impacts due to a 

sphere and a cube.  Here the impact velocity was 1000 ft/sec.  Local FOD site geometric 

differences and chord wise stress distributions are visually compared. 

Figure L13 shows that the sphere impact produces more local bending distortion 

around the FOD site, while the cube impact creates a deeper notch effect.  The local bending 

distortion is produced by an interaction of blade edge radius, impactor radius, and impactor 

velocity.  Slower and larger impactors produce more local bending distortion around the 

FOD site.  As velocity increases, less local bending distortion is observed.  Figure L13 shows 

that the exit side (top) compressive stress distributions are different for the two impactors.  

The sphere impact produced compressive stress all around the surface of the exit side while 

the cube impact created a very slight tensile stress at the exit side surface notch location with 

compressive stresses produced deeper into the blade specimen.   



L-12 
 

     
Sphere Impact, 45°, 1000 ft/sec Cube Impact, 45°, 1000 ft/sec  

  
 

Figure 13 – Comparison of Residual Stress Fields After Impact (No Nominal Load) 
 
 

Sphere Impact, 45°, 1000 ft/sec Cube Impact, 45°, 1000 ft/sec  

  
 

Figure 14 – Comparison of Residual Stress Fields After Impact (20 ksi Nominal Load) 
 
 

Sphere Impact, 45°, 1000 ft/sec Cube Impact, 45°, 1000 ft/sec  

  
 

Figure 15 – Comparison of Residual Stress Fields After Impact (40 ksi Nominal Load) 
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Figure L14 compares the two models loaded to a nominal 20 ksi stress level.  Both 

models show tensile stresses on the projectile entrance side.  The cube model shows the 

localized tensile stress at the exit side notch location.  Figure L15 shows that the 40 ksi 

nominal stress significantly reduces the compressive stress field on the exit side of the cube 

impact, and the very localized tensile stress at the exit side notch root is clearly observed.  

The sphere impact still shows a large zone of compressive stress at the exit side. 

Fatigue life to failure was investigated comparing the sphere impact to the cube 

impact.  600 ft/sec, 800 ft/sec, 1000 ft/sec, and 1200 ft/sec velocity cases were investigated 

for the 45° impact angle.  Figure L16 shows the effect of the cube and the sphere on fatigue 

life to failure. 
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Figure L16. Fatigue life comparison of cube impact to sphere impact. 

 
 

Figure L16 plots calculated fatigue life for the 0ksi – 20ksi cycle and the 0ksi – 

40ksi cycle.  The effect of “with and without residual stress” is also shown.  Figure L16 

clearly shows that the cube impact is more damaging to fatigue life than the sphere impact.  

Figure L16 shows that fatigue life decreases for the increasing velocity, but the curves also 
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appear to be converging as velocity increases.  This suggests a possible upper limit on 

velocity for a minimum fatigue life point.  For all cases, including residual stress reduced the 

predicted fatigue life to failure.  The difference in fatigue life between “with and without 

residual stress” decreases as the cyclic stress range increases.  This is observed by comparing 

the cube 0 ksi – 40 ksi “with and without residual stress” curves.   

L.3.3 Impact Site Perturbation Study 
 

FOD test results have shown a great deal of scatter in the fatigue life of specimens 

that were impacted in a similar fashion.  It has proven to be very difficult to reproduce 

exactly the same FOD damage from one test specimen to the next.  Given this, it was decided 

to perform an impact site perturbation study.  The first study is an investigation of the effect 

on fatigue life for the 0° impact angle of the blunt edge radius (.381mm/0.015in) blade 

specimen.  Figure L17 defines how the perturbation study was performed.  A 1.33 mm ball 

with a velocity of 1000 ft/sec was investigated. 

 
 

 
 

Figure L17. Perturbation study definition for the 0° impact angle study. 
 

 
Figure L17 shows that the study involves looking at X=0, R/4, R/2, 3R/4, and R 

ball offset conditions where R is the blunt edge blade specimen radius.  Figure L18 is a 

comparison of the offset impact effect on residual stress distribution in the cross section of 

the blade. 
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X = 0 X = R/4  

  

 
X = R/2 X = 3R/4 X = R 

   
 

Figure L18. Perturbation study contour plots of 0° impact. 
     

 
As shown in Figure L18, increased impact site offset in the +X direction(down) 

produces increased tensile residual stress on the top side of the blade.  

Figure L19 compares the fatigue life as impact site offset increases.  Figure L19 

illustrates that with increased impact site offset there is a reduction in fatigue life.  For the 

X=0 location, the 0 ksi – 20 ksi case fatigue life is calculated to be 3,370,000 cycles, 

increasing the offset to X = R fatigue life decreases by a factor of 2.9 to 1,180,000 cycles.  

The 0° perturbation study suggests that a good deal of fatigue life variation could be 

observed due to imperfect impacts. 
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Figure L19.  0° Impact site offset study on fatigue life. 

 
 

The 30° impact angle perturbation study definition is shown in Figure L20.  In this 

study the steel ball is perturbed along the Y direction as shown, while the 30° angle is held 

constant.  Five impact cases are investigated with the blunt edge specimen.  Figure L21 

compares residual stress distributions in the blade cross-section for the five cases.  As Y goes 

from –R/2 to +R/2 the depth of the FOD site increases.  The –R/2 and –R/4 impacts have 

removed elements through the thickness of the blade tip.  For Y = 0 and greater some 

elements remain on the exit side of the impact, and there are more elements removed at the 

entrance side.  The compressive stress distribution seems to be driven from a more interior 

distribution for Y= -R/2 toward a surface distribution for Y = R/2.  Figure L22 compares the 

fatigue life results for this perturbation study.   For the 0 ksi – 20 ksi cyclic case with residual 

stresses the calculated maximum number of cycles to failure was 980,000 cycles at the Y = -

R/4 location.  The minimum of 200,000 cycles occurred at the Y = 0 location.  There is a 

factor of 4.9 between the maximum and minimum calculated fatigue life. 
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Figure L20. Perturbation study definition for the 30° impact angle study. 
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Y = 0 Y = R/4 Y = R/2 

   
 
 

Figure L21. Perturbation study contour plots of 30° impact. 
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Impact site perturbation study
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Figure L22. 30° Impact site offset study on fatigue life. 

 
 
L.4 CONCLUSIONS 

Conclusions stated here are predicated on a simple material failure model.  Findings 

presented are subject to that limitation.  A Walker LCF – HCF fatigue life to failure model 

was developed to investigate fatigue life.  The effect of scatter on the HCF lives is much 

greater than the effect on LCF lives.  The centrifugal loading study illustrated that there is an 

effect on the local stress distribution around the FOD site due to blade preload being present 

at the time of impact.  A trend of how preload effects fatigue life was not observed.  

Analytical studies performed here show that including residual stress distribution around the 

FOD site does significantly reduce the estimated fatigue life (Figure L10).  Increasing the 

impact angle as shown in Figure L11 from 0° to 60° causes a decrease in fatigue life for the 

sharp radius specimen. 

The cube versus sphere study determined that FOD geometry has a significant 

effect on fatigue life, local residual stress distribution, and FOD site geometry.  Velocity was 

also investigated within the cube versus sphere study.  It was found for the 45° impact of the 
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sharp edge specimen that as impact velocity increased fatigue life decreased.  It was also 

observed that the fatigue life curves in Figure L16 for the cube results were converging as 

velocity increased.  Figure L16 also shows that including residual stress has a greater impact 

in the HCF versus LCF regimes.  This is observed in Figure L16 by the decreasing gap 

between “with” and “without residual stress” curves as the load is increased from the 0 ksi – 

20 ksi to the 0 ksi – 40 ksi cycle. 

The impact site perturbation studies show that there can be a significant difference 

in predicted fatigue life given an imperfect impact.  The 0° impact angle perturbation study 

of the blunt edge specimen shows a 2.9 factor between the maximum and minimum 

calculated fatigue life values.  For the 0° impact, fatigue life decreased as offset increased.   

For the 30° impact of the blunt edge specimen, a 4.9 factor between the maximum and 

minimum fatigue life was observed.  The two impact site perturbation studies performed here 

suggest there is a variation in fatigue life due to imperfect impacts.  Further analysis would 

need to be done to more accurately address the actual magnitude of the variation.       
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APPENDIX M 

CAFDEM 

 
M.1 GENERAL FORMULATION OF CONTACT STRESS MODEL 

A schematic of two elastic bodies in contact is shown in Figure M1. Let the 

displacements in the x and y directions be given by iux and iuy respectively (i = 1, 2). The 

relative slip between the two bodies, s(x), and the initial gap function, H(x), in the contact 

zone are related to the displacements as, 

 s(x)= 2ux - 1ux (M1) 
 
 H(x)+C1 x= 2uy - 1uy + H0 (M2) 

 
where H0 is a constant and C1 is a rotation term. Equation M1 defines slip as difference in 

tangential surface displacement of two bodies. Equation M2 states that the normal 

displacement of the bodies must lead to continuity between the two bodies without 

interpenetration. Using equations of elasticity for plane-strain half spaces, the contact 

pressure, p(x), and the shear traction, q(x), can be related to H(x) and s(x) as:  
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where the Dundurs constants [1] k1 and k2 are obtained from the Young’s modulus (E) and 

Poisson’s ratio (ν) of the two bodies as: 
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Please note that k1 = 0 when both the contacting bodies are made from similar isotropic 

materials which means that Equation M3 and M4 are de-coupled so that the contact pressure 

is independent of the tangential load. If the initial gap function and the slip function are 
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known, Equations M3 and M4 can be solved for the contact tractions. The initial gap 

function, H(x), can be obtained from a knowledge of the undeformed geometry of the 

contacting bodies but the slip function, s(x), is more complicated.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For partial slip contact problems (Q < µP) Dundurs and Comninou (1979) [5] deduced that in order  

 

For Coulomb's law of friction to be obeyed at the edge of contact and for there not to 

be any interpenetration of the contacting surfaces, there has to be some amount of relative 

sliding between the contacting surfaces. The most common scenario is that there is a central 

stick zone in which no relative slip takes place surrounded by a slip zone in which the 

tangential traction is limited by the available friction. In a given load increment, these 

conditions can be written as: 
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where b1 and b2 are the ends of the stick zone and a1 and a2 are the ends of the contact zone 

as shown in Figure M1. If the next load increment at a given instant in time is such that the 

size of the stick zone grows into the slip zone then the accumulated slip in the newly added 

regions to the stick zone gets “locked in”. Thus, the contact pressure and shear stress 

distribution are load path or history dependent. 

y

z

 
 

Figure M1. Schematic of two elastic bodies in partial slip contact, a1 and a2 denote the ends 
 of the contact zone and b1 and b2 denote the end of the stick zones. 
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This point is illustrated in Figure M2 for the case of normal indentation (Q = 0) of 

an elastic half space by a rigid punch. As the applied load P increases, the point A on the 

surface of the half-space slips against the rigid surface until the stick zone extends to include 

that point. From that time onward, any increase in the load does not result in additional slip, 

i.e., the slip is locked in. To solve Equations M3 and M4 for the contact tractions, we need to 

have knowledge of the accumulated slip function, s(x,t), at the current instant of time. For the 

most general loading/unloading paths there is no way of knowing the slip function a priori. 

Hence Equations M3 and M4 have to be solved incrementally. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
M.2 VERIFICATION OF FORMULATION USING POWER LAW INDENTER 

WITH Q = 0 
 

The governing singular integral equations (Equations M3 and M4) are solved 

numerically [2-3]. The numerical implementation is verified by comparing to a solution 

available in the literature. Spence (1973) [4] gives the contact tractions and the size of the 

stick zone when an elastic half space is indented by a rigid power law indentor (H(x)=Axn) 

under the influence of normal load alone, i.e., Q=0. Under such conditions the solution is 

symmetric with respect to contact pressure and anti-symmetric with respect to the shear 

traction. Hence the ends of the contact zone and the ends of the stick zone will be located 

 
 

Figure M2.  The evolution of the contact and stick zones and the “slip lock”  
phenomenon that occurs during the incremental indentation of 
anelastic half space by a rigid surface. 
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symmetrically about the origin, i.e., a2=-a1=a and b2=-b1=b. Exploiting the self-similarity of 

the problem, Spence reasoned that the ratio of the size of the stick zone to the size of the 

contact area remains fixed irrespective of the shape, given by the index n, of the power law 

indentor. Moreover this ratio depends only on the Poisson's ratio (ν) of the half-space and the 

coefficient of friction (µ).  

The present analysis technique is applied to this problem by incrementally 

indenting an elastic half-space by a rigid parabolic punch (n=2). The indentation is continued 

till the contact size a=1. The normal load, applied incrementally using 40 load steps of equal 

magnitude with the relative slip function calculated at the end of the current step used as 

input to the next step. The slip function in the first step is assumed to be zero within the stick 

zone. The analysis is performed for different values of µ and two different values of ν (=0.0, 

0.3). The results of the current analysis (Figure M3) are in good agreement with Spence's 

results for this reduced problem providing partial justification of numerical convergence. 

Further details on numerical implementation and convergence are given in Rajeev (2001) [5].  

 

Figure M3.  Stick zone size as a function of the coefficient of friction. The values of b/a  
 obtained by solving the coupled singular integral equations incrementally are  
 in good agreement to those obtained by Spence (1973) [4] using a self-similar 

analysis. 
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M.3 VERIFICATION OF FORMULATION CONSIDERING LOAD HISTORY 
EFFECTS 

 
Consider the following two scenarios: 1) a cylindrical punch with radius (R) of 7 

inches is brought in contact with a half-space under the action of a normal load, P, and then a 

shear load, Q (<µP), is applied to the punch, and 2) the cylindrical punch is brought in 

contact with the half-space by applying P and Q together, i.e., an oblique load. If the punch 

and the half-space are made from similar isotropic materials, a central stick zone is produced 

in the first case whereas the entire contact is in stick in the second case [6-7]. 

For the case of dissimilar materials the contact tractions for the above two load 

histories have to be obtained numerically. The shear traction results when a rigid cylinder is 

brought into contact with a Ti-6Al-4V half-space (E=16.8 Msi, ν = 0.32) subject to the load 

history shown in Figure M4.  

 

 

 

 

 

 
Figure M4.  Shear traction results when a rigid cylinder is brought into contact with a Ti-6Al- 
 4V half-space for two different load histories (P = 10,000 lb/in, Q = 3000 lb/in). 
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The coefficient of friction is µ = 0.5 and cylinder radius is R = 7 inches in these 

subsequent calculations unless otherwise indicated. Note that the SIE results are in good 

agreement with the FEM results. Figure M5 represents the shear traction results when a 

cylindrical punch made from Inco718 alloy (E = 30.2Msi, ν = 0.31) is brought into contact 

with a Ti-6Al-4V half-space. The “kinks” in the central region of the shear traction 

distributions are a result of assuming that the relative slip function is identically zero in the 

stick zone in the very first load increment. They can be confined to smaller regions by 

increasing the number of load increments. It must be noted that, for the same reason, these 

“kinks” exist in FEM analyses as well (Figure M4). Small slip zones are present near the 

edges of contact that are not present in the similar material case. 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure M5.  Shear traction results when a cylinder made from Inco718 alloy is brought into  
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APPENDIX N 

OVERVIEW AND APPLICATION OF CONTACT STRESS 
APPROACH TO ATTACHMENTS 

 
 

This Appendix summarizes efforts at Pratt and Whitney (P&W) to develop and 

deploy advanced modeling tools that integrate accurate contact stress modeling with 

validated high cycle fatigue (HCF) life prediction.  Included in this summary are:  (1) 

advances in characterizing the evolution of contact stresses associated with mission load 

histories, including during periods of forced vibration, (2) predicting fatigue crack 

initiation driven by these near-surface stress fields and (3) validating an automated, 

design-oriented framework dubbed radical—robust attachment design integrating contact 

and lifing that melds achievements in these two areas with conventional finite element 

modeling techniques.  Validation cases consist of fretting fatigue data generated by 

Purdue University, a P&W single tooth firtree (STFT) test, and a third stage fan disk and 

blade attachments from an F100 engine.  

N.1 ACCURATELY MODELING STRESS HISTORIES IN BLADED-DISK 
ATTACHMENTS 

 
The nominally flat geometry of conventional blade attachment and disk lug 

designs, while conducive for manufacturing and assembly, leads to highly concentrated 

stresses at and around the edges of the blade/disk contact interface.  As detailed in [1] and 

[2], the computational expense associated with resolving these stresses accurately is 

daunting for two-dimensional geometries and prohibitive currently for three-dimensional 

models used routinely to analyze bladed-disk designs. 

N.2 CONTINUUM MECHANICS APPROACHES TO CONTACT STRESS 
MODELING 

Previous efforts have yielded a set of numerically efficient and robust tools for 

modeling the two-dimensional or line contact of nominally flat surfaces [3-4].  These 

tools enable solution of the singular integral equations (SIE) rooted in the theory of 

elasticity that govern the interaction between normal and tangential surface displacements 
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associated with fretting and galling and the resulting contact pressure, frictional traction 

and edge-of-contact stresses that drive fatigue damage.  For the case of contacting 

surfaces with similar elastic properties (i.e. a fan or compressor stage comprising a 

titanium disk and blades), the uncoupled system of equations can be solved within a 

matter of seconds for the near-surface contact stress fields using a Fast Fourier Transform 

(FFT) algorithm. P&W has adapted the contact analysis code which embodies these 

principals, CAPRI, for use in predicting blade and disk attachment contact stresses.   

N.3 QUASI-DYNAMIC VIBRATORY ANALYSIS (QDVA) FOR HCF 
ENVIRONMENTS 

Procedures for modeling near surface elastic contact stresses both accurately 

and efficiently for two-dimensional contacts subjected to spectral or mission-type 

tangential and eccentric normal loads representative of bladed-disk attachments, also had 

to be developed.  In transitioning such a tool to a design environment where three-

dimensional finite element models of bladed disks are ubiquitous, links must be 

established between the FFT-based contact analysis and such finite element models, 

empowering designers with mechanics-based insight into the influence of factors like 

geometric details, manufacturing tolerances and coatings on damage tolerance of blade 

attachments and disk lug configurations. 

Such a global-local hybrid approach that treats axial slices of the blade 

attachment and disk lug geometries represented in a three-dimensional finite element 

model as isolated two-dimensional contacts has been proposed and implemented 

successfully for static analyses requisite for LCF-type assessments of mission histories.  

In this hybrid approach, a coarse blade attachment/disk lug mesh that includes the non-

linear influences of frictional contact is used to solve the statically indeterminate 

eccentric normal and tangential reaction loads between the blade and disk—reactions 

which are then used as inputs to the FFT-based contact analysis. 

Direct application of this methodology to understand non-linear reaction load 

and contact stress histories during forced responses of the bladed-disk is precluded, given 

that such responses are typically characterized by first obtaining modal results from a 

linear solution of the eigenvalue problem: 
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  ( ) 0}ˆ{][][ 2 =− uMK ω  (N1) 

where [M] is the elemental mass matrix and [K] is the model stiffness matrix that may 

include influences such as stress-stiffening and spin-softening associated with high-speed 

rotation of the rotor structure.  In such an analysis, the contact interaction at the 

blade/disk interface is often modeled in a linear fashion with displacement constraint 

equations that prevent interpenetration of the blade attachment and disk lug nodes; and 

enforce either a no-slip/infinite friction or pure sliding/zero friction condition in the 

tangential direction. 

A procedure with the moniker quasi-dynamic vibratory analysis (QDVA) is 

being proposed to bridge this gap between conventional modal analysis procedures and 

the need to obtain contact reaction loads for the FFT-based contact analysis.  As outlined 

in steps 2 through 5 portrayed in Figure N1, the QDVA process involves conducting an 

incremental static analysis including Figure N1 – Robust Attachment Design Integrating 

Contact and Lifing frictional contact at the blade/disk interface using a load history 

comprised of a nodal force history determined by scaling the modal force history 

generated from the aforementioned eigenvalue problem.  This scaling factor may be 

determined from either recorded or predicted stage vibration levels (strain gage readings, 

tip deflection measurements, etc.); or by design-system criteria for acceptable vibratory 

responses. This scaled modal force history is enforced over the entire model, save at the 

blade/disk interface—which is resolved through the use of contact elements on the 

surfaces of the blade attachment and disk slot.  Implicit in this approach is the assumption 

that the set of interfacial displacement boundary conditions imposed during the modal 

analysis (and thus used to generate the scaled modal force history) are identical to those 

during the actual vibratory response of the airfoil. Figure N2 presents the simulated 

evolution of contact pressure on the surface of a disk lug slot from an idle condition 

(Point #1), to sea level takeoff conditions (Point #2), through one-and-one-half cycles of 

a blade-dominant vibratory response. 
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Figure N1.  RADICAL overall procedural flow chart. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure N2. Evolution of contact pressures through mission loading. 
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N.4 OVERVIEW OF CONTACT STRESS APPROACH 

Robust Attachment Design Integrating Contact And Lifing (RADICAL) - The 

RADICAL analytical procedure was developed in an effort to better characterize contact 

loads during an HCF event.  An overall flowchart of the procedure is shown in Figure N1. 

The ‘SIE Contact Analysis’ and the subsequent lifing uses these contact loads and 

extracted bulk stresses to calculate edge of contact stresses in locations affected by the 

‘unsteady’ or vibratory loads.  Since it is difficult to meld the vibratory and steady stress 

analyses the quasi-dynamic-vibratory RADICAL procedure was developed.  The ‘Outline of 

Steps for the RADICAL Process’ (shown below) gives a step by step explanation of the way in 

which the vibratory loads are added to the critical condition while preserving an abbreviated 

mission history.  This mission history must be preserved in order to get the proper load path for 

the frictional contact. 

N.5 OUTLINE OF STEPS FOR THE RADICAL PROCESS 

1. Setup Finite Element Model with appropriate features. 

2. Run ANSYS solution of ‘Initial Condition’ (ex. Idle, …) 

3. Restart and rerun ‘Initial Condition’ solution with appropriate coefficients of 

friction (µ) applied. 

4. Complete solution of FEM ramped to ‘Critical Condition’ (ex. Conditions at 

appropriate spin of critical HCF driver) for each µ from the ‘Initial Condition.’ 

5. Tighten Convergence tolerance and restart/rerun ‘Critical Condition’ Solution. 

6. Use ‘Critical Condition’ results to run a static pre-stress analysis for each µ.  If 

necessary include large deformation effects. 

7. Vibratory analysis – For each pre-stress conditions complete a modal analysis, 

with or without cyclic symmetry effects for the given frequency and nodal 

diameter. 

8. Extract loads from Vibratory Analysis 

9. Apply Vibratory Load to ‘Critical Condition’ Static Analysis. 
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10. Restart ‘Critical Condition’ and solve with added vibratory load. 

11. Restart last solution with vibratory load subtracted.   

12. Add/Subtract vibratory load until friction effects have been shaken out. 

13. Extract 

N.6 AUTOMATION OF THE HCF/EDGE OF CONTACT ZONE LIFE 
PREDICTION PROCESS 

 
To aid in conducting routine contact stress analyses and HCF life prediction a 

macro has been developed at P&W for analysts. The analysis procedure works with 

ANSYS and calls the CAPRI code to produce contact stresses. The contact area in the 3D 

finite element model is broken into a number of two-dimensional slices and loading 

information extracted. This information is fed to CAPRI and the contact stresses 

determined at the surface and into the depth of the contact region.  The contact stresses 

are then combined with the existing stresses or bulk stresses, which are not the result of 

the surface contact phenomena, to produce stresses for the life prediction methodology.  

Features included in this analysis code include: 

• GUI dialog box pops up to select input file 

• Input deck parsed for requisite geometry, “material” properties, and job info 

N.7 PREDICTING FATIGUE CRACK INITIATION UNDER MULTI-AXIAL 
LOADING 

 
By melding this QDVA process with the global-local hybrid approach and FFT-

based analysis for calculating continuum-level contact stresses, the stated goal of 

developing a computationally efficient framework for characterizing accurately the near 

surface conditions that drive fatigue cracking in bladed-disk attachments is realized.  For 

this information to be employed effectively within an agile design system to produce 

optimized and damage tolerant components, these near surface conditions must be 

interrogated through the use of lifing metrics or criteria. 

The complex nature of the thermal and mechanical influences on the bladed 

disk, in addition to the influence of frictional contact, typically results in a highly non-
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proportional and multiaxial near surface stress history in the attachment components.  

This fact, coupled with the desired to support a lifing system based on timely and cost-

effective specimen data, mandates the use of lifing approaches that collapse specimen 

data generated over a range of stress ratios and load histories into a single parameter or 

set of parameters. 

N.8 VALIDATION OF THE RADICAL METHODOLOGY 

Several approaches, including various critical plane multiaxial fatigue 

parameters [5] or stress-invariant approaches [6], have been proposed for handling the 

multiaxial stress histories experienced by bladed-disk attachments. It has been established 

that there is excellent correlation between the Findley parameter predicted initial life and 

the observed specimen total lives. Gaining confidence in this multiaxial fatigue life 

parameter solidifies the last component in the framework for robust attachment design 

through the integration of contact analysis and lifing (RADICAL), as outlined on Figure 

N1.  Three efforts to validate this design framework at P&W were evaluated and two 

have been completed successfully to date.  

N.9   FRETTING FATIGUE DATA CALIBRATION (P&W) 

The goal of the first of these efforts was to predict failure lives in a set of well-

characterized fretting fatigue tests conducted on the same pedigreed titanium alloy used 

to establish the multiaxial fatigue model.  The contact geometry and loads in this series of 

tests were selected to generate conditions typical of those in bladed-disk attachments [6].  

Furthermore, a separate series of careful experiments were conducted to establish the 

steady-state coefficient of friction (µ = 0.5) present at the contact interface for nearly the 

entire duration of the test, thereby completing the set of requisite parameters for the FFT-

based contact stress analysis.  Figure N3 reveals an excellent correlation among the 

observed total lives of the fretting fatigue specimens and predictions made applying the 

Findley parameter to near-surface stresses averaged over a 0.003” depth.  The actual over 

predicted strength capability is shown in Figure N4. 
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Figure N3. Comparison of fretting fatigue data to predictions at mean level. 

 

 

 

N4. Actual/predicted on fatigue capability for fretting fatigue data. 
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N.10 SINGLE TOOTH FIRTREE FATIGUE DATA CALIBRATION 

Figure N5 provides a similar comparison for a separate specimen configuration 

designed to directly simulate the conditions in a bladed-disk attachment.   
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Figure N5. Comparison of titanium STFT fatigue data to predictions. 

 

A quarter-symmetry finite element model of this single-tooth fir tree specimen 

was used to provide the contact reaction loads at the tooth/lug interface as the specimen 

was subjected to a remote pull load cycled between 2000 and 8000 lb., as shown in 

Figure N6.   It must be noted that obtaining direct and accurate measurements of the 

eccentric normal and tangential loads in this type of setup is virtually untenable; as with 

bladed-disk attachments, the finite element method provides the best alternative for 

resolving the statically indeterminate problem.  Upon obtaining contact surface reaction 
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forces associated with a friction coefficient of µ = 0.25, corresponding contact stress 

histories were determined.  These contact stresses were interrogated in the same manner 

as those from the fretting fatigue tests—by averaging the near surface stress gradients 

over a depth into the surface (0.0015”) and calculating the associated Findley parameter.  

As seen clearly on Figure N5 the life predictions made using mean and –3σ fatigue 

capability characterize conservatively the range of observed total lives.  The ratio of the 

Findley value at 1.5 mils below the surface over the Findley fatigue strength (–3σ) is 1.47.  

The analysis not only predicted the proper failure location, but the life prediction was 

comparable to the actual test experience as well on a mean basis. 

pull load cycled between
2000 and 8000 lbs.

 

Figure N6. Titanium STFT Finite Element Model, cycle, and contact stresses. 

 

N.11 F100 ENGINE THIRD STAGE FAN DISK / BLADE ATTACHMENT 
FROM AN DATA CALIBRATION 

 
The F100-PW-229 3rd stage fan disk and blade, see Figure N7, has been put 

through the initial part of the RADICAL analysis process.  This process consists of: (1) 

three dimensional finite element analyses with and without contact to characterize both 

static and vibratory responses of bladed disk designs, (2) engine data or aeromechanical 
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predictions characterizing vibratory responses, (3) serial two-dimensional quasi-

analytical contact analyses conducted using finite element method input, and (4) 

interpretation of the accuracy of the stress histories within the context of a validated lifing 

system.   

 

N7. Cracked disk and 3rd stage fan blade. 

 

The root cause analysis identified the problem as a 14E 3rd blade resonance 

from the intermediate case struts bow wave.  This was confirmed with strain gage and 

NSMS testing, analytical modeling, and lab testing / stress ratios at the attachment, see 

Figures N8 and N9.  Figures N10 and N11 show the finite element models of the 3rd stage 

fan disk and blade used for the analysis.  Resulting vibratory loadings from the NSMS 

testing were applied to these models to determine loading in the contact area of the 

attachment. 
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1995 Strain Gauge Testing Identified Stiffwise Bending as Having 
Highest Attachment Stress

• Maximum Measured Vibratory 
Stress for Stiffwise Bending Mode 

• Excited by 14 Intermediate Case 
Struts

• 14E resonance occurs at SL Mil 
power

• Max Stress measured in 1997 on 
FX178 with NSMS and verified 14E 
3rd attachment cracking driver.
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Figure N8. Strain gage results indicate 14E stiffwise bending as driver. 
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Figure N9. Location of NSMS probes for fan. 
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Figure N10. Finite element model of 3rd stage fan disk. 

 

Figure N11. Finite element model of 3rd stage fan blade. 



 N-14

A key consideration in understanding the amount of HCF exposure each of the 

blades experienced is which engines saw accelerated mission testing (AMT).  The 

number of engines affected has been identified and cyclic time on each of the engines in 

the fleet at the time the cracking incidents occurred has been collected.  Figure N12 

shows how the AMT engines experienced additional vibratory exposure because of the 

engine test cycle.  This added exposure to 14E put the AMT affected engines at the 

extreme of the overall distribution based HCF cycles accumulated as indicated in Figure 

N13.   

 

 

 

Figure N12. Affect of AMT cycle on HCF exposure levels. 
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AMT EnginesAMT Engines

 

Figure N13. HCF exposure levels for fleet. 
 

Interpretation of the life results in the context of applying both the total life and 

threshold based fracture predictive system was attempted. The early analysis results 

indicated that the proper location of cracking in both the blade and disk attachment was 

not correctly predicted.  A review of the contact analysis procedures for the angled slot 

has not yet been completed but is suspected to be the problem. 

 
N.12 SUMMARY 

Validation of the HCF life system has been completed up to the subcomponent 

level.  Modification of the contact analysis processor for angled slots in the 3rd stage fan 

disk have not yet been completed, but are expected to resolve the issue on proper 

prediction of the cracking location.  Once that has been accomplished then a comparison 

to HCF field experience can be completed. 
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APPENDIX O 

UNCOATED HCF BEHAVIOR AND MODELING 
 
 
O.1 BACKGROUND  

The 1900F portion of the work on Total Life approaches was initially planned to be 

executed with uncoated specimens.  Even though most airfoil surfaces exposed to 1900F 

conditions are coated for environmental protection, this decision was based on the desire to keep 

the materials aspects as simple as possible and to avoid having to choose one of many different 

coating systems.  Thus the work in that task was started with uncoated specimens.  After 

completing the testing and analysis described below, it became apparent that the lack of a coating 

was significantly affecting the behavior of the material, and that to produce models which were 

relevant to turbine blade airfoil behavior, it would be necessary to apply an environmental 

coating.  Thus the remainder of the program was completed using a PtAl diffusion aluminide 

coating. 

O.2 APPROACH 

The effort described in this Appendix reports the work performed on uncoated material 

prior to the decision to coat, and while not directly applicable to the effort described in the main 

body of the report, was nevertheless instructive and helpful in guiding the coated effort.  The 

technical approach was similar to that adopted for the coated effort: testing was performed at 

1900F to determine frequency effects and to identify HCF-rupture interactions. 

O.3 RESULTS 

O.3.1  Frequency Effects  

High frequency HCF testing was performed at GE-AE using <001> oriented specimens 

of the type shown in Figure 4.77 (see Section 4.3.1.1B).   Testing was at 1900°F, at frequencies 

of 59, 200, and 900 Hz.  A stress ratio of R = -1 was used to eliminate or reduce contributions of 

rupture damage which could occur with positive mean stresses.  The test results are shown in 

Table O1. Figure O1 shows the results plotted on a cycles to failure basis.  This figure suggests 

that for uncoated material cycles to failure may be dependent on frequency since the results at  
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900 Hz tend to show better HCF capability than at 59 or 200 Hz, especially at longer lives.  On 

the other hand, 59 and 200 Hz results are essentially comparable.  Some coated results from later 

tests are shown for comparison. 

Table O1. Uncoated PWA 1484 HCF Results, 1900°F, R = -1 

S/N Freq (hz) Alt stress 
(ksi) 

Nf 

A2LLA-2 59 40.0 11,225,134 
A2LLA-4 59 35.0 12,014,373 
A2LLB-2 59 45.0 4,927,212 
A2LLB-4 59 35.0 17,408,933 
A2LLC-2 59 35.0 21,437,295 
A2LPZ-3 200 39.0 7,194,950 
A2LRC-2 200 37.0 8,406,463 
A2LR1-2 200 35.0 8,377,436 
A2LRB-1 200 32.0 28,264,688 
A2LRB-5 900 40.0 59,662,836 
A2LR2-2 900 50.0 4,896,538 
A2LR1-4 900 46.0 6,844,156 
A2LPZ-5 900 43.0 7,150,000 
A2LRC-4 900 42.0 3,421,975 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure O1. 1900F HCF of uncoated and coated PWA 1484 at various frequencies; R = -1. 
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Figure O2 shows the same results plotted as time to failure.  Here the data are ordered 

differently, with 59 Hz lying above 200 and 900 Hz.  Power law curve fits through each 

frequency separately yielded the curves shown, with correlation coefficients, R, of 0.92 for 200 

Hz and 0.54 for 900 Hz.  The reason for the greater variability at 900 Hz is not known at present.  

However, the data from 200 and 900 Hz are not far apart; treating them as a combined single 

population leads to a power law fit with a correlation coefficient of 0.87. This is a respectably 

large value that suggests that when treated on a time-to-failure basis the behavior over this 

frequency range may be similar.  This is similar to behavior seen by GE on Rene’ N5 at higher 

mean stress.   
 

 

 

 

 

 

 

 

 

 

 

 
 

Figure O2.  1900F, R = -1 HCF capability of PWA 1484 plotted as alternating 
stress vs. time to failure for various frequencies. 

 

Failure analysis was performed on these specimens.  All specimens were examined 

visually and classified as having either surface or subsurface origins (examples of both will be 

shown).  Figure O2 shows that all of the specimens with subsurface origins (filled points) failed 

in fairly short times, while all but one of the surface failures (open points) occurred at longer 

lives.  The one short time surface failure (900 Hz, 50 ksi alternating stress) had an unusual 

amount of oxidation compared to others with similar failure times; it is possible, though not 

confirmed, that it spent extra time at temperature during test setup.  While the three subsurface 
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seems fortuitous, since the failure modes are different.  A comparison of the 900 Hz surface 

failures with the 200 Hz surface failures suggests that the frequency effects are not purely time 

dependent in this regime, but that the 900 Hz surface failures are about 2X longer life than the 

200 Hz surface failures.   

A more detailed SEM and metallographic examination was performed on 3 

representative specimens: one at 200 Hz (39 ksi, 7.2 x106 cycles, 10 hr life), a second at 900 Hz 

with approximately the same cycles to failure (43 ksi, 7.1 x106 cycles, 2.2 hr) and a third at 900 

Hz with approximately the same time to failure as the 200 Hz specimen (40 ksi, 58.6 x106 cycles, 

18.1 hr).   

Figure O3 shows that the 200 Hz specimen failed from the surface (bottom of Figure 

O.3) in a flat, relatively featureless mode, transitioning into a <111> crystallographic mode at  

 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure O3.  Fracture surface of 200 Hz specimen (7.2 x106 cycles, 10 hr life)  
showing oxidized surface origin (arrow), flat propagation mode,  
and crystallographic overload cracking. 
 
 

111 facets 
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final fracture (top of Figure O3).  The surface of the specimen was covered with uniformly 

spaced linear oxidized ridges perpendicular to the stress, Figure O4.  Metallographic sectioning 

parallel to the specimen axis showed (Figure O5) that these ridges were oxide nodules protruding 

from the surface, and were the source of regularly spaced cracks (average of 137 µm) extending 

into the specimen.  An etched view of the same area, Figure O6, shows that the cracks were often 

associated with the interdendritic regions of the microstructure and the crack spacing was similar 

to the secondary dendrite arm spacing (130 µm).  This appearance is identical to that reported in 

[1] for LCF of uncoated Rene N4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure O4. Regularly spaced oxide ridges and cracks on surface of 200 hz  
specimen (7.2 x106 cycles, 10 hr life) below the origin (arrow). 
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Figure O5.  Metallographic section of 200 Hz specimen (7.2 x106 cycles, 10  

hr life) showing regularly spaced oxide ridges and surface cracks. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure O6.  Etched metallographic section of 200 Hz specimen (7.2 x106  
cycles, 10 hr life)showing similar spacing of surface cracks  
and secondary dendrite arms. 
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The high stress, shorter life 900 Hz specimen, Figure O7, failed from an internal site 

whose nature was not identified.  The cracking transitioned into a crystallographic mode more 

quickly than for the 200 Hz specimen, and the majority of the fracture surface was covered by 

<111> facets.  Figure O8 shows these facets, as well as the initial development of a pattern of 

uniformly spaced surface cracks.  The time of this test, 2.2 hr, is less than that of the 200 Hz test 

(10 hr) so the oxidation-driven surface cracking had not developed yet. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure O7. Fracture surface of high stress 900 Hz specimen (7.2 x106  
cycles, 2.2 hr life) showing internal origin (black arrow),  
and transition to crystallographic cracking. 

 

111 facets 
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Figure O8.  Surface of high stress 900 Hz specimen (7.2 x106 cycles, 2.2 hr life) showing 

internal origin (black arrow), and early development of regular surface cracks. 
 

 

The lower stress, longer life 900 Hz specimen showed a surface origin, Figure O9, like 

the 200 Hz specimen, and extensive surface oxidation, Figure O10.  The heavy surface oxide 

obscured a pattern of regular, 130 µm spaced cracks extending in from the surface, Figure O11, 

with appearance similar to that of Figures O5 and O6. 
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Figure O9. Fracture surface of low stress 900 Hz specimen (58.6 x106 cycles, 18.1 hr) 

showing surface origin (arrow), and transition to crystallographic cracking. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure O10.  Fracture surface of low stress 900 Hz specimen (58.6 x106 
cycles, 18.1 hr) showing surface origin (arrow), and heavy, 
cracked surface oxidation. 

111 
facets 
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Figure O11.  Metallographic section of low stress 900 Hz specimen (58.6 x106  
cycles, 18.1 hr) showing regular pattern of cracks extending from  
surface oxidation. 

 

O.3.2  HCF-Rupture Interactions 

Creep rupture testing of uncoated PWA 1484 was performed at 1900F to define the 

time-dependent component of failure.  Creep-rupture tests were performed on <001> oriented 

specimens of the type shown in Figure 4.76 (see Section 4.3.1.1B) at 25, 30 and 35 ksi, with 

results shown in Figure O12.  Creep curve shape was typical for single crystal superalloys at 

high temperature: small amounts of primary creep followed by a long period of increasing creep 

rate to failure.  The times to failure at a given stress were shorter than expected for PWA 1484; 

this may have been from the relatively coarse microstructure of the large castings (6” x 3” x 

5/8”) from which these specimens were made. 

Tests with combinations of HCF and rupture damage were also performed on uncoated 

PWA 1484 with <001> orientation.  The results of these are shown in Table O2.  Tests with only 

HCF at R = -1, 59 Hz (A2LR2-3), tests with only rupture (A2LLG-2, -3, and –4), and tests with 

fractional exposures in rupture followed by HCF at R = -1, 59 Hz (A2LLP-, A2LLS-, and 

A2LLT- specimens) were performed.  Attention was focused on one stress level, 35 ksi.  Figure 

O13 shows that prior exposure in stress rupture decreased the HCF capability in a nearly linear 

fashion when based on percent time exposure.  The only exception was one test after 80% 

rupture life exposure (A2LLT-2) which showed less reduction in HCF life than the others.  

However, a companion specimen (A2LLT-3) followed the trend, so A2LLT-s’s behavior must be 

1.0 mm mmmmmmmmm 

Longitudinal polish, 
average crack spacing = 130 µm
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regarded as unusual.  Figure O13 shows that there is a strong interaction between HCF and 

rupture at 1900F for uncoated PWA 1484, and that a damage law of the form: Dr (rupture 

damage) + Df (fatigue damage) = Dtot (total damage) is appropriate. 

 

 
Figure O12.  Creep behavior of <001> PWA 1484 at 1900F. 
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Table O2. 1900F Uncoated PWA 1484 HCF/Rupture Interaction Tests 

 1st  (Rupture) leg 2nd (59 hz HCF) leg 
S/N Stress hrs result R alt stress Nf 
A2LLA-2 - - - -1 40 11,225,134 
A2LLA-4 - - - -1 35 12,014,373 
A2LLB-2 - - - -1 45 4,927,212 
A2LLB-4 - - - -1 35 17,408,933 
A2LLC-2 - - - -1 35 21,437,295 
A2LR2-3 - - - -1 35 17,581,215 
A2LLP-4 35 18.75 to 2nd leg -1 35 3,759,937 
A2LLS-2 35 18.75 to 2nd leg -1 35 5,135,918 
A2LLS-4 35 12 to 2nd leg -1 35 7,924,504 
A2LLS-3 35 12 to 2nd leg -1 35 6,967,535 
A2LLP-4 35 18.75 to 2nd leg -1 35 3,759,937 
A2LLS-2 35 18.75 to 2nd leg -1 35 5,135,918 
A2LLT-2 35 24 to 2nd leg -1 35 7,158,154 
A2LLT-3 35 24 to 2nd leg -1 35 2,353,050 
A2LLH-2 35 12 removed - - - 
A2LLH-4 35 12 removed - - - 
A2LLP-2 35 18.75 removed - - - 
A2LLH-3 35 24 removed - - - 
A2LLF-4 35 24 removed - - - 
A2LLG-2 35 31.0 failed - - - 
A2LLG-3 35 33.4  failed - - - 
A2LLG-4 35 25.4  failed - - - 
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Figure O13.  Effect of rupture exposure on PWA 1484 HCF at 1900F/35 ksi. 

 

In addition, some tests with only rupture exposure (A2LLH-2,3,4, A2LLP-2, and 

A2LLF-4) were terminated prior to rupture to determine if precursor signs of damage could be 

detected.  It was theorized that the prior rupture exposure might be generating small internal 

voids that would serve as HCF crack initiation sites.  However, metallographic and SEM 

examination of polished cross sections from the gage sections did not reveal any voiding or other 

signs of internal damage that might explain the effect of prior rupture exposure on HCF.  If 

voiding is occurring, it is on a much smaller scale than observable by these techniques.  It is also 

possible that the oxidation occurring during the rupture exposure would pre-dispose the 

specimen surface to earlier HCF crack initiation, but no unstressed pre-exposures were 

performed to test this idea. 
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APPENDIX P 

REVIEW OF ANISOTROPIC ELASTICITY 

 

 Due to the elastic anisotropy of single crystal materials, the calculation of Stress 

Intensity Factors (SIFs) is somewhat more complex than for isotropic materials, and the SIF 

solutions may differ.  The present study was undertaken to evaluate the significance of this 

difference. 

 The 3D deformation of an anisotropic or generally oriented orthotropic material can 

be described in terms of 21 elastic constants Aij 
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 The 2D anisotropic solution utilized herein [1] is only valid if the plane normal to 

the crack front is a plane of elastic symmetry1.   In this case, 
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 For 2D mode I/II fracture analyses, only those terms describing the in-plane 

response are considered. 
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1 A more complete solution, valid for general crystalline orientations has been given more recently by Hoenig 
[2], but is not treated here. 
 



P-2 

 In order to analyze cracks with this level of generality, we will first consider a more 

restricted problem where the 2D principal elastic axes are aligned with x and y.  In this case, 

A16 and A26 also vanish and the remaining terms can be given in terms of the engineering 

elastic constants.  For plane stress, 

 

 
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡ −

=

G
sym

E

EE

A

1

01

01

2

1

12

1

ν

 (P4) 

 
 For plane strain, the applicable elastic constants can be obtained by 

  
 A’ij = Aij - (Ai3 Aj3/A33)   [i=1,2,6].   (P5) 
 
 (In the following, primed notation will be omitted, with the understanding that the 

applicable constants will be used for plane stress or plane strain).  The stress for a crack in a 

2D anisotropic material (Figure P1) with the restrictions described above can be written as. 
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 θµθ sincos iib += i = 1,2  (P6) 
 
and µ1 and µ2 are the two roots with positive imaginary parts from 
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 Equations (P6) through (P7) are applicable to the more general case of (P3).  

However, for the more restricted case of (P4), two terms drop out, and Equation (P7) can be 

solved by the quadratic formula to obtain 
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 For an orthotropic laminate with the x (crack) axis oriented at angle β to the 

principal material axis (as shown in Figure P1), it has been shown [3] that µ1 and µ2 can be 

obtained from µ1
o and µ2

o by 

 
βµβ
ββµ

µ
sincos
sincos

o
i

o
i

i
+

−
=  (P9) 

 

 
 

T 

β

r 

x 

y σx 
σy 

θ 

σxy 

1

2

x

y

 
Figure P1.  Crack tip coordinate system (x-y) rotated from principal  

orthotropic material axes (1-2). 
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APPENDIX Q 

FRACTURE RESISTANCE ORTHOTROPY IN TWO DIMENSIONS 
 

Q.1  FRACTURE RESISTANCE ORTHOTROPY IN TWO DIMENSIONS 

 In general, materials may exhibit elastic anisotropy as well as anisotropy in fracture 

resistance.   Monocrystalline materials can exhibit both, while other materials, such as wrought 

metal products, are virtually isotropic elastically, but may have a preferred direction of (mode I) 

crack propagation resulting from the manner in which the material is processed.  In either case, 

the processing and/or crystalline structure is often of symmetric character, and the two-

dimensional relation describing the crack growth resistance as a function of orientation can be 

considered to have two (perpendicular) axes of symmetry.  This special case is referred to 

hereafter as two-dimensional fracture resistance orthotropy, and will be the focus of the present 

discussion.  Following the work of Buczek and Herakovich [1], the fracture resistance relation 

must: 

1. Be independent of orientation for an isotropic material. 
 

2. Return the principal fracture resistances for cracks in the corresponding principal 
orientations. 

 
3. Be symmetric about the principle material axes. 
 
Expressing the orientation of the crack in two-dimensions as the angle, θ  measured 

from a principal material axis, Chen [2] gave an expression that satisfies the criteria given above 
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where, n is a constant exponent available as a fitting parameter.  Kp is taken to represent the 

stress intensity at which the crack propagates.  It is proposed [3], that Kp is a material-dependent 

function of the orientation of the crack tip consistent with the regime of crack growth.  Thus, for 

fatigue crack growth, Kp represents the stress intensity at which the crack propagates at a given 

rate; for stable tearing, Kp represents the fracture toughness.  For the present study, we are 
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interested in threshold fatigue crack growth (the stress intensity at which the crack growth rate 

approaches zero). 

 In the context of a maximum stress theory, Buczek and Herakovich suggested a fracture 

orthotropy relation equivalent to setting n = (-1).  Kfouri [4] used the more familiar form of an 

ellipse (n = 2).  For moderate orthotropy ratios (0.7 ≤ Kp(90°)/Kp(0°) ≤ 1.5) representative of a 

wide variety of engineering materials, exponents within this range produce a nearly identical 

oblong shape in polar coordinates as illustrated in Figure Q1. 
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r =Kp(θ) 
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Figure Q1.   Polar plots of crack growth resistance function (Equation Q1) given by 
Chen [2] with various values of the fitting parameter, n. 
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 A drawback of this function is that the if Kp(90°) = Kp(0°), the function becomes 

isotropic (circular) independent of the fitting parameter.  Particularly for monocrystalline 

materials, it seems plausible that this condition may be too restrictive.  A modified form of the 

crack growth resistance function is thus suggested [5] 
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 This function is plotted for an orthotropy ratio of 1.5 and various values of n in Figure 

Q2.  Note that to obtain the isotropic condition, the principal fracture resistance values must be 

equal and the fitting exponent must be unity.  Other values of n produce shapes ranging from a 

star as n 0 to a rectangle as n ∞.  Note also that Equation (Q1) with n = 2 is identical to 

Equation (Q2) with n = 1. 
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Figure Q2.  Polar plots of modified crack growth resistance function (Equation Q2)  
with various values of the fitting parameter, n. 
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Q.2  EXTENSION TO THREE DIMENSIONS 

 In a three-dimensional body a crack may be non-planar, and oriented arbitrarily.  At any 

point along the crack front in an orthotropic material, however, we can characterize the local 

orientation in terms of the crack tangent plane (defined by its normal), and the direction of crack 

propagation within that plane (see Figure Q3), defined relative to the principal axes of the 

material.  

 Materials such as a rolled or extruded plate, or cubic monocrystalline materials may be 

considered to have three orthogonal planes of symmetry.  Within each of these planes there are 

thus two orthogonal axes of symmetry.  This results in six principal fracture resistance values. 

The material is assumed to be homogeneous, thus the toughness for a given orientation relative 

to these principal planes is invariant with regard to translation.   
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Developing Crack at 

Crack Front

Crack 
Front 

 
 

Figure Q3.  Geometry of crack orientation at a point on an arbitrary crack front. 
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Following the convention established for wrought metals [6], the principle values of 

fracture resistance are written in a two-letter code (i-j) where the first letter refers to the principle 

axis normal to the crack plane, and the second subscript identifies the principle axis 

corresponding to the direction of propagation.  The standard principal axes for rectangular 

products (plate, extrusion and forging) correspond to the longitudinal grain orientation (L), the 

long transverse grain orientation (T), and the short transverse grain orientation (S).  Thus, a crack 

growing normal to the width in the rolling direction of a plate corresponds to the T-L orientation.  

The (mode I) fracture resistance in this direction we shall designate as KTL.  For convenience and 

generality, we will use numeric subscripts (1,2,3) in place of the metallurgical (L, T, S).  The six 

principal fracture resistances are thus K12, K21, K23, K32, K13, and K31.  For cubic monocrystalline 

materials, we further associate the (x1,x2,x3) axes with the crystallographic (<100>, 

<010>,<001>) axes. 

 What is needed is a function to interpolate the fracture resistance for any arbitrary 

orientation in terms of the principal values.  As illustrated in Figure Q3, a crack (or a point on an 

arbitrary crack front) may propagate in an arbitrary direction defined by unit vector 

 
 a = a1i + a2j + a3k  (Q3) 
 
where, i, j, and k are unit vectors corresponding to the principal material axes x1, x2, and x3.  

Vector a lies within a plane tangent to the developing crack surface at the crack front, which 

plane is uniquely described by its unit normal vector 

 
n = n1i + n2j + n3k  (Q4) 

 

 The crack orientation is uniquely defined by the direction cosines ni and ai.  The 

interpolation function to determine the fracture resistance for this orientation must meet the 

requirements of Buczek and Herakovich as previously discussed.  Presumably such a function 

must revert to a two-dimensional form similar to Equations (Q1) or (Q2).  Pettit [7] developed 

the following three-dimensional relationship based on the two-dimensional form of Equation 

(Q1) assuming n = -1. 
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The fracture resistance components corresponding to the trace of a in each of the principal planes 

(as illustrated in Figure Q4) are given by 

 

K1(a) = 1
1− a1

2 K12a2
2 + K13a3

2( )

K2(a) =
1

1 − a2
2 K23a3

2 + K21a1
2( )

K3(a) =
1

1− a3
2 K31a1

2 + K32a2
2( )

 (Q5) 

from which the fracture resistance in an arbitrary orientation is given by 
 
 2

33
2

22
2

11),( nKnKnKK p ++=an  (Q6) 
 
 Equations (Q5 and Q6) are an attempt to satisfy the outlined requirements with the 

simplest formulation possible. 

 Preliminary attempts to fit single-crystal PWA 1484 mode I threshold crack growth data 

to Equations (Q5 and Q6) showed the need for additional fitting parameters to obtain an 

acceptable fit.  This motivated development of a three-dimensional interpolating function based 

on the two-dimensional form of Equation (Q2). 

 Following [7], the angles (using right hand rule) describing the trace of a on the 

principle planes are given by 

 

 tan(θ1) =
a3

a2
tan(θ2) =

a1

a3
tan(θ3) =

a2

a1
 (Q7) 

 
where, the angle subscript refers to the axis normal to the principal plane. 
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Figure Q4.  Principal orthotropic components of crack growth resistance for crack 
growth parallel to unit vector a. 

 
 
 The fracture resistance of a crack, were it to lie in a principal plane normal to axis xk 

and propagate in the direction of the corresponding trace defined in (Q7), can be interpolated in 

two dimensions in a manner analogous to Equation (Q2)1 
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Further observing the trigonometric identity  
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 (Q9) 

                                                 
1 In the three-dimensional form, two fitting exponents will be used, m for in-plane rotations, and n for out of plane 
rotations of the crack orientation relative to principal orientations. 
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and the property of direction cosines 
 
 a1

2 + a2
2 + a3

2 =1 (Q10) 
 
we can combine to write 
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 In this case, the Ki may be considered as the fracture resistance components of a in the 

principal planes corresponding to the two-dimensional form of Equation (Q2).  In order to obtain 

the fracture resistance for a general orientation, these must be combined in some sort of weighted 

average based on the orientation of the normal vector, n, similar to Equation (Q6).  The use of 

(Q6), however, is unacceptable, because it does not revert to the form Equation (Q2) for 

interpolation between any two principal fracture planes when the fracture resistance component 

in the third plane is zero.  In order for the fracture resistance relation to degenerate properly, the 

expression for the fracture resistance must be of the form 
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where, the Ki are given by Equation (Q11). 

 One last observation pertaining to the application of interest is that single crystal 

materials are fabricated by a casting process, with solidification and dendrite growth proceeding 

in the <001> direction.  While the elastic properties are virtually identical along all three 

principal axes, inelastic response to load oriented along the <001> axis may differ from the 

<100> and <010> axes.  Nevertheless, these secondary axes would be expected to behave in like  
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manner to each other (the dendrite symmetry is often compared to a “bundle of pencils” oriented 

along the <001>).  We can thus conclude from the process symmetry that  
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KK

=
=
=

 (Q13) 

 
 Thus, for a given single crystal material state, only three unique principal fracture 

resistance values are needed to characterize the fracture resistance in three dimensions (in 

practice, more are needed to determine fitting exponents m and n).  

 
Q.3  SPECIFICATION/DETERMINATION OF THE CRACK ORIENTATION 

 Inasmuch as fracture resistance is sensitive to material orientation, the test program 

must include fracture threshold values obtained from test specimens of various specified crack 

orientations.  Two methods of specifying nominal crack orientations will be discussed.  A second 

issue, however, is that due to manufacturing tolerances on the crystalline orientation within a 

specimen, fracture threshold values obtained from test specimens are affected by deviations from 

the intended specimen orientation.  A method of correcting for crystalline misalignment will also 

be given. 

 For test specimens, the crack orientation is usually specified using crystalline indices.   

The components of the unit vectors (n,a) denoting the desired crack orientation can be directly 

inferred from the indices, as given in several examples are given in Table Q1. 
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Table Q1.  Unit Vector Components Corresponding to Various Crystallographic  
 Crack Orientations 
 

Crystallographic Orientation n a 

<001/010>  (0,0,1) (0,1,0) 
<0-11/011> (0,

2
1− ,

2
1 ) (0,

2
1 ,

2
1 ) 

<001/110> (0,0,1) (
2

1 ,
2

1 ,0) 

<-1-11/112> (
3

1− ,
3

1− ,
3

1 ) (
6

1 ,
6

1 ,
6

2 ) 

 

 In other situations, it is sometimes convenient to express the components of the vectors 

(n,a) in terms of a series of rotations imposed upon a crack starting from a standard orientation.  

For the present study, we will assume a reference crack orientation corresponding to K21, or 

<010/100> in crystallographic notation.  That is, the reference plane of the crack is normal to the  

<010> axis, with crack propagation directed (normal to the crack front) along the <100> axis.  

The crack is rotated from this standard position to represent an arbitrary orientation as shown in 

Figure Q5.  

 The components of unit vectors n = y, and a = x are given in terms of the rotation 

angles by 
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Figure Q5.   System of rotations for defining arbitrary crack orientation in 

crystallographic coordinates 
 

 The above methods are typically used to specify the intended crack orientation.  In 

actuality, this may deviate from the true crack orientation in the crystal because the material 

coordinates are typically misaligned somewhat relative to the specimen geometry.  In order to 

use actual crystalline orientation data in the reduction of the threshold test data, it is necessary to 

determine the actual crack normal and tangential vectors (n,a) in crystalline coordinates based on 

Laue data.  An illustration of these vectors is shown in Figure Q3 at a point on an arbitrary crack 

front.  For the purpose of reducing specimen test data, the crack front is assumed to be straight, 

thus (n,a) are assumed constant along the crack front. 

 In many cases, Laue information for individual specimens described was not available, 

and actual specimen orientation is estimated from (Honeywell) Laue results obtained for the 

casting from which the specimen was cut, as well as the cutout orientation specified.  The details 
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of the transformations required to obtain the crack orientation unit vectors (n,a) in 

crystallographic coordinates are as follows (if actual specimen data is available, “specimen” may 

be substituted for “casting” in the discussion below). 

 Denoting the basis of the vector space in casting coordinates (the coordinate system 

resulting if all the casting Laue angles were zero) as  
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and in crystallographic coordinates (for non-zero Laue angles) as  
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A transformation matrix B exists such that  

 Bee =  (Q19) 
For Laue angles defined as shown in Figure Q6, B is given by 
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where, 
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for a crack with normal n, and trajectory a in casting coordinates (based on the specimen cutout 

orientation specified), we obtain n  and a  in crystallographic coordinates by the inverse 

transpose transformation 
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Figure Q6.  Laue angles describing rotation from casting basis to crystallographic basis. 
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APPENDIX R 

MIXED-MODE FATIGUE CRACK GROWTH IN SINGLE  
CRYSTAL Ni-ALLOYS 

Fatigue crack growth (FCG) in Ni-based single crystals can occur on 

crystallographic or transprecipitate noncrystallographic (TPNC) planes, depending on 

temperature, stress state, crystal orientation, and stress intensity range.  Near the fatigue 

threshold, fatigue crack growth occurs by propagation of a Mode I crack in the γ matrix.  At 

higher stress intensity ranges, fatigue crack growth tends to occur by propagation of mixed-

mode cracks on octahedral (111) planes either on the microscopic or macroscopic scale.  

Differences in the fatigue failure processes lead to different fatigue crack growth responses, 

particularly in the near threshold regime.  Identifying the regime where these various fatigue 

failure processes occur is an important first step in developing fracture mechanics methods to 

treat crack growth in single crystal materials since these processes control, among other 

things, the cracking mode and resulting threshold stress intensity factors. 

The transition of a mixed-mode (111) crack to a Mode I crack occurs by a thermally 

activated process.  This was first demonstrated by Leverant and Gell [1] for low-cycle fatigue 

of Mar-M200 single crystals.  The fatigue crack growth mode transition and the 

corresponding strain rate and frequency effects [1, 2] have been attributed to a change of slip 

character from heterogeneous planar (111) slip at high strain rates and low temperatures to 

homogeneous, wavy slip at slow strain rates and high temperatures.  Similar fatigue crack 

growth mode transitions have also been reported for other single crystal alloys, 

including PWA 1480 [3-6], PWA 1484 [3-6], and Rene N4 [7].  Currently, there are no 

methods for quantitatively treating mixed-mode fatigue crack growth and fatigue crack 

growth mode transitions in Ni-based single crystal alloys. 

The objective of this task was to develop a methodology for treating the effects of 

stress state, frequency, crystal orientation, and temperature on the near threshold FCG 

response of PWA 1484 single crystals subjected to high cycle fatigue.  An integrated 

analytical and experimental approach was used to achieve this objective.  The analytical 

efforts included stress intensity factor computation for cracks in single crystal 
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alloy PWA 1484, mapping of fatigue crack growth modes, and model development.  The 

analytical efforts were linked to an experimental program to determine the mixed-mode 

fatigue crack growth threshold of PWA 1484 as a function of stress state and crystal 

orientation.  Mixed-mode fatigue crack growth on (010) and (111) planes was characterized 

at 1100°F using an asymmetric four-point bend (AFPB) test technique.  Stress intensity 

solutions of these crack geometries in PWA 1484 were obtained using a BIE fracture 

mechanics code, [8], and an FEM code, FRANC2D/L [9] for anisotropic materials.  The 

influence of mode mixity on the FCG threshold of PWA 1484 was determined as a function 

of stress state ranging from pure Mode I to pure Mode II.  Both the analytical and 

experimental results were used to develop a fracture mechanics approach for treating high-

cycle, mixed-mode fatigue crack growth in single crystal blade material. 

R.1 ANALYTICAL 

Anisotropic fracture mechanics codes were utilized to compute the stress intensity 

factors for mixed-mode cracks in PWA 1484.  Two crack specimens were considered, which 

included single-edge notched specimens and asymmetric four-point bend (AFPB) specimens.  

These results were used to establish:  (1) the range of mode mixity that could be achieved as 

a function of crack length/specimen width ratio, and (2) the applicability of isotropic K 

solutions to PWA 1484.  After a comparison of the K solutions, the AFPB crack specimen 

was chosen for the mixed-mode crack growth threshold tests because the entire range of 

mode mixity (pure Mode I to pure Mode II) could be attained in the crack geometry. 

R.1.1  Stress Intensity Factor Computation 

R.1.1.1 Single-Edge-Notched Specimen 

Stress intensity factor (K) solutions for mixed-mode cracks for single edge 

notched (SEN) specimens were computed using the BIECRX code [8].  New K solutions 

were obtained for angled cracks at 22.5°, 45°, 60°, and 67.5° to the loading axis.  The crack 

configurations for two 45° cracks at different crystallographic orientations are illustrated in 

Figures R1 and R2.  As shown in Figure R1, α and β are the angles the X-axis makes with 

the <E11> direction and X′-axis (the crack), respectively, where E11 is a principal direction of 

the elastic properties.  The KI and KII solutions for a mixed-mode crack in isotropic materials 
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and in PWA 1484 single crystals for {111} and {010} cracks are compared in normalized 

form in Figure R3.  Also shown in Figure R3 are the published isotropic solutions for a 45° 

crack in a semi-infinite plate [10, 11] and in a finite-width specimen [12, 13].  There is good 

agreement between the BIECRX solutions and the more-limited published results.  

Comparison of the BIECRX solutions for isotropic and single crystal materials indicates only 

small differences, which increase with increasing a/W, as shown in Figure R3.  The 

Mode I, FI, and Mode II, FII, boundary correction factors were obtained by fitting the K 

solutions for isotropic materials to 3rd-order polynomial equations, leading to 

aFK NII πσ=   (R1) 

and 

aFK NIIII πσ=   (R2) 

where 

( ) ( ) ( )32 8710.35056.18962.06649.0 WaWaWaFI +−+=  (R3) 

( ) ( ) ( )32 16.14317.03970.03697.0 WaWaWaFII +−−=  (R4) 

where a is crack depth, W is specimen width, and σN is the nominal stress.  The agreement is 

exceptionally good for a/W less than 0.6.  Elastic anisotropy and finite width geometry 

influence the K solutions only for deep cracks (a/W > 0.7).  Figure R4 presents the BIECRX 

results of KII/KI and the phase angle, φ = arctan (KII/KI), as a function of a/W.  It shows that 

the mode mixity ratio, KII/KI, and the phase angle, φ, decrease slightly with increasing a/W. 
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Figure R1. Proposed SEN specimen with a 45° angled crack for studying fatigue crack 
growth on the {010} plane in the <100> direction under mixed-mode loading. 

Figure R2. Proposed SEN specimen with a 45° angled crack for studying fatigue crack 
growth on the {111} plane in the <211> direction under mixed-mode loading. 

Y, <110>

X', <
10

0>

Y', <
01

0>

{01
0} 

Crac
k X, <110>

-

E 11

E
22

α X

Y

X

Y

β
Crac

k
X'

Y'

W 

a

X, 10°off <011>
~near <133>

Y, 10° off <010>
~near <711>

X', <
21

1>

Y', <
11

1>

{11
1} 

Crac
k

W 

a



 R-5

Figure R3. Normalized stress intensity factors as a function of crack depth, a, normalized 
by specimen width, W, for a SEN specimen with a 45º angled crack subjected 
to a remote tension, σN.  BIECRX results are in agreement with literature 
solutions for semi-finite [10, 11] and finite-width plates [12]. 

Figure R4. The mode-mixity ratio, KII/KI, and the phase angle, φ = tan-1 (KII/KI), as a 
function of a/W for a SEN specimen with a 45º angled crack. 
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Additional K solutions were also obtained for 22.5, 60, and 67.5° angled cracks 

in SEN specimens.  Figure R5 illustrates that the BIECRX K solutions are in agreement with 

published results [12,13] for various angled cracks in isotropic materials, ranging 

from 0°, 22.5°, 45°, and 60° for a/W from 0.1 to 0.7.  There are no published solutions 

for a/W > 0.7.  Fourth order polynomial expressions were used to fit both the BIECRX and 

published data [12,13]. 
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(b) 

Figure R5. Boundary correction factors as a function of crack angle, β, specimen with an 
angled crack:  a) Mode I, and b) Mode II.  BIECRX results are in agreement 
with literature solutions for a finite-width plate [12,13]. 
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R.1.1.2 Asymmetric Four-Point-Bend (AFPB) Crack Specimen 

Stress intensity solutions of the AFPB crack specimens were obtained for isotropic 

materials and PWA 1484 single crystals.  The BIE mesh for these K calculations is presented 

in Figure R6.  Pin loading was simulated by applying a distributed normal force, Ty, on three 

boundary segments, while imposing Tx = 0 in the horizontal (x) direction.  The size of these 

three boundary segments were made very small, such that the distributed force essentially 

acted as a point load.  The displacements of a small segment located at the lower left of the 

specimen were prescribed; the vertical (uy) and horizontal (ux) displacements of the left node 

of this boundary segment were maintained to be zero, while only uy = 0 was maintained at 

the right node of this boundary segment.  Reaction force at this boundary segment was 

computed based on load equilibrium. 

Tx=0
Ty=b2P/(b1+b2)t

Tx=0
Ty=b1P/(b1+b2)t

ux=0
uy=0

uy=0

c

a

X, E11

Y, E22
X'

Y'

b1 b2

t

W
Tx=0
Ty=b2P/(b1+b2)t

 

Figure R6. BIE mesh for the AFPB crack specimen showing the offset distance, c, of the 
crack from the symmetry line, crack depth, a, and the specimen width, W for 
an isotropic material. 

For this crack geometry and these specimen dimensions, the important parameters 

are the offset distance, c, and the crack depth a.  Both c and a influence the mode mixity as 

well as the values of KI and KII.  The K solutions were, therefore, generated as a function of 

a/W and c/W.  The normalized stress intensity factor solutions for isotropic materials are 

plotted as a function of the normalized crack depth, a/W, in Figures R7, R8, and R9 for c/W 

values of 0, 0.1, and 0.2, respectively.  The case of c/W = 0 corresponds to pure Mode II.  
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The amount of Mode I component increases with increasing values of the c/W ratio.  The 

expressions for the normalized stress intensity factors are 

( )WaF
W
c

a
W

q
K

I
I /

6 ⎟
⎠
⎞

⎜
⎝
⎛=

⎥⎦
⎤

⎢⎣
⎡ π

 (R5) 

( )
( )

( )WaF

WaW
Waq

K
II

II /

/1
/ 5.1

=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−

 (R6) 

 

which are based on the reference solutions in terms of the load, P, per thickness, from the 

paper by He and Hutchinson [14].  Expressions for the shear force, q, and the boundary 

correction factors, FI (a/W) and FII (a/W), are as follows: 

( )
21

12

bb
bbPq

+
−

=  (R7) 

( ) ( ) ( ) ( ) ( ) 543 )/(55.2205.19873.374.3121.1122.1 WaWaWaWaWaWaFI +−++−=

 

7.0≤Wafor   (R8) 

and 

( ) ( ) ( ) ( ) ( ) 1004.187.174.237.9264.7 432 ≤≤−++−= WaforWaWaWaWaWaFII

 (R9) 

The BIECRX results are in excellent agreement with the analytic solutions reported 

by He and Hutchinson [14], as shown in Figures R7 through R9. 
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Figure R7.  Normalized KI and KII as a function of a/W for isotropic material and an 
asymmetric four-point bend crack specimen with c/W = 0. 

 

Figure R8. Normalized KI and KII as a function of a/W for isotropic material and an 
asymmetric four-point bend crack specimen with c/W = 0.1. 
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Figure R9. Normalized KI and KII as a function of a/W for isotropic material and an 
asymmetric four-point bend crack specimen with c/W = 0.2. 
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(111) Crack
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Figure R10. A BIE mesh of the AFPB crack specimen showing the crack depth a, the 

offset distance c, the specimen width W, the crack coordinate 
system (X' - Y'), and the material coordinate (X-Y) system for an 
anisotropic material. 

 

Figure R11. Comparison of the anisotropic BIECRX solutions of stress intensity factors 
of an (111) crack subjected to pure shear (c/W = 0) and the analytical 
solutions of He and Hutchinson [14] based on isotropic beam theory. 
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Figure R12. Comparison of the anisotropic BIECRX solutions of stress intensity factors 
of an (111) crack subjected to mixed-mode loading (c/W = 0.3) and the 
analytical solutions of He and Hutchinson [14] based on isotropic beam 
theory. 
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isotropic materials obtained by He and Hutchinson using beam theory [14].  These results are 

presented in Figures R14 and R15, which indicate that both the KII/KI and the phase angle, φ, 

increase with a/W, reach a maximum, and then decrease with increasing a/W.  To maintain a 

relatively constant KII/KI or phase angle, the a/W needs to be limited to within a certain 

range.  For φ = 22.5-67.5°, it is required that 0.25 < a/W < 0.7. 

Figure R13. The mode-mixity ratio, KII/KI, and the phase angle, φ = tan-1 (KII/KI), as a 
function of a/W for the AFPB crack specimen. 

Figure R14. Mode mixity parameters, KII/KI, as a function of crack depth, a, normalized 
by specimen width, W, of the AFPB specimen for various c/W ratios, where 
c is the offset distance of the crack from the symmetry line in the AFPB 
fatigue fixture. 
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Figure R15. Phase angle, Ν = tan-1 (KII/KI), as a function of a/W for the AFPB crack 
specimen for various c/W ratios.  Dashed lines indicate selected phase 
angles used in the mixed-mode experiments. 
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Table R1.  Test Matrix for Subtask S.1.4.2.1 
 

Work Package Primary 
Orientation, Y 

Secondary 
Orientation, X 

Crack 
Plane, Y′

Growth 
Direction, X′

R T Freq., 
Hz 

Mixed Mode 
Phase Angle 

{arctan (KII/KI)} 

No. 
Tests Single Crystal Number Specimen 

Number 

Multiaxial Fatigue 
Crack Growth 
(Asy, Four Pt Bend) 

<010> 
<010> 
<111> 
<111> 

10° off <010>* 

<100> 
<110> 
<211> 
<110> 

10° off <011>** 

{010} 
{010} 
{111} 
<111> 
{111} 

<100> 
<110> 
<211> 
<110> 
<211> 

0.5 1100°F 20 

0, 22.5, 45, 60, 80, 90, 
0, 22.5, 45, 60, 80, 90 
0, 45, 60, 80, 90 
0, 22.5, 45, 60, 80, 90 
0, 45, 60, 80, 90 

6 
6 
5 
6 
5 

AL2KS #A, #B 
T20WK #1, #2, #3, #4 
T20×9 #1, #2, #3 
T20×9, #6, #7, #8, #9, #10, #11
T20WK #7, #8 

SC-1, SC-2, SC-3, SC-4 
SC-5, SC-6, SC-7, SC-8 
SC-9, SC-10, SC-11 
SC-13, SC-14, SC-15, SC-16, SC-17 
SC-19, SC-20 

* Near <711> 
** Near <133> 
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The crystallographic orientations were selected to promote (010) decohesion, (111) 

cracking, or the competition between (010) decohesion and (111) cracking.  As reported 

earlier [3, 4, 6], (010) decohesion was determined to be the primary fatigue mechanism in the 

near threshold regime of PWA 1480 and PWA 1484.  The other important fatigue 

mechanism is (111) crystallographic cracking, which occurs at lower temperatures and 

possibly higher frequencies.  The possible transition of (010) Mode I cracks to (111) 

crystallographic cracking was examined using single crystal specimens oriented at 10° off 

(010) for which a (111) plane was oriented at a 45° angle from both the loading direction and 

the initial Mode I notch 

R.2.1  Asymmetric Four-Point Bend Test Fixture 

A schematic of the AFPB test fixture is shown in Figure R16, which is a 

modification of the UC-Berkeley design [15] to accommodate elevated temperature testing.  

The entire fixture was fabricated from a single block of AD98 alumina, while the loading 

pins were fabricated from silicon carbide.  Dimensions of the AFPB crack specimen are 

shown in Figure R17.  Both testing and data acquisition are computer-controlled and fully 

automated.  A commercial computer software package made by Fracture Technology 

Associates was used to control the automated fatigue crack growth threshold testing.  Since 

the AFPB specimen was not part of the standard software package, stress intensity solutions 

for the AFPB crack specimen were coded and incorporated into the control software.  

Control of the test machine was based on the equivalent stress intensity factor, ∆Keq, defined 

as 

 

[ ] 2/12
ΙΙ

2
Ιeq ∆Κ∆Κ∆Κ +=  (R10) 

 

where ∆KI and ∆KII are the Mode I and Mode II stress intensity factor ranges, respectively.  

A clam-shell furnace with resistance heating was used to provide the high temperature 

capability for the AFPB test fixture.  Figure R18 shows the set-up of the AFPB test fixture 

for high-temperature fatigue crack growth threshold testing. 
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Figure R16. Schematic of the high-temperature asymmetric four-point bend fatigue test 
fixture designed at SwRI®. 

 

 

 
Figure R17. Dimensions of the AFPB crack specimen for mixed-mode fatigue crack 

growth testing of PWA 1484 at elevated temperature.  All dimensions in 
inches. 

 

 

.150
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Figure R18. Set-up of the high-temperature asymmetric four-point bend test fixture for 

mixed-mode fatigue crack growth studies developed at SwRI. 

 

R.2.2 Stress Intensity Factors 

The procedure for computing the stress intensity factors of mixed-mode fatigue 

cracks in single crystals PWA 1484 during asymmetric four-point bend (AFPB) fatigue 

testing is summarized in this section.  Two different procedures were used to compute the 

stress intensity factors of mixed-mode cracks in PWA 1484:  (1) for straight self-similar 

cracks, and (2) for deflected or kinked cracks.  The first procedure was used during fatigue 

threshold testing since crack deflection could not be predicted prior to testing or corrected 

during testing.  The second procedure was applied to deflected cracks in post-test data 

analysis after the crack deflection angle had been determined. 

R.2.2.1 Self-Similar Cracks 

This K computation methodology is applicable to straight mixed-mode cracks that 

exhibit self-similar crack growth along the original crack plane.  In this circumstance, the 

measured crack lengths are the actual crack lengths.  The computed stress intensity factor 

ranges and the fatigue crack growth rates represent the actual crack driving force and the 

growth resistance of the material.  Self-similar crack growth has been observed in PWA 1484 

for certain crystal orientations and loading conditions. 
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For most crystal orientations and loading conditions studied, mixed-mode cracks in 

PWA 1484 are non-straight and propagate in a non-self-similar manner.  Even though these 

cracks were not self-similar after deflection, the methodology outlined here was used because 

the crack measurement technique, which was a potential drop technique, measured the 

projected crack length when a crack deflects.  In addition, it was not feasible to compute the 

stress intensity factors of deflected cracks during testing because the crack deflection angle 

could not be determined until after the test had been completed.  Although this methodology 

did not give the correct local stress intensity ranges and fatigue crack growth rates for 

deflected cracks during testing, these calculations were needed during the test to perform the 

decreasing-K test procedure.  Post-testing data analyses after the crack deflection angle had 

been measured were subsequently used to compute the local stress intensity factors for 

deflected cracks. 

Figure R19 shows the geometry of the AFPB test specimen subjected to a cyclic 

load, ∆P.  The width of the specimen is W and its thickness is B.  The offset distance of the 

crack measured from the symmetry plane of the loading configuration is designated as c, 

while the initial crack length after Mode I fatigue precracking is ai.  Under mixed-mode 

fatigue loading, the fatigue crack deflects to propagate at an inclined angle, θ, measured from 

the reference axis X, as shown in Figure R20.  The projected crack length, ap, is calculated as 

θcosKip aaa +=  (R11) 

while the actual crack length, a, is computed as 

Ki aaa +=  (R12) 

where aK is the actual length of the kinked crack. 

The mixed-mode fatigue crack growth threshold tests were performed by applying 

the cyclic load, ∆P, under a constant stress ratio, R = Pmin/Pmax, where Pmax is the maximum 

load and Pmin is the minimum load.  The crack lengths were measured using a potential drop 

technique that measures the projected crack length, denoted as ap in Figures R19 and R20, 

when crack growth is not self-similar.  Both the crack growth rates and the stress intensity 

factors were computed based on the projected crack length, ap.  Since the K solutions 

generated for anisotropic materials using an  
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anisotropic fracture mechanics code (BIECRX [8]) are in agreement with analytical solutions 

for isotropic materials [14], the Mode I and II stress intensity ranges were computed using 

the analytical equations for isotropic materials, which are given by [14] 
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⎠
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( ) ( ) ( ) ( ) ( )432 05.19873.374.3121.1122.1 WaWaWaWaWaF pppppI −++−=  

( ) 7.055.22 5 ≤+ WaforWa pp  (R16) 

and 

 
( ) ( ) ( ) ( ) ( )432 04.187.174.237.9264.7 WaWaWaWaWaF pppppII −++−=

 
10 ≤≤ Wafor p  (R17) 

An equivalent stress intensity factor, ∆Keq, defined on the basis of the elastic energy release 

rate range, ∆G, can be expressed as 

[ ] 2/12
ΙΙ

2
Ιeq ∆Κ∆Κ∆Κ +=  (R18) 

where ∆KI and ∆KII are the Mode I and Mode II stress intensity factor ranges, respectively.  

The corresponding load ratio, R, is given by 

max,

min,

max

min

I

I

K
K

P
PR ==  (R19) 
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where KI,min and KI,max are the minimum and maximum values of the Mode I stress intensity 

factors, respectively.  The phase angle, φ, that indicates the mode mixity is computed as 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∆
∆

= −

I

II

K
K1tanφ  (R20) 

where ∆KI and ∆KII are given in Equations (R3) and (R14). 
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Figure R19. Geometry of the AFPB crack specimen with a deflected crack subjected to 

mixed-mode loading. 
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Figure R20. Nomenclature of a deflected mixed-mode crack with a projected length, a, 

and a crack angle, θ , measured from the x-axis. 
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The above methodology is limited to mixed-mode cracks that remain straight and 

exhibit self-similar crack growth along the existing crack plane (θ = 0).  In this situation, the 

measured crack lengths are the actual crack lengths.  The computed stress intensity factor 

ranges and the fatigue crack growth rates represent the actual crack driving force and the 

crack growth resistance of the material.  However, neither is true when the fatigue crack 

deflects to propagate on an inclined plane (θ > 0).  Under non-self-similar crack growth, the 

crack length measured by the potential drop technique corresponds only to the projected 

crack length.  The stress intensity factor ranges that were used to compute the projected crack 

length were not the local values at the crack tip since they did not take into account the 

deflected crack path.  The methodology for computing the stress intensity factors of deflected 

cracks along the experimentally observed crack path is described in the next section. 

R.2.2.2 Deflected or Kinked Cracks 

Mixed-mode fatigue cracks in PWA 1484 tested at 1100°F often deflect from the 

original crack path and do not propagate in a self-similar manner.  To better characterize the 

local crack driving force, the stress intensity factors of individual deflected cracks in PWA 

1484 mixed-mode specimens were computed using the finite-element code FRANC2D/L [9].  

The computations were first done for a crack path normal to the maximum principal tensile 

stress, which corresponds to the local Mode I direction.  Additional computations were also 

performed for specimens whose crack paths deviated from the maximum principal tensile 

stress direction. 

Figure R21 shows the FE mesh for computing the K solutions of a mixed-mode 

crack deflected to propagate normal to the local maximum principal tensile stress.  Individual 

mixed-mode AFPB test specimens were modeled using the experimentally determined crack 

length and offset distance so that the calculated and measured crack paths could be compared 

directly.  Most of the K computation was performed by Dr. Reji John at the Air Force 

Research Laboratory (AFRL), while selected cases were computed at Southwest Research 

Institute™ (SwRI).  Figures R22 and R23 show the calculated crack path and the K solutions 

of the deflected crack for [010]/[001] oriented PWA 1484, respectively.  Essentially identical 

results were obtained by AFRL  
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and SwRI.  Figure R23 indicates that KII is zero shortly after crack deflection along the 

maximum tensile stress (MTS) direction.  The KI of the deflected crack can generally be 

expressed as 
nn
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π
 (R21) 

where ∆P is the load range, B is the thickness, W is the width of the specimen, and a is the 

actual length of the deflected crack.  The regression coefficients, bn, were obtained by fitting 

the FEM results to an nth order polynomial of a/W, where the number of the terms, n, is 4 in 

most cases.  An example of the regression analysis of the K solutions is shown in Figure 

R24.  Since the cracks deflect at different crack lengths from test-to-test, it was necessary to 

do an FEM analysis and fit normalized K solutions for each specimen exhibiting deflected 

cracks. 

 

 
 

Figure R21. FEM mesh used to compute the stress intensity factors of a deflected crack 
using the FRANC2D/L code.  Figure shows crack configuration prior to 
crack deflection. 
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Figure R22. Calculated crack deflection paths along the direction of maximum tensile 
stress (MTS) direction via the FRANC2D/L finite-element code for a crack 
in PWA 1484 subjected to mixed Mode I and II loading at a 32° phase 
angle. 

Figure R23. FRANC2D/L K solutions for a deflected crack along the MTS direction 
computed by AFRL and SwRI. 
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Figure R24. Regression fit of normalized KI (KIBW/P√πa) results as a function of actual 

crack length, a, normalized by the width of the specimen, W. 

 

Figure R25 presents the FEM mesh that was used to compute the K solutions for a 

deflected crack along the experimentally observed crack path.  This computation required 

inputting the experimental crack deflection path manually and computing the K solutions 

incrementally along the imposed crack trajectory.  For this particular case, the K solutions for 

a deflected crack along the experimentally observed crack path were computed for 

specimen SC-16-90, which was tested under Mode II and exhibited one of the largest crack 

deflection angles.  The crack deflection angle was 48°, compared to a theoretical angle 

of 70.5° for pure Mode II based on the MTS criterion.  The K solutions for the actual crack 

path showed predominantly KI with a small KII.  The normalized KI and KII are plotted as a 

function of the actual crack length in Figure R26, which also compares the K solutions for 

the actual path against those for the MTS path.  Additional K solutions of the actual crack 

path in other single crystal specimens are presented in Section R.4. 



 

 R-26

 
Figure R25. FEM mesh used to obtain FRANC2D/L K solutions along the actual 

deflected crack path in specimen SC-16 tested under pure Mode II loading. 
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Figure R26. FRANC2D/L KI and KII solutions obtained using the actual deflected crack 

path for specimen SC-16-90 tested under pure Mode II loading. 

R.2.3 Experimental Procedure 

Fatigue crack growth threshold stress intensity factor values were determined 

for PWA 1484 at 1100°F, at R = 0.5, and at 20 Hz using a shed rate, C, of -20 in-1, 

where C = dln∆K/da.  Crack length was measured using a potential drop technique.  The 

fatigue crack growth threshold was determined by load shedding starting at an initial ∆K 

of ≈10-12 ksi√in to a crack growth rate of 5x10-9 in/cycle or less.  Fatigue precracking was 

performed at the test temperature (1100°F) under Mode I by symmetric four-point-bending.  

After the Mode I threshold was determined, the specimen was cooled down to ambient 

temperature.  Replicas of the crack tip were taken in order to measure the actual crack path 

and length.  The test fixture was then reconfigured to the AFPB mode by changing the 

positions of the loading pins and the offset distance, c.  The specimen was then heated to the 

test temperature and FCG testing resumed after the specimen reached and stabilized at the 

desired temperature.  Mixed-mode threshold values were determined by load shedding from 

an initial equivalent ∆K value of approximately 6 ksi√in to a crack growth rate of 5x10-9 

in/cycle or less. 
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R.2.4 Fatigue Crack Growth Results 

R.2.4.1   Mode I Fatigue Crack Growth 

A. <001>/<010> Orientation 

Four <001>/<010> specimens (SC-1, SC-2, SC-3, and SC-4) were precracked 

at 1100°F by the loading shedding technique to determine the Mode I fatigue crack growth 

thresholds.  The fatigue cracks initiated from the notch were not totally straight.  The crack 

path of SC-1 is presented in Figure R27.  The fatigue crack that initiated from the notch at a 

∆K of 15 ≈ ksi√in was initially inclined to the loading axis.  It propagated as an inclined 

crystallographic (111) crack under decreasing ∆K until the ∆K reached about 7.8 ksi√in.  

Then, the fatigue crack changed growth direction and propagated in a direction normal to the 

loading axis, i.e., as a predominantly Mode I crack, until crack arrest occurred. 

 
Figure R27. Fatigue crack growth path of PWA 1484 (Specimen SC-1) during nominal 

Mode I fatigue precracking by cyclic load shedding at 1100°F.  A 
crystallographic (111) crack initiated from the notch root, but it became a 
Mode I crack on a TPNC plane when ∆KI decreased. 

A summary of the da/dN data is presented in Figure R28.  The Mode I 

thresholds show some scatter, ranging from 2.83 to 3.66 ksi√in.  Figure R28 also shows a 

comparison of the Mode I threshold data obtained using the four-point-bend test technique 

against recent results for the same material generated at P&W for this program.  The average 

value of the Mode I threshold for <001> oriented PWA 1484 determined by SwRI is ≈ 

3.25 ksi√in, which is slightly lower than the value of 3.87 ksi√in determined by P&W.  This 

discrepancy is believed to be due to a small difference in the crystallographic orientation 
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between the SwRI and P&W specimens as the SwRI test specimens were about 5° off the 

<001> axis.  It is noted that the crack off-set was ignored in the KI calculation. 
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Figure R28. Comparison of FCG threshold data of PWA 1484 obtained at SwRI using 

the four-point bend technique against P&W data obtained using the 
conventional method. 

 
 B.  <001>/<110> Orientation 

Four <001>/<110> single crystal specimens (SC-5, SC-6, SC-7, and SC-8) 

were precracked under Mode I loading to obtain the thresholds for this crystal orientation 

at 1100°F.  A summary of the Mode I threshold data of these four specimens is presented in 

Figure R29.  The FCG curves of SC-6, SC-7, and SC-8 exhibited a change in the slope at 

around 7 ksi√in, but such a change did not occur in SC-5.  The scatter in the Mode I 

thresholds is relatively small, ranging from 4.46 to 5.25 ksi√in. 



 

 R-30

∆K, ksi(in)1/2

1 10

da
/d

N
, i

n/
cy

cl
e

10-10

10-9

10-8

10-7

10-6

10-5

PWA 1484
<001>/<010> 
1100°F, 20Hz
R = 0.5, C= -20 in-1

Mode I Loading
(φ = 0°)

SC-5
SC-6
SC-7
SC-8

 
Figure R29. Summary of Mode I FCG data of <001>/<110> oriented PWA 1484 single 

crystals at 1100°F. 

 

 C.  <111>/<11 2 > Orientation 

Three <111>/<11 2 > single crystal specimens (SC-9, SC-10, and SC-11) were 

precracked under Mode I loading to obtain the thresholds at 1100°F.  These precracks were 

straight with little deviation from Mode I.  A summary of the da/dN data for these specimens 

is presented in Figure R30.  The scatter in the Mode I thresholds is relatively small, ranging 

from 3.40 to 3.63 ksi√in. 
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Figure R30. Summary of Mode I FCG data of <111>/<11 2 > oriented PWA 1484 single 

crystals at 1100°F. 

 

 D. <111>/< 1 10> Orientation 

Five <111>/< 1 10> single crystal specimens (SC-13, SC-14, SC-15, SC-16, 

and SC-17) were precracked under Mode I loading to obtain the thresholds for this crystal 

orientation at 1100°F.  A summary of the Mode I threshold data of these five specimens is 

presented in Figure R31.  The scatter in the Mode I thresholds is small, ranging from 3.46 to 

3.84 ksi√in. SC-15 was overloaded due to an electrical spike after fatigue precracking, 

consequently, it was not used for subsequent mixed-mode testing. 
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Figure R31. Summary of Mode I FCG data of <111>/<01 1 > oriented PWA 1484 single 

crystals at 1100°F. 

In all five cases, the Mode I precracks were very straight and aligned normal to 

the <111> direction.  Thus, they should be {111} cracks but they could also be TPNC cracks 

with an average <111> orientation.  Since there are no shear stresses acting on the {111} 

crack under Mode I loading, it is assumed that the apparent {111} Mode I crack grew by out-

of-plane slip as in a TPNC crack, rather than by in-plane slip that is characteristic of slip 

band cracking. 

 E.  <001>+10° /<110>+10° Orientation 

Two single crystal specimens (SC-19 and SC-20) of this orientation were 

precracked under Mode I loading to obtain the Mode I thresholds at 1100°F.  A summary of 

the Mode I threshold data of these two specimens is presented in Figure R32. 
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Figure R32. Summary of Mode I FCG data of <001>+10°/<110>+10° 

oriented PWA 1484 single crystals at 1100°F. 

R.2.4.2 Mixed-Mode Fatigue Crack Growth 

Mixed-mode FCG thresholds were measured for several phase angles (i.e., mode 

mixity) by loading shedding from an initial ∆Keq of 6 ksi√in until crack arrest.  In many 

cases, crack deflection occurred during threshold testing.  As a result, the local stress 

intensity factors were not correctly described by those calculated based on straight, self-

similar crack solutions.  Post-test data analyses were performed using the procedures 

described in Section R.2.2.2 to compute the local stress intensity factors for the deflected 

cracks.  The observed crack path, in general, deviated slightly from the local Mode I 

condition.  K calculations based on FRANC2D/L along the actual crack path, however, 

indicated that the Mode II component was negligible and could be ignored.   Consequently, 

the local stress intensity factors of deflected cracks were computed for a crack path normal to 

the maximum principal stress direction. Details of the FCG results and the corresponding 

data analyses are described as follows: 
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A. <001>/<010> Orientation 

Figure R33 illustrates the crack path observed in SC-1, which was tested 

under a phase angle of 32°.  The K solutions from the FRANC2D/L analyses were applied to 

compute the actual stress intensity factor ranges at the deflected tip of the mixed Mode I and 

II crack.  In particular, the mixed-mode crack was assumed to have deflected in the 

maximum tensile stress direction along whose path the ∆KII component vanished.  The 

calculated and observed crack trajectories of the mixed-mode crack in <001>/<010> oriented 

PWA 1484, tested at 32° phase angle, are compared in Figure R34, which shows that the 

agreement between the calculated and measured crack paths is excellent.  Thus, the mixed-

mode crack deflected along the MTS direction and was a Mode I crack locally.  A 

comparison of the da/dN data for the Mode I and mixed-mode cracks, both before and after 

being corrected for crack deflection, is shown in Figure R35.  For data represented by open 

squares, both the da/dN and the ∆KI values have been corrected for crack deflection, and they 

are the actual values at the crack tip of the deflected crack.  After being corrected for crack 

path deflection, the threshold of the deflected crack was increased to 3.5 ksi√in, which is 

slightly higher than the Mode I threshold (∆Kth = 2.8 ksi√in) for PWA 1484. 

 
Figure R33. Fatigue crack path of PWA 1484 (Specimen SWRI-SC-1) during nominal 

Mode I fatigue loading and mixed-mode fatigue loading at 1100°F. 
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Figure R34. Comparison of calculated and observed crack paths for <001>/<010> 

oriented PWA 1484 tested under mixed-mode fatigue at a 32° phase angle. 
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Figure R35. A comparison of da/dN data vs. ∆KI or ∆Keq for <001>/<010> 

oriented PWA 1484 (SC-1) subjected to Mode I or mixed Mode I and II 
loading at a mode-mixity phase angle (φ) of 32°.  Correction for crack 
deflection of the mixed-mode crack, which occurred on a transprecipitate 
non-crystallographic (TPNC) plane, increased the ∆Kth value from 2.8 to 4.2 
ksi√in.  The mixed-mode FCG threshold is slightly higher than the Mode I 
FCG threshold. 
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FCG curves of mixed-mode cracks in <001>/<010> oriented PWA 1484 are 

presented in Figures R36 through R38 for phase angles of 34°, 46°, 60°, 80°, and 90°, 

together with the corresponding FCG curves for Mode I loading.  The comparison was based 

on the ∆Keq parameter (Equation R10), which reduces to ∆KI for Mode I cracks, as well as 

the local Mode I stress intensity range, ∆KI, normal to the maximum tensile stress direction 

for deflected cracks.  For Mode II loading (φ = 90°), the fatigue crack grew very slowly and 

exhibited a growth threshold (5.9 ksi√in) that is higher than those observed in pure Mode I 

cracks (2.8 - 3.7 ksi√in), Figure R37.  In all cases, the ∆Keq uncorrected for crack deflection 

are lower than the local ∆KI corrected for crack deflection.  Therefore, the deflected crack 

path must be taken into account in computing the local stress intensity factors of deflected 

cracks.  A comparison of fatigue thresholds obtained under pure Mode I loading and mixed 

Mode I & II loading is presented in Figure R39. 
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Figure R36.  A comparison of da/dN data vs. ∆KI or ∆Keq for <001>/<010> 

oriented PWA 1484 (SC-2) tested under Mode I or mixed Mode I and 
II loading at a mode-mixity phase angle (φ) of 46°. 
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Figure R37. A comparison of da/dN data vs. ∆KI or ∆Keq for <001>/<010> 

oriented PWA 1484 tested under Mode I, Mode II, or mixed Mode I and II 
loading at a mode-mixity phase angle (φ) of 80°.  The Mode II (φ = 90°) 
crack propagated on a non-crystallographic, self-similar plane, and arrested 
rapidly. 
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Figure R38. A summary plot of da/dN data vs. ∆KI or ∆Keq for <001>/<010> 

oriented PWA 1484 tested under Mode I or mixed Mode I and II loading 
at φ = 34° and 60°. 
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Figure R39. A summary plot of da/dN data of <001>/<010> oriented PWA 1484 tested 

at 1100°F under various mixed Mode I and II loading. 

 B.  <001>/<011> Orientation 

The crack paths of <001>/<011> oriented PWA 1484 are shown in 

Figure R40(a)-(d) for mixed-mode loading at phase angles of 45, 48, 60, and 80°, 

respectively.  In all cases, the observed crack paths deviated slightly from the maximum 

tensile stress direction calculated based on FRAN2D/L. 

After Mode I precracking, SC-5 was tested under mixed-mode loading at a 

45° phase angle.  Figure R41 shows a comparison of the Mode I and the mixed-mode FCG 

threshold data.  Despite correction for the deflected crack path, the local Mode I threshold 

obtained under mixed-mode loading was lower than that determined under pure Mode I 

loading, Figure R41.  SC-6 was tested at a phase angle of 22.5° but the fatigue precrack did 

not grow at the mixed-mode loading condition.  Instead, another fatigue crack initiated at the 

notch and propagated under the imposed mixed-mode loading.  Post-test measurement of the 

location of this fatigue crack indicated that FCG occurred at a 48° phase angle.  The FCG 

data was, therefore, analyzed based on this loading condition.  For this case, local stress 

intensity factors were computed for the MTS and actual crack paths using FRANC2D/L.  

Figure R42 shows a comparison of the Mode I and mixed-mode threshold data for SC-6.  

The ∆Keq threshold was low when the deflection crack path was not corrected.  After crack 
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path correction, the local ∆KI,th values were increased both for the MTS and actual crack 

paths.  The difference between the results for the MTS and the actual crack paths are small, 

as shown in Figure R42.  In addition, both threshold values are lower than the Mode I 

threshold determined under pure Mode I loading. 
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 (c) (d) 

Figure R40. Measured crack paths compared against calculated crack paths based on the 
MTS theory:  (a) SC-5 (φ = 45°), (b) SC-6 (φ = 48°), (c) SC-7 (80°), and (d) 
SC-8 (φ = 60°). 
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Figure R41. A summary of da/dN data vs. ∆KI or ∆Keq for <001>/<011> 

oriented PWA 1484 (SC-5) tested under Mode I or mixed Mode I  
and II loading at φ = 45°. 
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Figure R42. A comparison of da/dN data vs. ∆KI or ∆Keq for <001>/<011>  
 oriented PWA 1484 (SC-6) tested under Mode I or mixed Mode I  
 and II loading at φ = 48°. 
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SC-7 was tested under pure Mode II (90° phase angle), but the crack did not 

propagate at ∆KII = 6 ksi√in.  The phase angle was, therefore, lowered to 80° and the fatigue 

crack propagated under this mixed-mode loading, as shown in Figure R43.  The stress 

intensity factors were corrected for crack deflection to the MTS path and the actual path.  

Again, the difference in the local ∆KI,th values between the MTS and actual crack paths is 

negligible, but both are lower than that measured under pure Mode I loading.  SC-8 was 

tested at a 60° phase and the data is presented in Figure R44.  In all four cases, the mixed-

mode FCG curves are extensions of FCG curves for Mode I, but the local Mode I FCG 

thresholds measured under mixed-mode loading occurred at a lower ∆KI,th value than that 

measured under pure Mode I.  A comparison of the FCG data of all four specimens is 

presented in Figure R45, which shows that all FCG data for these specimens form one scatter 

band, but the value of the threshold appears to depend on the phase angle.  The latter effect is 

believed to be due to the dependence of ∆KI,th on crystallographic orientation as discussed in 

Section R.2.5. 
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Figure R43. Plot of da/dN data vs. ∆KI or ∆Keq for <001>/<110> oriented PWA 1484 

(SC-7) tested under Mode I or mixed Mode I and II loading at φ = 80°. 
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Figure R44. Plot of da/dN data vs. ∆KI or ∆Keq for <001>/<110> oriented PWA 1484 

(SC-8) tested under Mode I or mixed Mode I and II loading at φ = 60°. 
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Figure R45. A summary plot of da/dN data of <001>/<110> oriented PWA 1484 tested 

at 1100°F under various mixed Mode I and II loading. 

 C.  <111>/<01 1 > Orientation 

The crack path in this crystal orientation was fairly straight under Mode I 

fatigue, as shown in Figure R46.  Under mixed Mode I and II loading, the originally straight 

and planar crack propagated crystallographically in a self-similar manner initially, but then 

kinked and deflected to propagate along a curvilinear path.  The self-similar and deflected 
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crack paths for the mixed-mode fatigue crack at a 45° phase angle are shown in Figure R46.  

A comparison of calculated and experimental crack paths is presented in Figure R47, which 

shows that the observed crack path deviated somewhat from the one calculated for the 

maximum tensile stress.  Figure R48 compares the da/dN data of the Mode I and mixed-

mode cracks.  Under Mode I, the fatigue crack propagated nominally on a (111) plane but 

this probably did not occur by a crystallographic crack growth mechanism because of the 

absence of shear stress on the (111) plane in this crystal orientation.  The FCG threshold for 

the Mode I crack was 3.46 ksi√in.  Under mixed-mode loading at a 45° phase angle, the 

fatigue crack propagated crystallographically on the (111) plane at higher growth rates 

compared to those exhibited by the Mode I crack or the mixed-mode TPNC crack, Figure 

R48.  At ∆Keq = 5.13 ksi√in, the (111) crack arrested and deflected to propagate on a 

noncrystallographic plane when the ∆K was further reduced.  The da/dN results of the 

deflected crack without correction for crack deflection are shown as open circles in 

Figure R48.  The apparent threshold for this deflected TPNC crack was about 2.42 ksi√in.  

After correction for the deflected crack path along the MTS direction, the threshold was 

increased to 4.0 ksi√in (squares and diamonds), in better agreement with the Mode I crack 

growth threshold (∆Kth = 3.46 ksi√in).  The same threshold was obtained using the MTS 

(squares) and the actual crack paths (diamonds). 

 

Figure R46. Fatigue crack path of [111]/[01 1 ] oriented PWA 1484 during Mode I 
loading and mixed Mode I and II loading at a 45° phase angle.  Mode I 
fatigue occurred on the (111) plane.  The mixed-mode crack propagated 
self-similarly on (111) under mixed Mode I and II initially, but it 
subsequently deflected on a TPNC plane (Specimen SC-13-45). 

-
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Figure R47. Calculated and observed crack deflection paths for [111]/[01 1 ] 
oriented PWA 1484 subjected to mixed-mode loading at a 45° phase angle. 
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Figure R48. A comparison of the FCG responses of a self-similar (111) crack and a 

transprecipitate noncrystallographic (TPNC) crack as a function of ∆KI 
or ∆Keq for [111]/[01 1 ] oriented PWA 1484 subjected to mixed-mode 
loading at a 45° phase angle.  The values of ∆K that are corrected and 
uncorrected for crack deflection are both compared against the 
Mode I da/dN data (Specimen SC-13-45). 
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The (111) fatigue crack was able to propagate crystallographically under pure 

Mode II loading.  Figure R49 illustrates the path of a Mode II crack that propagated along a 

(111) plane.  Upon decreasing ∆KII, the Mode II (111) crack eventually arrested, kinked out-

of-plane, and deflected to propagate along a TPNC path, as shown in Figure R49.  The 

experimental crack path is compared against that predicted by FRANC2D/L for the 

maximum tensile stress direction in Figure R50.  The calculated crack deflection angle was 

70.5°, compared to 48° observed experimentally.  A summary of the da/dN data for pure 

Mode I and pure Mode II is presented in Figure R51.  The Mode II (111) crack grew at 

higher rates than the TPNC Mode I crack at equivalent stress intensity factor ranges.  After 

crack deflection, the (111) crack propagated on a TPNC plane and arrested at a lower FCG 

threshold.  After correction for crack deflection, the FCG threshold of the deflected Mode II 

crack is 2.38 ksi√in, which is still lower than a threshold of 3.84 ksi√in for the Mode I crack.  

The same threshold was obtained using the actual and the MTS crack paths, as shown in 

Figure R51.  A comparison of all FCG data of crystals tested in this orientation is presented 

in Figure R52.  A summary of the FCG data of crystallographic (111) cracks is shown in 

Figure R53. 

 
Figure R49. Fatigue crack path of [111]/[01 1 ] oriented PWA 1484 during pure Mode I and 

pure Mode II fatigue.  Mode I fatigue crack growth occurred on a (111) plane.  
Mode II fatigue crack growth occurred on a (111) plane initially and arrested, 
then deflected to a TPNC plane until it arrested at a lower FCG threshold 
(Specimen SC-16-90). 
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Figure R50. Calculated and observed crack paths for [111]/[01 1 ] oriented PWA 1484 
subjected to pure Mode II loading. 
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Figure R51. A comparison of the FCG response of self-similar (111) crack and 

transprecipitate noncrystallographic (TPNC) cracks as a function of ∆KI 
or ∆Keq for [111]/[01 1 ] oriented PWA 1484 subjected to pure Mode II 
loading.  The threshold determined under pure Mode II loading is lower 
than that determined under pure Mode I loading, even after the corrections 
for crack deflection have been applied to da/dN and ∆K values (Specimen 
SC-16-90). 
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Figure R52. A summary plot of da/dN data of <111>/<01 1 > oriented PWA 1484 tested 

at 1100°F various mixed Mode I and II loading.  Stress intensity factors 
have been corrected for crack deflection. 
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Figure R53. A summary plot of da/dN data of crystallographic (111) cracks 
in <111>/<01 1 > oriented PWA 1484 tested at 1100°F. 
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 D. <111>/<11 2 > Orientation 

SC-9 was tested under a 45° mode mixity phase angle.  The initial crack path 

was a self-similar crack on the (111) plane, but it subsequently deflected to a TPNC plane.  

Figure R54(a) shows a comparison of the mixed-mode FCG data against the Mode I 

threshold data.  In this case, the local Mode I threshold determined under mixed-mode 

loading agrees with that obtained under pure Mode I loading, after the deflected crack path 

was taken into consideration in computing the local ∆KI. 

SC-10 was tested under a 60° mode mixity phase angle, with load shedding 

starting from an initial ∆Keq value of 6ksi-√in.  The crack propagated as a straight 

self-similar crack on (111).  The crack arrested at a relatively high threshold without 

deflecting to a TPNC plane.  Figure R54(b) shows a comparison of the FCG curve of the 

mixed-mode crack against that of the pure Mode I crack.  In this case, the pure Mode I 

threshold is substantially lower than the straight self-similar, mixed-mode crack on the (111) 

plane. 

A mode mixity phase angle of 90° was used for SC-11.  The fatigue crack 

growth process was complex as the crack branched into two tips, Figure R55(a).  It involved 

self-similar crack growth on a (111) plane at one tip, and concurrent TPNC growth at the 

other tip.  The corresponding da/dN data for the mixed-mode crystallographic crack and the 

local Mode I crack are compared in Figure R55(b).  The self-similar (111) appeared to 

exhibit the same threshold as the pure Mode I crack, while the deflected local Mode I crack 

appeared to show a higher threshold than those of the mixed-mode self-similar (111) crack 

and the pure Mode I crack.  However, possible interactions between the two crack tips were 

not taken into consideration in the K calculations or the PD method for crack length 

measurement.  Furthermore, the difference between the thresholds of the (111) crack and 

the TPNC crack is small.  A summary of the da/dN data of the <111>/<11 2 > crack 

orientation is shown in Figure R56. 
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(b) 

Figure R54. Plots of da/dN data vs. ∆KI or ∆Keq for <111>/<11 2 > oriented PWA 1484:  
(a) SC-9 (φ = 45°), (b) SC-10 (φ = 60°). 
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(b) 

Figure R55. Concurrent cracking on (111) and TPNC planes observed in SC-11-90 
tested under pure Mode II loading; (a) crack paths, and (b) da/dN 
data vs. ∆KI or ∆Keq for SC-11 tested under Mode I or Mode II loading. 
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Figure R56. A summary plot of da/dN data of <111>/<11 2 > oriented PWA 1484 tested 

at 1100°F. 

 

 E. <001>+10° /<110>+10° Orientation 

SC-19 was tested under a mode mixity phase angle of 45°.  The Mode I 

precrack did not propagate during mixed-mode threshold testing.  Instead, another crack 

initiated from the notch and propagated to arrest during load shedding.  The second crack 

was shorter than the original Mode I precrack and was not detected by the potential drop 

technique.  Consequently, no FCG threshold data was obtained for this test. 

A mode mixity phase angle of 60° was used for SC-20.  The crack propagated 

as a straight self-similar non-crystallographic crack on a TPNC plane without crack 

deflection.  The crack arrested at an apparent ∆Keq,th of 5.5 ksi√in, which is higher than a 

∆KI,th value of 3.69 ksi√in observed in the pure Mode I crack, as shown in Figure R57.  Post-

test Laue back-reflection analysis indicated that the specimen was 8° off <001>. 
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Figure R57. Plot of da/dN data of <001> + 8°/<110> + 8° oriented PWA 1484 (SC-20) 

tested under either Mode I or mixed Mode I and II at φ = 60°. 

R.2.5. Crack Deflection Paths and Fracture Planes 

R.2.5.1 Experimental Observations 

Two-surface analyses were performed to identify the crystallographic orientation of 

fatigue crack growth planes for individual PWA 1484 specimens.  This technique involved 

measuring the traces of the fatigue fracture planes on two surfaces and plotting the traces on 

a stereographic projection containing the crystallographic orientation of the single crystal test 

specimen.  A summary of these results is tabulated in Table R2, which shows the initial 

orientation of the Mode I crack, Mode I threshold, the mode-mixity phase angle used at the 

initiation of mixed-mode fatigue, the equivalent ∆K (∆Keq), ∆KI, and ∆KII of the deflected 

crack for the MTS (local Mode I) crack growth criterion, the corresponding crack deflection 

angle, type of cracks, and fatigue crack growth planes and directions.  Two important 

observations can be made from the results shown in Table R2:  (1) the Mode I threshold 

(Column 3) of PWA 1484 depends on crystallographic orientation, and (2) the Mode I 

fatigue cracks and deflected mixed-mode cracks propagated on different planes and 

experienced different crystallographic orientations.  Thus, the discrepancy between the Mode 

I threshold and that obtained under mixed-mode condition is attributed to the change in 

crystallographic orientation of the deflected crack and the associated dependence of the 

Mode I threshold on crystallographic orientation. 
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Table R2.  A Summary of the Initial Crack Orientation, Thresholds, Crack Deflection Angle, Type of Cracks, and Final Fatigue Crack 
Plane and Fatigue Crack Growth Directions for PWA 1484 Tested at1100°F, R = 0.5, and 20 Hz 

Final Orientation 
“Mixed Mode” Thresholds 

Specimen Initial 
Orientation 

Pre-
cracking 
Mode I 

Threshold 
∆KI,th, ksi√in 

Phase 
Angle, φ°

∆Keq,the
 

(ksi√in)
∆KI,th + 

(ksi√in)
∆KII,th + 

(ksi,√in) 

Crack Deflection 
Angle, ° 

(average) 
Remarks Fatigue 

Crack Plane
Fatigue Crack 

Directions 

SC-1 <001>/<010> 2.83 32 4.19 4.19 0 40 TPNC crack 5° off ( 101 ) 5° off [100] 
SC-2 <001>/<010> 3.66 46 3.05 3.05 0 40, 62 (51) TPNC crack 5° off ( 302 ) 5° off [320] 

90 5.94 0 5.94 No growth TPNC crack ⎯ ⎯ SC-3 <001>/<010> 3.23 80 3.26 3.26 0 50, 58 (54) TPNC crack ( 302 ) [320] 
34 4.77 4.77 0 45 TPNC crack ( 101 ) [110] SC-4 <001>/<010> 3.22 
60 3.74 3.74 0 60 TPNC crack 3° off ( 201 ) 3° off [210] 

SC-5 <001>/<110> 4.51 45 2.74 2.74 0 44, 36 (40) TPNC crack 4° off ( 112 ) 4° off [ 111 ] 
SC-6 <001>/<110> 5.25 48 3.02 3.02 0 30, 45 (37.5) TPNC crack ( 111 ) [ 121 ] 
SC-7 <001>/<110> 4.63 80 3.30 3.30 0 48, 50 TPNC crack 6° off ( 111 ) 6° off [ 121 ] 

   90 7.6 ⎯ ⎯ ⎯ No growth ⎯ ⎯ 
SC-8 <001>/<110> 4.45 60 3.35 3.35 0 58 TPNC crack 5° off ( 111 ) 5° off [ 121 ] 
SC-9 <111>/< 211 > 3.63 45 3.87 3.87 0 43 TPNC crack 6° off (100) 6° off [011] 
SC-10 <111>/< 211 > 3.46 60 5.72 2.81 4.99 0 (111) self-similar crack (111) [ 211 ] 

90 3.41 0 3.41 0 (111) self-similar crack (111) [ 211 ] SC-11 <111>/< 211 > 3.40 
90 4.14 4.14 0 53 TPNC crack (100) [011] 

SC-13 <111>/< 101 > 3.46 45 5.13 3.63 3.63 0 (111) self-similar crack (111) [ 101 ] 
   45 4.03 4.03 0 40, 66 (53) TPNC crack 4° off ( 021 ) 7° off [ 021 ] 

SC-14 <111>/< 101 > 3.48 80 5.51 0.96 5.43 0 (111) self-similar crack (111) [ 101 ] 
   22.5 4.05 4.05 0 20, 40 (30) TPNC crack 7° off ( 132 ) [ 311 ] 

SC-15 <111>/< 101 > 3.68 ⎯ ⎯ ⎯ ⎯ ⎯ Test specimen overloaded 
during cool-down ⎯ ⎯ 

SC-16 <111>/< 101 > 3.84 90 4.55 0 4.55 0 (111) self-similar crack (111) [ 101 ] 
   90 2.67 2.67 0 47, 48 (48) TPNC crack 10° off ( 021 ) [ 021 ] 

SC-17 <111>/< 101 > 3.74 22.5 9.10 8.41 3.48 0 (111) self-similar crack, high 
starting ∆Keq (11 ksi√in) (111) [ 101 ] 

SC-19 10° off <001>/ 
10° off <110> 3.99 45 ⎯ ⎯ ⎯ ⎯ Test specimen initiated a 

second crack ⎯ ⎯ 

SC-20 10° off <001>/ 
10° off <110>  3.69 60 5.50 2.71 4.79 0 Self-similar crack 8° off (100) 8° off [ 101 ] 

+  Corrected for crack deflection. 
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Figures R58 through R61 present the Mode I thresholds of PWA 1484 as a function 

of the angle β  between the crack plane normal and a reference crystallographic axis for the 

initial <001>/<010>, <001>/<011>, <111>/<01 1 >, and <111>/<11 2 > orientations, 

respectively.  Both the angle β and the reference crystallographic orientation are defined in 

the inserts in Figures R58 through R61.  In these figures, the values of the Mode I threshold, 

∆KI,th, at β = 0° correspond to those measured under Mode I conditions, while those for β > 0 

were the local ∆KI,th values determined from deflected cracks during the remote mixed-mode 

loading.  The highest Mode I threshold occurs in the <001>/<011> orientation, Figure R59.  

Lower values of ∆KI,th occur in off-axis orientations that are about 40-60° from the <001> in 

the <001>/<011> system.  These orientations are located near the central region of a standard 

stereographic triangle for cubic materials. 
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Figure R58. Mode I threshold as a function of the angle, β, between the crack normal 

and the <001> axis for the <001>/<010> orientation.  Results indicate that 
∆KI,th depends on crystallographic orientation. 
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Figure R59. Mode I threshold as a function of the angle, β, between the crack normal 

and the <001> axis for <001>/<110> orientation.  Results show anisotropy 
in ∆KI,th. 
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Figure R60. Mode I threshold as a function of angle β for the <111>/< 101 > orientation. 
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Figure R61.   Mode I threshold as a function of angle β for the <111>/< 211 > orientation. 

 

R.2.5.2 Modeling of Crack Deflection Path 

Since discrepancies were observed between measured crack paths and those 

predicted based on the maximum principal tensile stress (MTS) direction (local Mode I 

criterion [16]), asymptotic solutions for mixed-mode crack growth criteria according to the 

maximum energy release rate (Gmax) [17] and minimum strain density (Smin) [18] were used 

to compute the crack deflection angles of a mixed-mode crack.  The results are compared 

against those of FRANC2D/L and experimental data in Figure R62.  For a given 

mode-mixity angle of φ, where φ = arctan (∆KII/∆KI), the predicted crack deflection angles 

are similar for the MTS, Gmax, and Smin criteria.  The FRANC2D/L results are in agreement 

with those of the MTS criterion since it was the crack growth direction chosen in the 

computations.  About 1/3 of the experimental data agreed with the MTS criterion and the 

FRANC2D/L criterion results, while the remaining 2/3 showed negative deviation (smaller 

crack deflection angles) from the MTS criterion.  Two conclusions were derived from the 

results in Figure R62, which are:  (1) the Gmax and Smin criteria would not improve the 

agreement between the computed and measured crack deflection angles, and (2) additional 

factors other than the crack driving force might have influenced the crack deflection path. 
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Figure R62. Comparison of the crack deflection angles based on the MTS, Gmax, and Smin 

crack growth criteria against FRANC2D/L calculations and experimental 
data. 

The influence of an orientation-dependent ∆KI,th on the deflection of a generalized 

mixed-mode crack in PWA 1484 was modeled by considering the fatigue crack 

growth (FCG) response, which can be represented as 

( )n
theqeq KKA

dN
da

,∆−∆=  (R22) 

with 

[ ] 2/122
IIIeq KKK ∆+∆=∆  (R23) 

where da/dN is the crack growth rate; ∆Keq is the equivalent stress intensity range, 

and ∆Keq,th is the corresponding equivalent mixed-mode threshold; A and n are empirical 

constants.  The change of the FCG rate with the crack deflection angle, θ, when a mixed-

mode crack kinks is given by 
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in which both ∆Keq and ∆Keq,th are taken to be a function of θ.  For simplicity, A and n are 

taken to be independent of the crack deflection angle.  It is further assumed that the crack 

deflects in the direction of the maximum crack growth rate so that 

0=⎥⎦
⎤

⎢⎣
⎡

∂
∂

dN
da

θ
 (R25) 

leading to 

[ ] 0, =∆−∆
∂
∂

theqeq KK
θ

 (R26) 

for a deflected mixed-mode crack.  When crack growth occurs under Mode I conditions, 

Eq. (2-26) becomes 

[ ] 0, =∆−∆
∂
∂

thII KK
θ

 (R27) 

Equations (R26) and (R27) indicate that crack deflection occurs in the direction where the 

spread between the crack driving force (∆Keq or ∆KI) and the crack resistance (∆Keq,th 

or ∆KI,th) is maximum.  For isotropic materials, 0/, =∂∆∂ θthIK  and Equation (R27) is 

reduced to the classical MTS criterion.  On this basis, Equation (R27) indicates that deviation 

from the MTS criterion is expected when 0/, ≠∂∆∂ θthIK .  Moreover, the amount of 

deviation would depend on the threshold anisotropy. 

Figure R63 shows the calculated values of ∆Keq, ∆KI, and ∆KII for a deflected 

mixed-mode crack as a function of the crack deflection angle, θ, for SC-16 and SC-11 tested 

under Mode II.  Both exhibited self-similar crack growth initially, but deflected to propagate 

in a direction close to that predicted by the maximum tensile stress criterion (maximum KI 

and zero KII).  However, there are small deviations such that the crack path did not exactly 

correspond with Mode I, but contained a small Mode II component.  Plots of this type have 

been generated for all specimens.  They show that the region where the maximum KI occurs 

is relatively flat so that the critical condition can be attained over the range of crack 

deflection angle, θ.  The actual crack deflection angle was always smaller than the one 

predicted by the MTS criterion because the deflected crack was able to seek out a direction 

with a lower ∆KI,th.  The probability that a deflected crack is able to find a direction with a 

lower Mode I threshold depends on the mode mixity.  A Mode II crack would have a large 
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crack deflection angle and, therefore, a high probability to find the direction with a lower 

crack growth resistance. 
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Figure R63. Variation in KI, KII, and Keq with the crack deflection angle for pure Mode II 

crack in SC-11-90 and SC-16-90 (90 indicates the phase angle).  Note that 
the KI values of the deflected cracks are near the local Mode I condition, 
while the Mode II components are small at the observed crack deflection 
angles. 

 

For a mixed-mode crack in an isotropic elastic material, Equation (R27) is given by 

[ ] 01cos3sin , =
∂

∆∂
−−∆+∆

θ
θθ thI

II

K
KK  (R28) 

which can be solved only when ∆KI,th(θ) is known.  Consequently, the dependence of the 

Mode I threshold on crystallographic orientation must be known since the crystallography 

encountered by the crack tip changes once the crack deflects from the original path.  For 

simplicity, it is assumed that 

II
thI K

K
∆=

∂

∆∂
λ

θ
,  (R29) 
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where λ is an empirical constant.  Equation (R29) was motivated by the observation that 

the  deviation from the MTS criterion increased with increasing Mode II. 

Substituting Equation (R29) into Equation (R28) leads one to 

⎥⎦
⎤

⎢⎣
⎡

−+
−

=⎥
⎦

⎤
⎢
⎣

⎡
∆
∆

=
θλ

θφ
cos31

sinarctanarctan
I

II

K
K  (R30) 

as the relation between the mode-mixity  phase angle (φ) and the crack deflection angle (θ).  

By fitting Equation (R30) to the experimental data, it was determined that λ = 0.8.  Figure 

R64 shows that the computed crack deflection angles are now in better agreement with the 

observed values.   
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Figure R64. Calculated and measured crack deflection angles as a function of 90-φ, when φ 

= arctan (∆KII/∆KI) is the mode-mixity phase angle.  Deviation of experimental 
data from the MTS criterion is caused by orientation dependence in the Mode I 
threshold.  Current model, Equation (R30), is fitted to the experiment.  The 
calculation shows how a small threshold anisotropy can cause a relatively large 
deviation in the crack deflection angle. 

The analysis clearly demonstrated that an orientation-dependent Mode I threshold 

can cause the deflected crack path to deviate substantially from that of the MTS criterion.  In 

addition, the resulting deflected crack path would not be entirely Mode I but would contain a 

small Mode II component; consequently, the Mode I threshold may also manifest a weak 

dependence on the Mode II component.  This assessment of the crack deflection path was 
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confirmed by the FRANC2D/L calculation performed using the actual deflected crack path, 

which is shown in Figure R51 and in Section R.4. 

The above analysis is applicable to the crack deflection of a mixed-mode, 

transprecipitate noncrystallographic (TPNC) crack in PWA 1484.  For this type of 

crack, ∆KI,th is dependent on crystallography, but A and n (i.e., da/dN) are independent of 

mode-mixity or crystallography, as shown in Figure R41.  The transition of a mixed-mode 

crystallographic crack on a (111) plane to a TPNC plane is more complicated because the 

da/dN curves for these two cracking processes, which are shown in Figure R52, are different 

with different A, n, and threshold values.  Under this circumstance, the dependence of A, n, as 

well as the FCG threshold on the crack deflection angle (or crystallographic orientation) all 

need to be taken into consideration.  Anisotropy in the A and n values would cause additional 

changes of the crack deflection path or angle.  There is also evidence that self-similar growth 

on a (111) plane and crack deflection on a TPNC plane could occur concurrently under 

certain conditions.  This is illustrated in Figure R55(a), which shows that both self-similar 

growth on (111) and deflected crack growth normal to the MTS direction occurred in SC-11 

tested under pure Mode II loading. 

R.2.6 Assessment of P&W’s Anisotropic Mode I Threshold Model 

The anisotropic threshold model developed at Pratt & Whitney was used to 

correlate the Mode I threshold data obtained under remote mixed-mode loading and pure 

Mode I loading conditions.  The model has been formulated on the basis of a function that 

interpolates the fracture resistance of any arbitrary orientation in terms of the principal values 

[19].  As illustrated in Figure R65, a crack or a point on an arbitrary crack point is envisioned 

to propagate in an arbitrary direction defined by 

kjia 321 aaa ++=  (R31) 

where i, j, and k are unit vectors corresponding to the principal material axes x1, x2, and x3.  

The vector a is normal to both the crack front and the unit vector, n, 

kjin 321 nnn ++=  (R32) 

which represents the normal of the crack plane at the point along the crack front where a is 

located.  The parameters ai and ni denote the directional cosines of the vectors a and ni, 

respectively.  For cubic single crystals, the principal (x1,x2, x3) axes can be taken to be the 
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crystallographic (<100>,<010>,<001>) axes.  As illustrated in Figure R66, the Mode I 

thresholds along these principal axes can be denoted as K12, K21, K23, K32, K13, and K31, 

where the first subscript refers to the principal axis normal to the crack plane and the second 

subscript identifies the crack growth direction.  According to Pettit [19], the fracture 

resistance, Kp(n,a), at the location (n,a) of the crack front can be obtained by projecting the 

principal values on the current crack orientation through a transformation process that leads 

one to 
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where n is an empirical constant and the Ki are obtained on the basis of the fracture 

resistance, Kij, along the principal axes through the relations given by 
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where m is another empirical constant. 
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Figure R65. Geometry of crack orientation at a point on an arbitrary crack front.   
 From Pettit [19]. 
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Figure R66. Principal orthotropic components of crack growth resistance for crack 

growth parallel to Unit Vector a.  From Pettit [19]. 
 

The P&W model, Equations (R33) and (R34), was applied to treat the Mode I 

fatigue thresholds of PWA 1484.  The empirical constants n and m were evaluated by fitting 

the model to the Mode I threshold data of <100>/<010> and <100>/<011> oriented single 

crystal specimens.  The former set of data was used to obtain a value of 5 for m, as shown in 

Figure R67.  The latter set of threshold data was used to obtain a n value of 0.6-0.8, as shown 

in Figure R68.  Note that in Figure R67 both the solid line (n = 0.6) and the dashed line (n = 

0.8) lie on top of each other.  The same set of n and m values were then used to predict Mode 

I thresholds of <111>/<01 1 > and <111>/<01 2 > oriented specimens.  A comparison of the 

computed and measured Mode I thresholds for these two orientations are presented in 

Figures R69 and R70, respectively. 
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Figure R67. Fitting of P&W threshold model to FCG threshold data of PWA 1484 for 

the <001>/<010> orientation.  The angle β corresponds to the crack 
deflection angle or the secondary orientation.  Results for n=0.6 and n=0.8 
are coincident for this orientation. 
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Figure R68. Fitting of the P&W threshold model to FCG threshold data of PWA 1484 
for the <001>/<110> orientation. 
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Figure R69. Comparison of predicted and measured FCG threshold data 

for <111>/<01 1 > oriented PWA 1484. 
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Figure R70.  Comparison of predicted and measured FCG threshold data 

for <111>/<11 2 > oriented PWA 1484. 
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R.2.7 Mixed-Mode Fatigue Crack Growth Model Development 

R.2.7.1 Continuum Crack Growth Models 

Several fatigue crack growth theories exist for mixed-mode continuum crack 

growth in polycrystalline materials, including the maximum tensile stress (MTS) [16], 

maximum energy release rate (MG) [17, 18], and cyclic crack tip displacement criteria [20].  

Both the maximum tensile stress and maximum energy release rate model predict a deflected 

crack path and a Mode II threshold (∆KII,th) that is lower than the Mode I threshold (∆KI,th).  

Figures R71(a) and (b) show comparisons of the threshold loci and the crack deflection 

angles predicted by the MTS and MG criteria against those of a self-similar fatigue crack, 

while Figure R71(b) shows the corresponding crack deflection angle.   

 (a) (b)   

Figure R71. Comparison of mixed-mode fatigue threshold loci and crack deflection 
angles based on the maximum tensile stress (MTS) [16] and maximum 
energy release rate (MG) [17] against a self-similar crack without and with 
crack closure:  (a) threshold loci, and (b) crack deflection angle, θ, versus 
the phase angle, φ = tan-1 (∆KII/∆KI). 

In the MTS theory [16], fracture occurs along a path of maximum tensile stress or 

zero shear (τrθ = 0), while it is on the plane of maximum energy release rate in the MG theory 

[17].  For fatigue crack growth, the Mode II threshold is often higher than the Mode I 

threshold, Figure R71(a), because of crack-tip shielding resulting from roughness-induced 

φ = tan−1(∆KII/∆KI)
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crack closure and frictional effects on sliding crack surfaces [15].  Correcting for roughness-

induced crack closure often leads to a fatigue crack growth threshold locus given by [15] 

( ) 2/12
,

2
,, thIIthItheq KKK ∆+∆=∆  (R35) 

for a mixed Mode I and II crack.  The equivalent growth threshold, ∆Keq,th, can be interpreted 

in terms of the energy release rate of a self-similar fatigue crack. 

In the TPNC failure region, fatigue crack growth in PWA 1484 propagated on 

planes that lie on or close to the plane of maximum tensile stress, Figure R64.  Based on the 

crack deflection angles, mixed-mode crack growth criteria based on the maximum energy 

release rate or the minimum strain density do not appear to be applicable for PWA 1484.  

Deviation of the crack deflection angle from the MTS path is the consequence of the 

dependence of the Mode I threshold on crystallographic orientation.  In addition, the Mode II 

component along the deflected crack path is negligible.  Thus, the maximum tensile stress 

criterion is applicable for PWA 1484.  However, the dependence of the Mode I threshold on 

crystallography orientation dictates that a modification of the MTS criterion to account for 

threshold anisotropy must be made before it can be applied to PWA 1484.  One possible 

approach is to use Equations (R33) and (R34) to compute Kp(β) as a function of 

crystallographic orientation, where Kp(β) is taken to be the Mode I fatigue threshold.  The 

result can then be used to identify the minimum value of Kp(β), and use this minimum value 

of the Mode I threshold in conjunction with the MTS criterion to compute KI values in 

components.  An alternate and more rigorous approach is to compute both ∆KI(β) and Kp(β) 

as a function of crystallographic orientation.  The crack growth direction can then be 

predicted based on the direction that maximizes the function of ∆KI(β) – Kp(β) or 

equivalently, the ∆KI/(β) ratio.  The latter approach is obviously more complicated. 

R.2.7.2 Crystallographic Crack Growth Models 

In crystallographic crack growth, a fatigue crack, originally in Mode I, deflects to 

propagate along one or more (111) slip bands.  Instead of a plane of zero shear (maximum 

tensile stress) or maximum energy release rate, the crack path is often the plane of maximum 

resolved shear stress where localized (111) slip occurs [20].  The crack deflection angle (θ), 

which is dependent on the crystal orientation, is often different from those predicted by the 

MTS and MG theories. 
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Macroscopic (111) fatigue crack growth has been treated in terms of an equivalent 

stress intensity range, ∆Keq,, given by [21] 

2/1
222

1
1

⎟
⎠
⎞

⎜
⎝
⎛ ∆

−
+∆+∆=∆ IIIIIIeq KKKK

ν
 (R36) 

which is applicable for a mixed Mode I, II and III crack in an isotropic solid with the Poisson 

ratio, ν.  A similar expression for a mixed-mode crack in an anisotropic solid has also been 

used [21], but elastic anisotropy is generally small and can be ignored.  It should be noted 

that ∆KI, ∆KII, and ∆KIII are computed based on the (111) crack. 

An alternate equivalent ∆K of the form given by [5, 22] is 
2/122 )( rssrneq KKK ∆+∆=∆  (R37) 

where ∆Krn is based on the resolved normal stress on the (111) crack, while ∆Krss is based on 

the resolved shear stress on the slip plane in the slip direction.  It is relatively easy to show 

that Equations (R36) and (R37) are equivalent since 

∆Krn = ∆KI (R38) 

and 

22222

1
1

IIIIIIIIIIrss KKKKK ∆⎟
⎠
⎞

⎜
⎝
⎛

−
+∆≈∆+∆=∆

ν
 (R39) 

based on the argument that the strain energy release rate is an invariant in a transformation of 

the crack coordinate system. 

Correlations of fatigue crack growth threshold data for macroscopic (111) 

fatigue cracks in terms of Equation (R38) or Equation (R39) are illustrated in 

Figure R72 for <111>/<11 2 > oriented PWA 1484.  These data are taken from 

specimens SC-9, SC-10 and SC-11.  Only straight self-similar cracks under Mode I and 

mixed Mode I and II loading were used; threshold data pertaining to deflected cracks in SC-9 

and SC-11 were not used in this correlation.  The mixed-mode cracks in SC-10 and the Mode 

II crack in SC-11 were crystallographic (111) cracks.  It is uncertain whether or not the Mode 

I cracks, which are nominally perpendicular for the <111> axis, indeed lie on the (111) 

crystallographic planes.  For these straight, self-similar cracks on apparent (111) planes, the 

fatigue threshold ranges under mixed Mode I and II loading appear to be described by the 
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equivalent stress intensity range given in Equation (R36), which is shown as a solid line in 

Figure R72. 
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Figure R72. Plot of ∆KII,th vs. ∆KI,th for self-similar crystallographic (111) cracks 

in <111>/<11 2 > oriented PWA 1484. 

The correlation of Equation (R36) with the fatigue crack growth threshold data for 

straight, self-similar cracks in <111>/<011> oriented in PWA 1484 is shown in Figures R73 

and R74, which plots the results of specimens SC-13, SC-14, SC-15, SC-16, and SC-17. 

Again, all the crack planes were perpendicular to the <111> direction and appear to lie on a 

single (111) plane.  For this case, Equation (R36) does not correlate well with the FCG 

threshold data as it under-predicts the ∆Keq,th for all mixed Mode I and II and pure Mode II 

cracks.  These crystallographic cracks appear to be mostly controlled by ∆KII, rather than by 

a single (critical) value of ∆Keq.  Furthermore, the ∆KI component varies substantially and 

exceeds the ∆KI,th for pure Mode I cracks.  This phenomenon is not understood at the present 

time.  In terms of ∆Keq, the FCG thresholds of the mixed-mode crystallographic cracks are 

higher than the counterparts for pure Mode I cracks.  Hence, the data points for the mixed-

mode cracks lie outside the threshold locus (solid line) calculated on the basis of Equation 

(R36).  Based on the results shown in Figure R72 through R74, one can conclude that the 
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FCG thresholds of mixed Mode I and II and pure Mode II (111) cracks in PWA 1480 equal 

or exceed those of pure Mode I cracks in the same crystallographic orientation. 
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Figure R73. Comparison of da/dN of mixed-mode self-similar (111) cracks 

in <111>/<01 1 > oriented PWA 1484 against da/dN data of a  
 Mode I crack on an apparent (111) plane. 
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Figure R74.  Plot of ∆KII,th vs. ∆KI,th for <111>/<01 1 > oriented PWA 1484. 
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R.2.8 Fatigue Crack Growth Transition Model Development 

Fatigue crack growth modes in PWA 1480 and 1484 have been characterized by 

Cunningham et al., [3, 4] and DeLuca and Annis [6].  They identified five different fatigue 

crack growth modes in these single crystal alloys, including:   

(1) submicroscopic (111),  

(2) microscopic (111),  

(3) macroscopic (111),  

(4) transprecipitate noncrystallographic (TPNC), and  

5) ancillary TPNC.   

In the submicroscopic and microscopic (111) fatigue crack growth modes, fatigue 

cracks propagate on (111) planes at submicroscopic (< (' size or < 0.5 µm) or 

microscopic (≈ (' or 0.5 µm) levels, but the overall microscopic crack path is Mode I.  In 

macroscopic (111), crack growth occurs on (111) as a mixed Mode I, II, and III fatigue crack 

on a macroscopic scale, forming large (111) fracture facets.  The two TPNC fractures are 

formed by the growth of a dominant Mode I crack on noncrystallographic planes, which may 

involve decohesion of the γ/γ′ interface [6].  The two TPNC modes differ by the 

absence (TPNC) or the presence (ancillary TPNC) of multiple microcrack planes during 

fatigue crack growth.  The fatigue crack growth mode in PWA 1484 is dependent on 

temperature, frequency, stress intensity range, and environment [3-6]. 

The FCG curve for continuum crack growth on the TPNC plane is compared 

against that for crystallographic crack growth on the (111) plane in Figure R75.  For 

the TPNC crack, the Mode I threshold for the TPNC crack is lower and the slope of the 

da/dN curve is lower than counterparts for crystallographic growth on the (111) plane.  The 

two da/dN curves intersect at ∆Kt.  Above ∆Kt, da/dN is higher for the (111) crack, but the 

TPNC crack grows faster at a given ∆Keq at ∆K < ∆Kt.  The transition point, ∆Kt, depends on 

frequency, temperature, and environment and its values can be represented in terms of a map 

depicting the various fracture morphologies.  During load shedding, a crystallographic (111) 

crack would arrest when ∆Keq drops below the threshold value, ∆Keq,th.  Since ∆Keq for the 

crystallographic (111) crack is still higher than ∆KI,th for a Mode I crack on a TPNC plane, a 

driving force exists for the (111) crack to kink and deflect to a TPNC crack plane with a 

lower Mode I threshold, ∆KI,th. 
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Figure R75. FCG data of a TPNC crack compared against that of a 

crystallographic (111) crack in <111>/<01 1 > oriented PWA 1484.  
At ∆KI > ∆Kt, the crystallographic (111) crack propagates at a 
higher FCG rate than a TPNC crack at identical ∆K values.  The 
reverse is true for ∆KI < ∆Kt. 
 

The crack transition process is reversed when ∆K is increased.  In this case, a Mode 

I TPNC crack would change to propagate on a (111) plane when ∆KI exceeds ∆Kt at which 

the da/dN on the (111) plane is higher than that on the TPNC plane. 

Existing data [3, 4, 6, 23] were used to construct a fatigue morphology map 

for PWA 1484.  To aid this effort, a fatigue crack growth mode transition model was 

developed based on a thermally activated slip process in the crack-tip cyclic plastic zone that 

correlates fatigue crack growth modes to test parameters such as temperature, frequency, and 

stress intensity range.  Derivation of the model is presented in Section R.5.  The model 

suggested that the transition of macroscopic (111) mixed-mode fracture to TPNC (i.e., TPNC 

and ancillary TPNC) Mode I fracture can be described by the relation 
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where f is the cyclic frequency, ∆K is the stress intensity factor range, Q is the apparent 

activation energy, T is the absolute temperature, R is the universal gas constant, and A′ is a 

pre-exponent coefficient.  Figure R76 shows a log-log plot of f∆K versus 1/T, where 

temperature is in degrees Rankine (°R).   
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Figure R76. A log-log plot of f∆K vs 1/T shows two fatigue crack growth morphology 

regimes:  (1) mixed-mode macroscopic (111) fracture and (2) Mode I 
transprecipitate noncrystallographic (TPNC) fracture in PWA 1484.  The solid 
line represents the transition boundary between the two fatigue crack growth 
modes based on a thermal activation model. 

Data for macroscopic (111) mixed-mode fracture are shown as solid circles, while 

those for TPNC Mode I are shown as open circles.  The transition boundary is shown as the 

solid line that separates the two cracking regimes.  The apparent activation energy, Q, was 

determined to be 11.7 kcal/mol and AΝ was 4x106 Hz-ksi√in.  These values were calculated 

based on the slope and the intercept of the solid line in Figure R76.  Equation (R40) provides 

the basis for the construction of the fatigue crack growth mode map shown in Figure R77, 

which shows a plot of f∆K versus T.  The solid line is the macroscopic (111) to TPNC 

fracture transition boundary predicted by Equation (R40).  Macroscopic (111) fracture is 

prevalent at high f∆K values and low temperature, while TPNC fracture is dominant at 

lower f∆K values and high temperature.  The PWA 1484 data from the literature [3, 4, 6, 23] 

are divided into two fracture regimes, Macroscopic (111) and TPNC, separated by the 

calculated transition boundary.  Two of the data points generated in this study fall on the 

wrong side of the transition boundary.  This suggests that the transition boundary may be 
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improved by refitting to the experimental data.  A recalibration of the model, however, 

requires additional experimental data since there are gaps in the fatigue crack growth mode 

map at high frequency and high temperatures that make a precise determination of the 

transition boundary uncertain at this time. 
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Figure R77. A fatigue crack growth morphology map for <001>/<010> PWA 1484 single 

crystals in air shows two fracture regimes:  (1) mixed-mode macroscopic 
(111) fracture, and (2) Mode I transprecipitate non-crystallographic (TPNC) 
fracture.  The solid line is the fatigue crack growth morphology transition 
boundary calculated based on the proposed thermal activation model.  
Experimental data are from Cunningham et al., [3, 4], and Milligan [23], as 
well as the present study.  Mixed-mode macroscopic (111) fracture is favored 
at high frequency, high ∆K and low temperature, while TPNC fracture is 
favored at low frequency, low ∆K, and high temperature. 

 
The transition of the fracture morphology appears to be influenced by the 

deformation shearing and by-pass of the γΝ precipitates by (111) slip as well as the activation 

of cube slip.  Figure R78 shows the deformation mechanism map based on experimental data 

in the literature for PWA 1480 [24].  The transition boundaries were calculated on the basis 

of the experimentally determined activated energies and the appropriate Arrhenius equations 

for cube cross slip and γΝ by-pass.  For PWA 1480, the activation energies are 12 and 120 

kcal/mol [24] for cross slip on the cube plane and γ' by-pass, respectively.  The activation 
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energy for fatigue crack growth mode transition is 11.7 for PWA 1484, which is expected to 

be similar to that for PWA 1480.  This comparison of apparent activation energies suggests 

that fatigue crack growth mode transition in PWA 1484 may be controlled by the activation 

of cross slip on the cube plane. 
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Figure R78. Deformation mechanism map for PWA 1480 shows three distinct regimes:  

(1) the formation of faulted dislocation loops in γΝ, (2) activation of cube 
slip in γΝ, and (3) γΝ by-pass by the Orowan mechanism.  Experimental 
data are from Milligan and Antolovich [24]. 

 
R.3 DISCUSSION 

This study has demonstrated that the AFPB fatigue fixture is a viable test method 

for studying fatigue crack growth mode transition and determining the mixed-mode fatigue 

crack growth thresholds for PWA 1484 single crystals.  Experimental data generated herein 

have clarified the range of ∆Kt conditions where macroscopic (111) crack growth occurs 

in PWA 1484.  The FCG threshold for macroscopic (111) cracks is higher than that for 

TPNC.  At 1100°F, fatigue crack growth in PWA 1484 occurs on TPNC planes in the 

near-threshold region.  Both the threshold and the crack deflection angle can be adequately 

described using isotropic continuum theories based on the MTS (local ∆KI) criterion.  

Deviation of the crack path from the local Mode I condition is caused by the dependence of 

the Mode I FCG threshold on crystallographic orientation.  Figure R79 shows the 

orientations of the fracture plane normal and crack growth direction of the actual crack in 
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individual PWA 1484 specimens in a stereographic projection.  The lowest Mode I fatigue 

threshold (SC-16) is located in the central portion of the standard stereographic triangle. 
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Figure R79. Fracture plane normal and crack growth direction (measured along the 
actual crack path) of fatigue cracks in individual PWA 1484 specimens 
plotted in a stereographic projection. 

 

A detailed examination of the initial and final crack orientations shown in Table R2 

indicated that the crack orientations for SC-5, SC-6, SC-7, and SC-8 under pure Mode I are 

<010>/<110>, which are close to those for the deflected cracks in SC-9 and SC-11.  Figure 

R80 compares the da/dN curves for <010>/<110> obtained under pure Mode I (SC-5, SC-6, 

SC-7, and SC-8) against those of deflected cracks that propagated under local Mode I.  There 

is good agreement between the da/dN curves for the deflected (local Mode I) cracks and the 
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pure Mode I cracks.  Similarly, the cracks orientation for SC-9, SC-10, and SC-11 are 

<111>/<11 2 > under pure Mode I.  These crack orientations are comparable to the self-

similar crack in SC-11 and to the deflected (local Mode I) cracks observed in SC-5, SC-6, 

SC-7, and SC-8.  A comparison of the da/dN data of these specimens is shown in Figure R81.  

The negative slope exhibited by several specimens at ∆KI = 5-7 ksi√in is believed to be due 

to the fact that the transition from the initial to final crack planes was gradual, as opposed to 

the abrupt transition assumed in the FRANC2D/L analysis.  Eliminating these data results in 

a scatter band on rates of 2X to 3X which is typical of most da/dN (∆K) behavior.  Thus, the 

local analysis of deflected crack growth brings the data into agreement with the self-similar 

crack growth for a given crystallographic orientation.  The corresponding values of ∆Kth are 

also reasonably (within ±17%) consistent for a given crystallographic orientation. 
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Figure R80. A comparison of da/dN curves for pure Mode I cracks (SC-5, SC-6, SC-7, 

and SC-8) against local Mode I deflection cracks (SC-9 and SC-11) with the 
same <010>/<110> crack orientation. 
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Figure R81. A comparison of da/dN curves for pure Mode I cracks, a Mode II self-similar 

crack, and local Mode I deflected cracks with the approximately same 
<111>/<11 2 > crack orientation. 

 
The thresholds of the TPNC cracks are reasonably consistent with the P&W 

threshold model described in Section R.2.6.  On the other hand, crystallographic (111) cracks 

appear to obey a critical ∆Keq,th criterion, but substantial deviations from this criterion have 

also been observed.  Crystallographic (111) cracks can propagate under pure Mode II or 

mixed Mode I and II loading with a high phase angle (> e.g., φ = 80°).  However, these 

cracks might not propagate if fracture surface asperities in the crack wake make contact and 

cause roughness-induced crack closure.  Nonetheless, the lowest FCG threshold is associated 

with continuum TPNC Mode I cracks since crystallographic (111) cracks have been observed 

to transition to TPNC cracks under decreasing-∆K conditions for pure Mode I, mixed Mode I 

and II, and pure Mode II loading.  Alternately, TPNC Mode I cracks can transit to 

crystallographic (111) cracks under increasing-∆K conditions because the FCG curves for 

these two crack morphologies are different in both the near-threshold and the Paris regimes.  

An accurate prediction of the transition of noncrystallographic and crystallographic (111) 

cracks require consideration of the crack driving force, test temperature, frequency, and the 

entire FCG curve for individual cracking modes.  Because of the above behavior, TPNC 

cracks are expected to control the high-cycle fatigue life, while crystallographic (111) cracks 
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are expected to dictate the low-cycle fatigue life at 20 Hz.  This ranking might vary with 

frequency since crystallographic cracking is favored at higher frequencies. 

Current results suggest that the effects of frequency, temperature, and stress 

intensity range on fatigue crack growth mode transition in <001>/<010> oriented PWA 1484 

subjected to nominal Mode I loading can be treated in terms of a thermal activation model, 

which is given in Equation (R40).  In addition, the effects of mode mixity on the fatigue 

crack growth thresholds of mixed-mode cracks in PWA 1484 can be described in term of the 

∆Keq parameter defined in Equation (R36) or Equation (R37).  Replacing ∆K in Equation 

(R40) by ∆Keq in either Equation (R36) or (R39) leads to 

⎟
⎠
⎞

⎜
⎝
⎛ −′=∆

RT
QAKf eq exp  (R41) 

which has the potential of incorporating the effects of frequency, temperature, and mode 

mixity on fatigue crack growth mode transition.  Since concurrent TPNC cracking and 

crystallographic (111) cracking are feasible, the boundaries of two cracking morphologies is 

likely a scatter band, rather than a distinct boundary.  The validity of Equation (R41) and the 

precise boundary between the various fracture morphologies would benefit from additional 

data. 

 

R.4 STRESS INTENSITY FACTOR SOLUTIONS FOR DEFLECTED CRACKS 
CALCULATED USING FRANC2D/L AND THE ACTUAL CRACK PATHS 

 
Additional K solutions of the actual crack path in other single crystal specimens are 

presented below in Figures R82 through R86.  See Section R.2.2.2 for details on other K 

solutions. 



 

 R-80

Actual Crack Length/Width, a/W
0.5 0.6 0.7 0.8

N
or

m
al

iz
ed

 K

-0.5

0.0

0.5

1.0

1.5

Actual Crack Path

FRANC2D/L
MTS Direction
Anisotropic Material

KIBW/[P(πa)1/2]
KIIBW/[P(πa)1/2]

KIBW/[P(πa)1/2]
KIIBW/[P(πa)1/2]

PWA 1484
<001>/<010>
SC-2-48
48° Phase Angle

 
 Figure R82.  K solutions for SC-2 at φ =45°. 
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 Figure R83.  K solutions for SC-6 at φ = 48°. 
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 Figure R84.  K solutions for SC-7 at φ =80°. 
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 Figure R85.  K solutions for SC-13 at φ = 45°. 
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 Figure R86.  K solutions for SC-16 at φ = 90°. 

 
 
R.5 DERIVATION OF FATIGUE CRACK GROWTH MODE TRANSITION 

MODEL 
 

The transition of fatigue crack growth modes by a thermal activated process is 

modeled by considering the strain rate at the crack-tip plastic zone boundary.  According to 

linear-elastic fracture mechanics, the strain-range, ∆ε, of a Mode I crack subjected to a stress 

intensity range, ∆K, is given by 

( )
prE

FK
π

θε
2

∆
=∆  (R42) 

when E is the Young’s Modulus, pr  is the process zone size, and f(θ) is a trigometric 

function.  The strain rate at the plastic zone boundary is 

( )
prE

FKf
t π

θεε
2

∆
=

∆
∆

=  (R43) 

since the cyclic frequency, f = 1/∆t.  According to thermal activated flow theory, 
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⎛
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RT
Q

n

o
o exp

σ
σεε  (R44) 

when σ is stress, σo is a reference stress, n is the stress exponent, Q is the activation energy, 

R is the universal gas constant, and T is absolute temperature.  Equating Equation (R43) to 

(R44) leads one to 

( )
⎥⎦
⎤

⎢⎣
⎡−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

∆
RT
Q

rE
FKf

n

o

p
o

p

exp
2 σ

σ
ε

π
θ  (R45) 

where σp is the stress at the plastic zone boundary.  Rearranging Equation R45) gives 

⎥⎦
⎤

⎢⎣
⎡−′=∆

RT
QAKf exp  (R46) 

when 

( )θ
σ
σ

επ 12 −
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=′ FrEA

n

o

p
op  (R47) 

 

R.6 CONCLUSIONS AND RECOMMENDATIONS 

1. Mixed-Mode stress intensity factor solutions from anisotropic and isotropic 

analyses were similar for the 2-D test specimen geometries analyzed in this program.  Since 

results were indistinguishable over the practical range of crack lengths employed for crack 

growth testing, isotropic analysis results were used to control the decreasing-K crack growth 

threshold tests performed herein. These results suggest that for engineering purposes, it may 

be sufficient to employ isotropic analysis to define the crack driving force when performing 

fracture mechanics assessments of single crystal nickel components. 

2. During mixed-mode decreasing-K crack growth threshold testing, (111) 

cracks in PWA 1484 initially propagated in a straight, self-similar manner but tended to 

deflect out of plane as transprecipitate noncrystallographic (TPNC) cracks.  In certain 

instances, the transition occurred immediately on changing the loading from the Mode I 

precracking to mixed-mode testing. 

3. The threshold stress intensities for (111) cracks under mixed Mode I and II 

and pure Mode II are higher than those for Mode I (111), as well as for TPNC cracks.  
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Because of this, initially crystallographic (111) cracks can propagate below their threshold 

stress intensities by deflecting to TPNC cracks.  Consequently, it is recommended that Mode 

I threshold stress intensity factors for TPNC cracks be employed in HCF assessments. 

4. Mode I cracks on (111) or TPNC planes can transition to crystallographic 

(111) cracks when the ∆K increases beyond a transition limit, ∆Kt.  The Paris slope for 

crystallographic (111) cracks is higher than that for Mode I and TPNC cracks.  Consequently, 

when this fracture morphology occurs, it is recommended that da/dN (∆K) curves for 

crystallographic (111) cracks be used for LCF assessments 

5. Following deflection, mixed-mode TPNC cracks in PWA 1484 propagate on 

or near the maximum principal stress plane where ∆KII = 0.  Thus, for engineering purposes, 

TPNC cracks subjected to mixed-mode loading can be treated as  

local Mode I cracks governed by a Mode I threshold.  In so doing, crack deflection 

needs to be accounted for in computing the local stress intensity factors for deflected cracks. 

6. The Mode I threshold in PWA 1484 is a function of crystallographic 

orientation, and thus depends on the orientation of the crack plane (n) and the crack growth 

direction (a).  The orientation dependence of ∆KI,th (n, a) can be predicted reasonably well on 

the basis of the threshold values for the principal (<001>) axes through a transformation 

procedure using the 3-D model developed by P&W. 

7. Current data indicate that the minimum value of ∆KI,th at R=0.5 is 2.67 ksi√in 

and occurs for a local Mode I deflected TPNC crack with a <1 2 0> + 10°/< 1 02> orientation.  

The use of a minimum ∆KI,th appears to be a tractable approach for HCF assessments of 

single crystal material. However, additional testing is warranted to verify that this minimum 

∆KI,th(n, a) value is valid for all orientations, as well as to define the dependence of the 

minimum ∆KI,th(n, a) on load ratio (R). 

8. Mixed-mode crystallographic (111) cracks may be treated in terms of an 

equivalent ∆K parameter, ∆Keq, in some cases, but not in all situations.  Additional work is 

required to better understand why this approach does not work for all situations, and to 

establish a universal crack driving force for this cracking mode/morphology. 

9. Mode I TPNC crack growth and crystallographic (111) crack growth are 

competing processes that exhibit different da/dN characteristics including different 
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thresholds and Paris slopes; in some cases these processes can occur concurrently (e.g. in a 

single test specimen).  The dominance of one crack growth morphology over another is 

dictated by the da/dN response of individual crack morphologies at a given ∆K and the 

local ∆K when the crack alters its path. 

10. The transition boundary between crystallographic (111) and TPNC fatigue 

crack growth depends on temperature, cyclic frequency, and applied stress intensity factor.  

An engineering model to describe this transition has been developed (Equation R40) on the 

basis of thermal activation of (111) and cube slip in the cyclic plastic zone of the crack tip.  

11. The asymmetric-four-point-bend (AFPB) test technique is a viable technique 

for studying fatigue crack growth mode transition and determining the mixed-mode fatigue 

crack growth thresholds of PWA 1484 at elevated temperatures. 
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APPENDIX S 

HCF BASELINE ENDURANCE LIMIT MODELING 
 
 
 
 

 
 

Figure S1.  Modified MT3-S (short) specimen. 
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Figure S2.  Specimen <001> K1LAO. 

 
 

 
Figure S3.  Specimen <001> A2973. 
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Figure S4.  Specimen <011> A296F. 

 

 
Figure S5.  Specimen <011> A295M. 
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Figure S6.  Specimen <001> A297A. 

 

 
Figure S7.  Specimen <001> K1L5R. 
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Figure S8.  Specimen <001> K1L6D. 

 

 
Figure S9.  Specimen <001> K1L9C. 
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Figure S10.  Specimen <001> K1L2U. 

 

 
Figure S11.  Specimen <011> A296K. 
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APPENDIX T 

INITIATION FACET LOCATION AND ORIENTATION 

A laser location technique was used to locate and orient the initiation facet of 

each specimen in the vertical direction such that the normal to the facet plane and the 

specimen axis were in the same vertical (Y-Z) plane (see Figure T1).  The specimen X-Y-

Z axes were defined with respect to the specimen axis and one end face of the specimen.  

The specimen Z-axis was drawn along the specimen axis with the positive Z-direction as 

shown in FigureT1.  The specimen Y-axis was defined to be vertically upwards after 

locating the initiation facet in the vertically upward direction.  The specimen X-axis was 

drawn in the horizontal direction such that the X-Y plane was normal to the specimen Z-

axis.  Thus, the X-Y plane was along the specimen end face. 

3 - <001>

Z - specimen axis

X

Y

δ
γ

facet
2 - <010>

1 - <100>
ψ

 
 

Figure T1. Specimen, crystal, and facet orientation and definition of Laue angles. 

T.1 LASER FACET LOCATION TECHNIQUE 

The laser location technique consisted of projecting a laser beam, aligned at a 

fixed angle to the specimen axis, on to the initiation facet.  The specimen was rotated 

about its’ axis (Z-axis) until the reflection of the laser beam, off the facet, was in the 

same vertical plane (Y-Z plane) as the specimen axis (see Figure T1).  The specimen was 

fixed in this orientation in a V-block after this laser location procedure.  This procedure 
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fixed the orientation of the initiation facet of each specimen in the Y-Z plane and also 

provided a fixed reference frame for defining the orientation of the crystallographic axes 

with respect to the specimen X-Y-Z axes. 

T.2 X-RAY DIFFRACTION LAUE ANGLE MEASUREMENT 

The orientation of the crystallographic axes was determined using Laue X-ray 

diffraction techniques.  Using the Laue techniques, the orientation of the <001> axis was 

determined by measuring the orientation angles δ and γ (see Figure T1).  The angle δ is 

defined as the angle between the <001> axis and it’s projection on the Y-Z plane.  The 

angle γ is defined as the angle between the projection of the <001> axis on the Y-Z plane 

and the Z-axis (or specimen axis).  The positive direction for both these angles is 

indicated in Figure T1. 

In order to completely define the orientation of the crystallographic axes in 

three-dimensional (3-D) space, one more angle needs to be measured.  The angle β 

shown in Figure T2 was also measured by observing the pattern of the dendrites on the 

end of the specimen.  As shown in Figure T2, the angle β was defined as the angle 

between the projection of the <010> axis on the X-Y plane and the Y-axis (β is positive 

in the clockwise direction from the Y-axis).  Based on the measured angles δ, γ, and β, it 

is possible to derive an expression for the angle ψ (Figures T1, T2) which is the angle 

between the <010> orientation and the negative Z-axis.  These angles were used to 

completely define the orientation of the crystal axes in 3-D space using direction cosines 

(described in the next section). 

Furthermore, based on the measured angles δ, γ, and β, it was possible to use 

classical stereographic projection techniques to uniquely identify the octahedral plane on 

which fatigue initiation occurred.  This initiation plane was fixed for each specimen to be 

in the vertical orientation using the laser location technique before the measurement of 

the Laue angles.  The octahedral planes were identified as, 1, 2, 3, or 4 using the 

convention shown in Figure T3.  The identification number of the octahedral plane on 

which fatigue initiation occurred was determined using the measured Laue angles and the 

stereographic projection technique for each specimen and is given in Table 4.29 of 

Section 4.3.3.4 (Chapter 4 of main report). 
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Figure T2. Orientation angles of the crystal axes (1-2-3) with respect to the specimen 

axes (X-Y-Z). 
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Figure T3.   Plan view of octahedral <111> planes and <110> family of slip directions. 
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APPENDIX U 

TRANSFORMATION EQUATIONS 

 
U.1  DIRECTION COSINES 

The three Laue angles δ, γ, and β, were used to define the direction cosines 

between the loading axes (X-Y-Z) and the crystal axes (1-2-3).  The direction cosines 

between the loading coordinate system X-Y-Z with respect to the crystal coordinate 

system 1-2-3 are given in Table U1.  The notation used for the direction cosines was of 

the form aij, i = 1, 3, and j = 1, 3.  Thus, a11 = cosine(angle between the 1-axis and the X-

axis), a23 = cosine(angle between the 2-axis and the Z-axis), etc. Once the orientations 

between the two coordinate systems are described, mathematically, in terms of the 

direction cosines (Table U1), it is possible to proceed with the transformation of the 

stress and strain tensors between the two axes.   

Table U1. Direction Cosines Between the X-Y-Z and the 1-2-3 Axes 
 

 X Y Z 
1 a11 a12 a13 

2 sin(ψ)sin(β) sin(ψ)cos(β) -cos(ψ) 
3 sin(δ) cos(δ)sin(γ) cos(δ)cos(γ) 

 

The angle ψ in Table U.1 is derived in terms of the angles δ, γ, and β, and is 

given by: 

 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )γδββδ

γδ
ψ

sincoscossinsin

coscos
tan

+
=  (U1) 

 
The direction cosines, a11, a12, and a13, can be determined using classical properties and 

relationships of direction cosines and the known direction cosines in Table U1.  Thus, a11 

= a22*a33 - a23*a32, a12 = a23*a31 - a21*a33, and a13 = a21*a32 - a22*a31. 
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U.2 ELASTIC STRESS/STRAIN TRANSFORMATION FROM LOADING  
 AXES TO CRYSTAL AXES 
 

The symmetry in the stress and strain tensors can be exploited to express these 

tensors in the “contracted” notation, thereby, simplifying the resulting mathematical 

description of the transformation equations and also making them more suitable for 

implementation on a computer.  The following notation is used for the stress and strain 

tensors in the two coordinate systems: 
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 (U3) 

 
The transformation of the elastic stresses, {σXYZ}, in the loading coordinate system to the 

stresses, {σ123}, in the crystal coordinate system, is given by the following matrix 

equation: 

 
{σ123} = [P]{σXYZ} (U4) 

 
where, the stress transformation matrix, [P], is given in terms of the direction cosines as: 
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[P]  =  

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+++
+++
+++

331131133213331231123211331332123111

312333213322322332213122332332223121

231121132213231221122211231322122111

333133323231
2
33

2
32

2
31

232123222221
2
23

2
22

2
21

131113121211
2
13

2
12

2
11

222
222
222

aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa

aaaaaaaaa
aaaaaaaaa
aaaaaaaaa

 (U5) 

 
 

The transformation of the elastic strains, {εXYZ}, in the loading coordinate system to the 

strains, {ε123}, in the crystal coordinate system can be described by the following matrix 

equation: 

 
{ε123} = [Q]{εXYZ} (U6) 

 
where, the strain transformation matrix, [Q], is given in terms of the direction cosines as: 
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Equations. (U4) through (U7) are used to transform elastic stresses and strains in the 

loading axes (X-Y-Z) to stresses and strains in the crystal axes (1-2-3).  These equations 

cannot be used if the applied stresses in the loading axes are high enough to cause 

yielding of the material.  A nonlinear anisotropic elastic-plastic finite element analysis 

will then be required to compute the stresses, {σ123}, and strains, {ε123}, in the crystal 

coordinate system. 
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U.3 STRESSES AND STRAINS ON OCTAHEDRAL PLANES AND ALONG  
 SLIP DIRECTIONS 
 

Once the stresses, {σ123}, and strains, {ε123}, are determined in the crystal 

coordinate system (using either the above equations or a finite element analysis), then 

the stresses, {σoct}, and strains, {εoct}, normal to the four octahedral planes and the 

resolved shear stresses, {τs}, and strains, {γs}, along the twelve slip directions (see Figure 

U3) can be computed.  The following notation is used for the stresses and strains normal 

to the four octahedral planes: 

 

{σoct} = 
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where, the subscripts, 1, 2, . . . , 4 refer to the four octahedral planes shown in Figure U3.  

The following notation is used for the resolved shear stresses and strains along the twelve 

primary slip directions: 

{τs} = 
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        and      {γs} = 
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where, the subscripts, 1, 2, . . . , 12 refer to the twelve primary slip directions shown in 

Figure U3.   

The octahedral stresses, {σoct}, can be determined using the known stresses, 

{σ123}, in the crystal coordinate system, by following matrix equation: 
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{σoct} = [R]{σ123} (U10) 

 
where, the stress transformation matrix, [R], is given by: 
 

[R] =  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−
−−

2   22111
222   111
22   2111
2   2   2   111

3
1  (U11) 

 
The octahedral strains, {εoct}, can be determined in a similar fashion using the known 

strains, {ε123}, in the crystal coordinate system, by the following matrix equation: 

 

{εoct} = [S]{ε123} (U12) 
 
where, the strain transformation matrix, [S], is given by: 
 

[S] =  
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The resolved shear stresses along the primary slip directions, {τs}, can be 

determined using the known stresses, {σ123}, in the crystal coordinate system, by the 

following matrix equation: 

{τs} = [T]{σ123} (U14) 
 
where, the stress transformation matrix, [T], is given by: 
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[T] =  
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The resolved shear strains along the primary slip directions, {γs}, can be determined in a 

similar fashion using the known strains, {ε123}, in the crystal coordinate system, by the 

following matrix equation: 

 
{γs} = [U]{ε123} (U16) 

 
where, the strain transformation matrix, [U], is given by: 
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APPENDIX V  

CRITICAL PLANE MODELS AND SEARCH ALGORITHMS 

Six different critical plane models were evaluated in the present study.  These 

were the Findley (FIN), Walls, Fatemi-Socie-Kurath (FSK), Shear stress range (SSR), 

Chu-Conle-Bonnen (CCB), and McDiarmid (McD)  parameters. 

 

V.1 CRITICAL PLANE MODELS 

The FIN parameter was calculated using the maximum shear stress amplitude, 

τa, on a ‘critical slip direction’ and the maximum normal stress, σmax, on the critical slip 

plane: 

maxστ kaFIN +=  (V1) 
 
where k is a fitting parameter.  In the present study, k = 1 was used for all the calculations 

of the FIN parameter. 

The FSK parameter was calculated using the maximum shear strain amplitude, 

γa, on a ‘critical slip direction’ and the maximum normal stress, σmax, on the critical slip 

plane: 

⎟
⎟
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⎞

⎜
⎜

⎝

⎛

⎟
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⎠

⎞

⎜
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yield
kaFSK

σ

σ
γ max1  (V2) 

 
where σyield, is the yield strength and k is a fitting parameter.  In the present study, k = 1 

was used for all the calculations of the FSK parameter. 

The Walls parameter was calculated using the maximum shear strain, γmax, on a 

‘critical slip direction’ and the maximum normal strain, εmax, on the critical slip plane: 
 

( ) ( )

5.0

2maxmaxarctanmaxmax
50 ⎟⎟

⎠

⎞
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⎝

⎛
+

+=
πεγ

π
εγWalls  (V3) 

 
The SSR parameter was calculated using the maximum shear stress range along a ‘critical 

slip direction’ during the fatigue cycle.  The CCB parameter was calculated as the sum of 
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two products: (i) the product of the maximum shear strain amplitude, γa, along a ‘critical 

slip direction’ and the maximum shear stress, τmax, on the critical slip plane; and (ii) the 

product of the maximum normal strain amplitude, εa, along a ‘critical slip direction’ and 

the maximum normal stress, σmax, on the critical slip plane: 
 

maxmax2 σετγ aaCCB +=  (V4) 
 

The McD parameter was calculated as the sum of the maximum shear stress 

amplitude, τa, along a ‘critical slip direction’ and the maximum normal stress, σmax, on 

the critical slip plane: 

 

maxστ kMcD a +=  (V5) 
 
where, k, is a curve-fit parameter.  In the present study, k = 0.1 was used for all the 

calculations of the McD parameter.  Although the McD parameter looks similar to the 

FIN parameter, it differs in the critical plane search algorithm as described in the next 

section. 

V.2 CRITICAL PLANE SEARCH ALGORITHMS 

The critical plane was determined by first computing each of the critical plane 

parameters on each of the 12 slip directions throughout the fatigue cycle.  The max 

normal stresses and strains (computed normal to the octahedral plane associated with the 

slip direction) and the max shear stress and strain amplitudes, on each slip direction, 

required to compute the different parameters, were determined by scanning through all 

the computed stresses and strains at all the time steps of the fatigue cycle.  The ‘critical 

slip direction’ for the FIN, Walls, FSK, SSR and CCB parameters was determined as the 

slip direction on which the damage parameter was a maximum during the fatigue cycle.  

For the McD parameter, the ‘critical slip direction’ was determined as the slip direction 

along which the shear stress amplitude, τa, was a maximum during the fatigue cycle.  The 

McD parameter (Equation. V5) was then determined along this critical slip direction.  In 

all cases, the critical slip plane was the octahedral plane that contained the critical slip 

direction. 
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APPENDIX W  

DAMAGE PARAMETER ANALYSIS 

All the calculations were performed using the following elastic constants, measured 

along the primary <001> orientations, for PWA 1484 at 1100oF: E = 15.69 msi, ν = 0.3995, G = 

15.93 msi. 

Figures W1 through W5 show plots of the calculated damage parameters versus life for 

all the specimens using the applied cyclic stresses (from Table 4.28, Section 4.3.3.1) and the 

measured crystal orientations (Table 4.28, Section 4.3.3.1) for each specimen.  These figures also 

include a curve-fit of the form,  

 

Damage parameter = A N-b + C N-d (W1) 

 

where the curve-fit parameters, A, b, C, d, were determined by regression.  Each figure also 

shows the curve-fit correlation coefficient, R2, which was used as a measure of how well the 

damage parameter correlated the fatigue data for the different specimen orientations.  These 

values of R2 for the different damage parameters are also included at the bottom of Table 428 of 

Section 4.3.3.4. 

PWA 1484, Findley Damage Parameter versus Life, 1100 F, R = 0.1
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Figure W1.  Findley damage parameter versus life for PWA 1484 at 1100oF and R = 0.1. 
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PWA 1484, Fatemi-Socie-Kurath Parameter versus Life, 1100 F, R = 
0.1
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Figure W2.  Fatemi-Socie-Kurath parameter versus life, PWA 1484, 1100oF, R = 0.1. 

 
 

PWA 1484, Max Shear Stress Range versus Life, 1100 F, R = 0.1
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Figure W3.  Max Shear Stress Range parameter, PWA 1484, 1100oF, R = 0.1. 
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PWA 1484, Chu-Conle-Bonnen Parameter versus Life, 1100 F, R = 0.1
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Figure W4.  Chu-Conle-Bonnen parameter versus life, PWA 1484, 1100oF, R = 0.1. 

 
 

PWA 1484, McDiarmid Damage Parameter versus Life, 1100 F, R = 0.1
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Figure W5.  McDiarmid damage parameter versus life, PWA 1484, 1100oF, R = 0.1. 
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From an inspection of the results in Figures W1 through W5, it appears that the SSR, 

CCB, McD, FSK and the Walls parameters were quite successful in correlating the fatigue data 

for the different specimen orientations.  Considering the variability that is usually associated with 

single crystal fatigue data, R2 values around 0.6 are assumed to indicate data correlations that are 

quite good.  The SSR and McD parameters use the shear stress range along the slip directions to 

determine the critical plane, while the Walls parameter uses the max normal and shear strains 

together with the mode mixity ratio of the shear and the normal strains on the octahedral planes 

to determine the critical plane.  The FSK damage parameter which uses a combination of the 

shear strain amplitude (along the slip direction) and the normal stress to the octahedral plane 

correlated the fatigue data quite well.  The CCB damage parameter which uses an energy 

formulation also performed reasonably well.  Both the FIN and McD damage parameters which 

use a combination of the shear stress amplitude (along the slip direction) and the normal stress to 

the octahedral plane seemed to be highly dependent on choice of the fitting parameter, k.  They 

were able to correlate the current fatigue data well when k ≅ 0 was used.  In this case these 

parameters were similar to the SSR parameter. 
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APPENDIX X 
VALIDATION OF THE “ROBUST ATTACHMENT DESIGN 

INTEGRATING CONTACT AND LIFING” (RADICAL) PROCESS 
 
 
X.1 INTRODUCTION 

 This appendix presents an addendum to work performed under the BAA 

contract, described in the basic report (Section 4.5.1), where efforts were focused upon 

the development of advanced stress and life prediction techniques for bladed attachments 

under HCF loading, or combined HCF/LCF loading.  The prediction of stress in blade 

attachment regions centered around an “edge-of-contact” (EOC) approach in which 

region stresses are known to peak, and are assumed to be a strong driver in certain 

attachment cracking scenarios.  In the initial study, determination of the EOC stress was 

performed using a code known as CAPRI (for contact between similar materials) and a 

code known as CAFDEM (for contact between dissimilar materials).  As described in 

Section 4.5.2, P&W evaluated the CAPRI code against laboratory Single Tooth Fir Tree 

(STFT) data with reasonable success.  However, translation of this into an engine 

environment in which attachment stresses are driven by HCF modal response in the 

airfoil required the development of an additional analysis process.  This process, “Robust 

Attachment Design Integrating Contact and Lifing” (RADICAL) involves a several step 

process to translate the effect of airfoil modal excitation into attachment HCF stresses.  

Under the current effort, the RADICAL process has been exercised against several field 

and laboratory test cases, for which there is attachment EOC cracking experience.  The 

objective is to understand the robustness of the process as well as to calibrate it. In 

Section X.2, the steps of the RADICAL process are reviewed.  The subsequent sections 

of this appendix present a description of the hardware on which the calibration/validation 

is performed, the analysis assumptions and process, and the results of the analyses.  

 

X.2 ANALYSIS METHODOLOGY—RADICAL PROCESS 

The RADICAL process consists of 7-steps as illustrated in Figure X.1 and listed 

below: 
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Step 1: Run a 3D steady-state contact analysis with friction (ANSYS) 

Step 2: Identify measured or targeted modes and amplitudes (experimental 

data) 

Step 3: Perform a pre-stressed 3D modal analysis (ANSYS) 

Step 4: Scale modal vibratory forces based on known experimental data 

(ANSYS) 

Step 5: Perform a 3D quasi-static vibratory contact analysis with friction 

(ANSYS) 

Step 6: Extract pressure plane normal loads, tangential loads, and moments 

(ANSYS) 

Step 7: Run MATLAB based lifing code with loads from step 6 (PW/CAPRI 

or CAFDEM) 

A flowchart that illustrates the ANSYS methodology used to obtain the vibratory loads 

for the quasi-static vibratory contact analysis is presented as Figure X.2.  For a more 

detailed explanation of each step listed above, see Section X.5. 

 

X.3 DESCRIPTION OF CALIBRATION HARDWARE 

X.3.1 Single Crystal 

A brief overview of each blade’s experience is provided below. 

X.3.1.1 Blade A (PWA 1484) 

 Fir tree edge-of-contact cracking, subsurface initiated. 

X.3.1.2 Blade B (PWA 1480) 

 Experience indicates shallow, fretting induced cracking at edge of contact on 

the upper serration only (see Figure X.3).  However, this cracking does not continue to 

propagate into the blade.  Cracking is due to a low level of vibration, which has been 

confirmed with strain gage data. 
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X.3.1.3 Blade C (PWA 1422) 

A flight test engine fractured one blade in the attachment area. Loss of the 

primary blade again resulted in overstress of all remaining blades.  Fracture of the initial 

blade was caused by a crack that initiated just above the bearing surface on the top tooth.  

Additional engines fractured one blade below the platform; the remaining 

blades were all fractured in overstress.  HCF initiated cracks propagated by continued 

operation with elevated dynamic stresses.  This resulted in rupture of the primary blades. 

 

X.4 ANALYSIS ASSUMPTIONS 

 Common assumptions for all three turbine stages are: 

1.) ANSYS version 7.0 used for all modal and contact analyses. 

2.) A pre-stressed modal analysis is used to obtain vibratory loads for contact 

analyses. 

3.) A cyclic symmetry analysis was not performed since the Stiffwise Bending 

mode is a blade mode and not a wheel-blade mode at a specific nodal 

diameter. 

4.) Two quasi-static vibratory contact analyses were performed for each turbine 

stage, with coefficient of friction equal to 0.3 and 0.7 (6-total runs). 

5.) Frictionless contact analyses are NOT path dependent and do not require 

ANSYS FEA loads to be applied in the exact order in which they are 

applied in actual hardware.  Since all analyses detailed in this report contain 

friction, the non-linear models are path dependent and the order in which 

loads are applied does matter.  However, the exact transient load history for 

each turbine stage was not available for this RADICAL validation study.  

Therefore, the static contact analyses performed do not take into account: 

a. Thermal transient gradient differences as a function of engine speed 

b. Gas pressure differences on the Blade as a function of engine speed 
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c. Frictional variations due to humidity, corrosion, etc as a function of 

engine speed or cycles 

d. Differences in static and dynamic coefficient of friction as a function of 

engine speed 

e. Variations in Disk preload boundary conditions (due to unmodeled 

adjacent disk segments) as a function of engine speed. 

X.4.1 Blade A 

1.) 0 RPM engine speed (shaker test) 

2.) Shaker Block and Blade have uniform elevated temperature 

3.) Materials modeled (properties provided in ANSYS database format 

provided by Pratt & Whitney): 

• SHAKER BLOCK—similar to INCO 718 (AMS5663) and assumed to 

be identical to the Blade’s corresponding wheel (not modeled) 

• BLADE – PWA1484 

4.) No gas load applied to Blade since none exists in shaker tests 

5.) Three jack screws press against the bottom of the Fir Tree.  Each 

jackscrew provides 400 in-lbf of torque.  The normal load provided by 

each jack screw is: 

N = τ/Kd = 400 in-lbf/ (0.2 x 0.625 in) = 3200 lbf/jack screw 

where: N = jack screw normal load 

 τ = jack screw torque 

 K = torque factor = 0.2 for zinc-plated bolts or when condition 

is unknown1 

 d = major diameter of jack screw 
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The total jackscrew load (3 screws x 3200 lbf = 9600 lbf) was applied to 

the bottom-most plane of the Fir Tree as a 10,256 psi pressure (=9600 

lbf/0.936 in2). 

6.) The first bending vibratory mode of the blade is excited. 

7.) All holes have been removed from the Block for modeling efficiency. 

8.) The Load Bar and Push Block were not modeled as shown in the Shaker 

Block assembly of Pratt & Whitney Detailed Drawing #BB1113. 

9.) The Block is constrained as shown in Figure X.4.  A strap holds the Block 

to a Shaker Table. 

10.) Friction is not turned on until 10% of the jackscrew pressure is applied. 

X.4.2 Blade B (PWA 1480) 

1.) 60-blades per stage. 

2.) 10204 RPM engine speed (full speed). 

3.) Non-uniform temperature distribution used as shown in Figure X.7 

provided by Pratt & Whitney. 

4.) Materials modeled (properties provided in ANSYS database format 

provided by Pratt & Whitney): 

• BLADE—P1480  

• DISK—INCO-718 

5.) Gas Pressures are shown in Figure X.8. 

6.) Preloads due to adjacent wheel segments are applied as nodal forces and 

shown in Figure X.9. 

7.) The first bending vibratory mode of the blade is excited. 

8.) An averaging constraint equation ties the Disk to the Fir Tree in the Axial 

DOF only.  There are two averaging constraint equations as shown in 

Figures X.9 and X.10.  The constraint equations ensure that the FEA 

nodes of the Disk move by the same average amount as the nodes on the 
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Fir Tree.  These constraints exist due to the presence of unmodeled 

geometry that locks these planes in place.  The Disk and Blade planes 

constrained are allowed to rotate and deform independently—it’s just the 

average y-displacement that is constrained.  The constraint equation works 

as follows: 
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 Where, yU = Average displacement in y-direction 

  iuy = y-displacement for node i 

  T = total number of nodes 
 

A macro automatically generates these constraint equations.  The bending 

(first flexure) vibratory mode excites the blade. 

9.) Friction is not turned on until 25% of full speed is reached when µ = 0.3 or 

0.7, respectively.  Friction is not turned on sooner due to model stability 

problem when µ = 0.3 only. 

10.) The two symmetry planes of the Disk’s solid elements are coupled (Figure 

X.10) in all 3-DOFs (1 couple per node pair) to ensure the planes behave 

in the exact same manner from a deflection standpoint.  If two adjacent 

blade segments were modeled, the interface between these two segments 

would consist of a shared plane (e.g. the pressure side of one Disk is tied 

to the suction side of the adjacent Disk).  Since two Disks are not 

modeled, the couples serve this purpose of ensuring shared planes behave 

in the same manner. 

11.) Due to the combination of 2D axisymmetric (lower wheel) and 3D solid 

elements (upper wheel region with slot and blade) in ANSYS, the elastic 
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modulus, conductivity, density, and pressures of the solid elements are 

increased by 60X (the blade count).  This is because, in ANSYS, loads are 

applied to axisymmetric models on a per circle basis.  Figure X.10 shows 

how to attach the solid elements to the axisymmetric elements. 

X.4.3 Blade C 
 

1.) 8240 RPM engine speed (80% full speed).  This is the speed in which 

resonance occurs. 

2.) A Stiffwise Bending vibratory mode excites the blade at 412 Hz. 

3.) Non-uniform temperature distribution used as shown in Figure X.11 

provided by Pratt & Whitney. 

4.) Materials modeled (properties provided in ANSYS database format 

provided by Pratt & Whitney): 

• BLADE—PWA 1422 

• DISK—PWA 1074 

5.) Gas Pressures are shown in Figure X.12.  The real gas pressure gradient 

was not available, but the gas pressure resultant forces were available in 

the axial and transverse directions.  The blade was divided into two 

arbitrary sections (an aft and forward half) and the pressures in these two 

regions were adjusted until the given axial and transverse loads were 

obtained.  This non-real pressure distribution gives the correct gas 

pressure induced Blade forces, but does not necessarily capture the correct 

gas pressure induced moments.  Gas pressures are not applied until 25% 

engine speed is obtained (convergence instability arises if pressure is 

applied sooner).   

6.) No preload was applied to the Disk boundaries in contact with adjacent, 

unmodeled Disk segments.  This data was not available during modeling. 

7.) An averaging constraint equation ties the Fir Tree hook to the Disk 

axially.  A second averaging constraint equation ties opposite sides of the 
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Shroud together in the normal direction (where adjacent Shrouds would 

interface).  See assumption #7 for the PW4000 Blade for more details 

about the averaging constraint equations.  Figure X.13 illustrates 

constraint equation locations. 

8.) Friction is applied from the start (0% engine speed) of the analyses. 

9.) The two symmetry planes of the Disk are coupled.  

 

X.5 ANALYSIS PROCESS 
 
 In Section X.2, the Analysis Methodology indicates that there are 7-steps to the 

RADICAL process.  A more detailed explanation of each of these steps follows. 

X.5.1 STEP 1:  Steady-State Contact Analysis with Friction (ANSYS) 

 Assumptions, boundary conditions, and loads used for this step are detailed in 

Section X.4.  Non-linear geometry is turned on to allow for large displacements, which 

may or may not (pending sufficient load) allow the pressure planes of the Fir Tree to 

conform in a more realistic manner to the broach slot of the Disk. 

 Node and element count data for each turbine stage and related figures are 

detailed in Table X.1.  To model contact, target elements (TARGE170) were applied to 

the Disk’s pressure planes and contact elements (CONTA173/174) were applied to the 

Fir Tree’s pressure planes.  The presence of internal Blade cavities is also indicated in 

Table X.1.   

 

Table X.1.  Mesh, Contact, and Internal Cavity Details 
 

MODEL NODE 
COUNT

ELEMENT 
COUNT

TARGET/CONTACT 
ELEMENTS

INTERNAL BLADE 
CAVITIES MODEL DETAILS

Blade A 140415 100491 TARGE170/CONTA173 yes Figures X.1-X.3
Blade B 181857 210892 TARGE170/CONTA174* yes Figures X.4-X.7
Blade C 110315 77358 TARGE170/CONTA174* no Figures X.10-X.12

*  CONTA174s are the same as CONTA173 except with midside node capability.
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X.5.2 STEP 2:  Identify Experimental Modes and Amplitudes of Interest 
 

For each turbine stage, Pratt and Whitney has identified modes of interest and 

their stimuli as shown in Table X.2 and listed in the assumptions of Section X.4.  The 

amplitude of the response and the means used to measure them are also listed in Table 

X.2.   

 

Table X.2.  Stimuli, Excited Modes, and Experimental Amplitudes 
 

MODEL
Stimuli 

Frequency 
(hz)

Nodal 
Diameter

Excited Blade 
Mode

Strain Gauge, Stress, or 
NSMS Probe Instrument 

Data

Instrument 
Amplitude

Blade A 0 1st Bending Strain Gauge #64 0.001259 in/in
Blade B 0 1st Bending Radial Stress 4.0 ksi

Blade C 4121 0 Stiffwise Bending 
(SWB)

NSMS Probe hoop 
deflection at Blade's TE, 

88% span2
0.0106253 in

1 f = ωE/(60 sec/min), where f = stimuli frequency (hz), ω  = engine speed (RPM), E = excitation (1/rev)
2 Page 55 and D1 of reference 2 (NSMS is Non-interference Stress Measurement System)
3 Page 37 of reference 2
4 Located 0.82" from top of attachment's platform on PS leading Edge

 
 
X.5.3 STEP 3:  Pre-Stressed Modal Analysis (ANSYS) 
 

A static analysis is performed before the modal analysis to include the thermal 

load, gas path pressure, and spin loading pre-stressing effects on the stiffness matrix used 

in the modal analyses.  The Block Lanczos equation solver was used to extract the 

frequencies of interest.   

X.5.4 STEP 4:  Scale Vibratory Forces Based on Known Experimental Data 
(ANSYS) 

 
Vibratory loads obtained from the modal analysis (step 3) are scaled and applied 

as nodal forces to the quasi-static contact analysis (step 5) using an ANSYS macro.  See 

Figure X.2 for a graphical illustration of this process. 
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X.5.5 STEP 5:  3D Quasi-Static Vibratory Contact Analysis with Friction 
(ANSYS) 

 
Loads in the contact analysis are ramped in a saw-tooth manner as shown in 

Figure X.14.  The assembly or idle start condition (1) is ramped to the steady-state 

condition (2).  After steady state is reached, the vibratory load is applied to the blade in 

one direction (3), and then in the reverse direction (4).  Friction loads are then “shaken 

out” by repeating the forward (5) and reverse (6) application of the vibratory load.  Each 

ramp between these 6 load steps consists of 5 sub-steps (a minimum of 30 sub-steps in 

total, depending on model stability).  Large deflections are allowed if the loads are 

significant enough.   

Six (6) load-steps are used for Blade A and Blade C.  7 load-steps are used for 

Blade B to assist model stability since axisymmetric elements are used in this model only 

(i.e. there’s more load than in the other blades cases).  The extra load step in Blade B is 

used to get the model to 50% engine speed during the initial ramp up to steady-state.   

X.5.6 STEP 6:  Extract Pressure Plane Contact Loads (ANSYS) 

An ANSYS macro extracts normal, tangential, and moment loads from the Fir 

Tree pressure planes.  These loads are used as input into PW/CAPRI or CAFDEM (step 

7).  The macro radlx.mac converts the 3D loads of ANSYS to 2D loads as used in step 7. 

To use the macro radlx.mac, resume from a database that has the contact 

elements, enter the post1 processor in ANSYS, read in the results (*RST file), and issue 

the following command for each contact surface separately: 

radlx,'diskcm','bladecm',drad,brad,gccs,nsec,tol 

'diskcm'  = Disk Contact Side Component Name (in single quotes) or Interface 
Number  

'bladecm' = Blade Side Component Name (in single quotes)  

drad = Radius on Disk Side  

brad = Radius on Blade Side  

gccs = Global cylindrical coordinate system number (0,1: Z=axial, 
5:Y=Axial, 6:X=Axial)  

nsec = Number of Sectors (default = 1)  

tol = Tolerance (default = 0.001)  
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Create a component of blade side (bladecm) and disk side (diskcm) surfaces for 

each contact face.  These components can be nodes, surface elements, or areas.  Values 

for “drad” and “brad” are shown in Figure X.15.  The “gccs” value is used to indicate 

which global cylindrical coordinate system direction in ANSYS is parallel to the engine 

axial centerline.  “Nsec” equals 1 for XTE67 and F100, but equals 60 (blade count) for 

PW4000 since axisymmetric elements mean all sectors are to be modeled.  The macro 

will generate a file(*.cload) for each contact face (e.g. 4-files created for F100 since it has 

2-pressure side contact surfaces and 2-suction side contact surfaces).   

X.5.7 STEP 7:  Calculate Stress Data from PW/CAPRI or CAFDEM to 
Determine Life 

 
CAFDEM (Contact Analysis For Dissimilar Elastic Materials) and PW/CAPRI 

(for similar materials) are Purdue University written MATLAB codes. These codes 

extract more realistic contact surface stresses and strains than a coarsely meshed ANSYS 

model could.  Even though a finely meshed ANSYS model could perform the same task, 

the RAM, disk space, and time requirements required of ANSYS make PW/CAPRI and 

CAFDEM the software of choice for modeling speed. 

PW/CAPRI and CAFDEM treat each 2D-slice (see Figure X.16) of the ANSYS 

model’s pressure planes as 2D models with a 1” (per unit width) thickness.   

 

X.6 RESULTS OF ANALYSES 

Table X.3 lists the results of the pre-stressed modal analyses.  The percent 

margin to the excitation is also listed in Table X.3. 

 

Table X.3.  Natural Frequencies and Margins to Excitations 
 

Model

Excitation 
Frequency 

(Hz)

Mode of 
Interest

Mode of 
Interest 
ANSYS 

Frequency 
(Hz)

% Margin from 
Excitation to 

Mode of 
Interest

Blade A 1st Bending 601
Blade B 1st Bending 1033
Blade C 412 SWB 472 14.6  
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The contact surface normal stresses are graphed in Section X.11 in the 

following two ways: 
 

1.) Normal load/unit depth vs. load step 

2.) Normal load/unit depth vs. location along pressure plane 
 

The term “unit depth” refers to the 2D-slice width (see Figure X.16) in the 

direction parallel to the pressure planes (and not parallel to the engine centerline or global 

axial direction). 

Data for all pressure planes are not provided for Blade B only.  For Blade B, 

only the upper most pressures planes (2 of 6) are graphed since the stresses are known to 

be the largest at these planes based on experimental data.  Table X.4 summarizes the 

graphical data shown in Section X.11. 

 

Table X.4.  Pressure Plane Normal Load Graphical Data Summary 
 

Model
Coef. of 

Friction, µ
Pressure Plane 

Location*
load vs 

load step
load vs 
location

PS X.17 X.33
SS X.18 X.34
PS X.19 X.35
SS X.20 X.36

PS, upper tooth X.21 X.37
SS, upper tooth X.22 X.38
PS, upper tooth X.23 X.39
SS, upper tooth X.24 X.40
PS, upper tooth X.25 X.41
SS, upper tooth X.26 X.42
PS, lower tooth X.27 X.43
SS, lower tooth X.28 X.44
PS, upper tooth X.29 X.45
SS, upper tooth X.30 X.46
PS, lower tooth X.31 X.47
SS, lower tooth X.32 X.48

* PS = Pressure Side, SS = Suction Side
  The lower tooth is closer to the engine centerline than the upper tooth

0.3

0.7

Blade C

Figure #

Blade A
0.3

0.7

Blade B
0.3

0.7

 
 
 

In several of the load vs. location graphs, the normal stresses drastically drop off 

at the ends of the pressure planes (e.g. Figure X.41 for Blade C).  This is because in 
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several cases, the Blade attachment’s pressure planes extend beyond the axial width of 

the Disk’s pressure planes. 

Lifing data based on stress output from CAFDEM is not available since the 

output files (*.cload) from the ANSYS contact analyses have not been input into the 

CAFDEM code to date.  
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Figure X.1. Robust Attachment Design Integrating Contact And Lifing (RADICAL) 
Process. 

 
 

 
Figure X.2.  Obtaining vibratory loads. 

+

STEP 4 
Scale modal force history  
& define static load steps 

Lifing 
STEP 5

 3D quasi static -  
vibratory stress 

analysis with contact 
and friction (ANSYS) 

STEP 7 
Run 

PW/CAPRI  

STEP 1 
 3D steady-stress  

analysis with contact 
and friction (ANSYS) 

STEP 2
Identify measured or 

targeted modes 
& amplitudes 

STEP 3 
Perform pre-stressed 

3D modal analysis 
(ANSYS) 

STEP 6 
Extract and 

transfer 
contact loads 

Predicted or 
Measured  

HCF Drivers? 

modal force 
histories 

vibratory 
amplitude 

local 
σij εij

NO 
(steady-stress 

analysis) 

Aft

See Figure 2 for more 
details of steps 3-5 

 
The following flowchart illustrates the ANSYS methodology used to obtain the vibratory loads 
for the quasi-static vibratory contact analysis: 

Solve pre-
stressed modal 

analysis 

Identify 
excited 
mode of 

Obtain radial strain (ε) 
from ANSYS where 

strain gage* was 
located experimentally 

Scale 1F results by: 
SCALE = εexperimental x 

B**/ εANSYS  
(use SET first SCALE in ANSYS) 

Unselect pressure plane 
nodes and run mbfx.mac 
macro.  This writes nodal 
forces to a file mbf.data 

Solve quasi-static 
vibratory contact 

analysis with shakedown mbf.dat

MODAL  ANALYSIS 

CONTACT ANALYSIS 

* NSMS probe hoop deflection data or radial stresses were substituted for strain for F100 and PW4000, respectively (see Table 2). 
** B = 1 for XTE67 Stage 3 bench test and PW-F100-229 4th Stage Blade 

     B = 60 (blade count) for PW4000 Stage 1 since modal analysis was solved with actual material properties, but for the 
contact analysis, axisymmetric elements are used with loads based per unit circle, rather than per unit blade (where the 
blade consists of solid elements). 
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Figure X.3. Blade B pitting pressure side upper serration. 
 
 
 

 
Figure X.4. Blade A block displacement constraints. 

Cracks up to 3 mils deep 

XY

Z

Uy=0 
(edge) 

Uz=0 
(plane)

L 

A strap around the Block holds the Block-Blade assembly firmly to the 
Shaker Table.  Non-zero strap displacements are applied to this 
surface to correspond to the Block’s thermal expansion: 
Uz=Lα∆T = 3.75 in (8.8x10-6 1/F)(Max Temp – 70 F) = 0.05379” 

Shaker 
Table 

0.241” 

0.482” 

Location and width of Strap is not based on actual 
measurements (exact dimensions unknown) 
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Figure X.5. Blade A mesh. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure X.6. Blade A shaker block mesh. 
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Figure X.7. Blade B temperature distribution. 
 
 

 
 

Figure X.8. Blade B pressures. 

The pressure magnitudes 
are so large due to the 

combination of the 
axisymmetric 2D 

elements with the 3D 
solid elements.  The solid 

elements’ density, 
modulus, and 

conductivity are scaled by 
the number of blades.  
Therefore the pressure 
loads are also scaled by 
the same blade count.  

NOTE:  Pressures were not applied to the Disk (not shown) 
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Figure X.9. Blade B constraints and preloads. 

 

 
Figure X.10. Blade B coupling and interfacing of solid elements with axisymmetric 

elements. 

Couples (not shown) 
tie the two symmetry 

planes of the solid 
wheel elements 

together. 

Two averaging 
constraint 

equations tie the 
Disk to the Fir Tree 

Total Fx = 
198,819 

lbf Total Fx = 278,140 lbf 
Fy = 12,211 lbf 

KEY: 
Zero-displacement 
constraints 
Constraint equations 
Nodal forces 

Pressure Side: 
Total Fx =  101,744 lbf 

Total Fy = 53 lbf 
Total Fz = 1 199 lbf

Suction Side: 
Total Fx =  52,783 lbf

Total Fy = -44 lbf 
Total Fz = 330 lbf 

Constraint equations tie dissimilar meshes 
together that make up two parts of the Fur 

Nodes at the 2D-to-3D element 
interface are coupled together in 
the radial (x-direction) and axial (y-
direction) DOFs only.  Hoop DOFs 
of the solid elements, that do not 
connect directly to the 2D 
elements, have zero-displacement 
constraints to prevent Solid 
element rigid body motion. 

x

z 
y 

Axisymmetric elements 
shown in orange, solid 

elements shown in blue. 

KEY: 
Zero-displacement 
constraints 
Constraint equations 
C l

Axisymmetric elements do not require couples in the 

pressu
re side

suctio
n side
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Figure X.11. Blade C temperature distribution. 
 

 
Figure X.12. Blade C pressures. 

CONTOURS 
FOR 

WINDOW #1 

CONTOURS 
FOR 

WINDOWS 
#2-3 

Tangential resultant force* 
= 5,031 lbf for all 66 blades 

(76.227 lbf/blade)

Axial resultant force* = 
3,792 lbf for all 66 

blades (57.455 

Fore Aft 

(Viewed Radially 

Actual Blade loads due 
to pressures: 
Fx = -0.3 lbf (radial) 
Fy = 57.4 lbf (axial) 
Fz = 76.3 lbf 

NOTE:  Resultant pressures applied to airfoil only

* Due to gas path pressure 
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Figure X.13. Blade C mesh and constraints. 

 
 
 
 

 
 

Figure X.14. Quasi-Static contact analysis loading. 
 

Averaging constraint 
equations ties the Disk to 
the Fur Tree hook axially 

KEY: 
Zero-displacement 
constraints 
C i i

Preloads on the Disk were not available for 
modeling and therefore were not included 
Couples (not shown) tie the two symmetry 
planes of the solid wheel elements together. 

Averaging constraint 
equation ties mid-

sections of Shroud in 
normal direction.  This 
is the only region where 
adjacent Shrouds touch. 

All nodes constrained axially to 
simulate interface with adjacent Disk 
segment and to prevent rotation of the 
entire model about the global z-axis 

A single line of nodes are constrained 
tangentially at two locations to 
prevent rigid body motion (the 
symmetry plane couples of the Disk 
do not accomplish this alone). 

Time/Load Step 

Load 

1 

2 
steady-

state 

3

4

5

6
5 sub-steps 
per ramped 
load step 

Friction 
shake 

down #1 
Friction 
shake 

down #2 
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Figure X.15. Fir tree and disk teeth geometry. 
 
 

 
 

Figure X.16.  Pressure plane load conversion from 3D (ANSYS) to 2D (PW/CAPRI 
or CAFDEM). 

BLADE 
DISK 

R0.034 

R0.035 

R0.034 

R0.035 

Blade C 

Blade B 1st Blade (PWA 1480) 

Blade Disk

1 

2 

3 

0.0780.0633 
0.0630.0692 
0.0730.0851 

Disk 
radius, 

Rd

Blade 
Radiu
s Rb

Too
th # 

Blade A 
Blade radius, Rb = 0.059 in. 
Disk radius, Rb = 0.119 in. 

• For each slice (shown in red), extract normal (P), tangential (Q), and moment (M) nodal 
loads at load step(s) of interest using ANSYS macro radlx.mac. 

• Determine P, Q and M (“2D” loads/unit depth) over each slice and pass to PW/CAPRI or 
CAFDEM in a neutral file. 

• Conduct analytical contact analysis on each slice to determine near-surface attachment 
stress field. 

P 

Q 
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Figure X.17. Blade A, µ = 0.3, pressure side. 

 

 
Figure X.18. Blade A, µ = 0.3, suction side. 
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Figure X.19.  Blade A, µ = 0.7, pressure side. 

 
 

 
Figure X.20.  Blade A, µ = 0.7, suction side. 
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Figure X.21.  Blade B, µ = 0.3, pressure side, upper tooth. 

 

 
Figure X.22. Blade B, µ = 0.3, suction side, upper tooth. 
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Figure X.23.  Blade B, µ = 0.7, pressure side, upper tooth. 

 

 
Figure X.24.  Blade B, µ = 0.7 suction side, upper tooth. 
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Blade X.25. Blade C, µ = 0.3, pressure side, upper tooth. 
 

 
Figure X.26. Blade C, µ = 0.3, suction side, upper tooth. 
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Figure X.27.  Blade C, µ = 0.3, pressure side, lower tooth. 

 

 
Figure X.28.  Blade C, µ =0.3, suction side, lower tooth. 
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Figure X.29.  Blade C, µ = 0.7, pressure side, upper tooth. 

 

 
Figure X.30. Blade C, µ = 0.7, suction side, upper tooth.   
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Figure X.31. Blade C, µ = 0.7, pressure side, lower tooth. 

 

 
 

Figure X.32. Blade C, µ = 0.7, suction side, lower tooth. 
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Figure X.33. Blade A, µ = 0.3, pressure side. 

 
 
 

 
Figure X.34. Blade A, µ = 0.3, suction side. 
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Figure X.35. Blade A, µ = 0.7, pressure side. 

 

 
Figure X.36. Blade A, µ = 0.7, suction side. 
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Figure X.37. Blade A, µ = 0.3, pressure side, upper tooth. 

 
 

 
Figure X.38. Blade B, µ = 0.3, suction side, upper tooth.   
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Figure X.39. Blade B, µ = 0.7, pressure side, upper tooth. 

 
 

 
Figure X.40. Blade B, µ = 0.7, suction side, upper tooth. 
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Figure X.41. Blade C, µ = 0.3, pressure side, upper tooth. 

 

 
Figure X.42. Blade C, µ = 0.3, suction side, upper tooth. 
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Figure X.43. Blade C, µ = 0.3, pressure side, lower tooth. 

 
 
 

 
Figure X.44. Blade C, µ = 0.3, suction side, lower tooth. 
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Figure X.45. Blade C, µ = 0.7, pressure side, upper tooth. 

 
 
 

 
Figure X.46. Blade C, µ = 0.7, suction side, upper tooth. 
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Figure X.47. Blade C, µ = 0.7, pressure side, lower tooth. 

 
 
 

 
Figure X.48. Blade C, µ = 0.7, suction side, lower tooth. 
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